organic compounds
Morpholin-4-ium morpholine-4-carbodithioate
aInstituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador Sãocarlense, 400, Caixa Postal 780, 13560-970, São Carlos SP, Brazil
*Correspondence e-mail: mafud@iqsc.usp.br
The title compound, C4H10NO+·C5H8NOS2−, is built up of a morpholinium cation and a dithiocarbamate anion. In the crystal, two structurally independent formula units are linked via N—H⋯S hydrogen bonds, forming an inversion dimer, with graph-set motif R44(12).
Related literature
For the crystal structures of similar compounds, see: Wahlberg (1979, 1980, 1981); Mafud & Gambardella (2011a,b). For graph-set analysis, see: Bernstein et al. (1995). For puckering parameters, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009) and publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536811026286/su2285sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811026286/su2285Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811026286/su2285Isup3.cml
The RNH2+ salt of the morpholinedithiocarbamate was prepared by slow addition of 0.1 mol of CS2 to a cold solution (ice bath) containing 0.2 mol of the morpholien amine dissolved in 30 ml of ethanol-water 1:1 (v/v) medium. The obtained solid was recrystallized from ethanol-water 1:1 (v/v) and dried in a vacuum oven at 323 K for 8 h. Colourless single crystals, suitable for X-ray
were obtained. On heating they sublimed and decomposed.Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell
CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009) and publCIF (Westrip, 2010).C4H10NO+·C5H8NOS2− | F(000) = 536 |
Mr = 250.37 | Dx = 1.379 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 15 reflections |
a = 7.938 (5) Å | θ = 5.5–15.9° |
b = 18.3232 (15) Å | µ = 0.43 mm−1 |
c = 8.8260 (5) Å | T = 290 K |
β = 110.021 (5)° | Prism, colourless |
V = 1206.2 (8) Å3 | 0.3 × 0.15 × 0.15 mm |
Z = 4 |
Enraf–Nonius TurboCAD-4 diffractometer | Rint = 0.041 |
Graphite monochromator | θmax = 30.0°, θmin = 2.7° |
non–profiled ω/2θ scans | h = 0→11 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→25 |
Tmin = 0.795, Tmax = 0.902 | l = −12→11 |
3705 measured reflections | 3 standard reflections every 120 min |
3487 independent reflections | intensity decay: 5% |
2021 reflections with I > 2σ(I) |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.145 | All H-atom parameters refined |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0759P)2] where P = (Fo2 + 2Fc2)/3 |
3487 reflections | (Δ/σ)max = 0.004 |
190 parameters | Δρmax = 0.56 e Å−3 |
0 restraints | Δρmin = −0.39 e Å−3 |
C4H10NO+·C5H8NOS2− | V = 1206.2 (8) Å3 |
Mr = 250.37 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.938 (5) Å | µ = 0.43 mm−1 |
b = 18.3232 (15) Å | T = 290 K |
c = 8.8260 (5) Å | 0.3 × 0.15 × 0.15 mm |
β = 110.021 (5)° |
Enraf–Nonius TurboCAD-4 diffractometer | 2021 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.041 |
Tmin = 0.795, Tmax = 0.902 | 3 standard reflections every 120 min |
3705 measured reflections | intensity decay: 5% |
3487 independent reflections |
R[F2 > 2σ(F2)] = 0.050 | 0 restraints |
wR(F2) = 0.145 | All H-atom parameters refined |
S = 1.00 | Δρmax = 0.56 e Å−3 |
3487 reflections | Δρmin = −0.39 e Å−3 |
190 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.20657 (9) | 0.07843 (4) | 0.84253 (7) | 0.03827 (19) | |
S2 | 0.34115 (10) | −0.02991 (4) | 0.66044 (8) | 0.0448 (2) | |
O2 | 0.7186 (3) | 0.20279 (12) | 0.8050 (3) | 0.0558 (5) | |
O1 | 0.1390 (3) | 0.19488 (11) | 0.2852 (2) | 0.0547 (6) | |
N1 | 0.1685 (3) | 0.09147 (11) | 0.5323 (2) | 0.0344 (5) | |
N2 | 0.6455 (3) | 0.09075 (12) | 0.9933 (3) | 0.0352 (5) | |
C1 | 0.2314 (3) | 0.04987 (13) | 0.6648 (3) | 0.0301 (5) | |
C2 | 0.1739 (4) | 0.06872 (15) | 0.3746 (3) | 0.0425 (6) | |
C3 | 0.2422 (4) | 0.13083 (16) | 0.2981 (4) | 0.0458 (7) | |
C4 | 0.0698 (4) | 0.15994 (15) | 0.5227 (3) | 0.0390 (6) | |
C5 | 0.1441 (5) | 0.21801 (15) | 0.4412 (4) | 0.0472 (7) | |
C6 | 0.7585 (5) | 0.07751 (17) | 0.8933 (4) | 0.0478 (7) | |
C7 | 0.7033 (5) | 0.12905 (18) | 0.7531 (4) | 0.0506 (7) | |
C8 | 0.6555 (5) | 0.16802 (17) | 1.0443 (4) | 0.0515 (7) | |
C9 | 0.6074 (5) | 0.21637 (17) | 0.8988 (4) | 0.0556 (8) | |
H1N | 0.537 (5) | 0.079 (2) | 0.936 (4) | 0.067* | |
H2N | 0.681 (4) | 0.063 (2) | 1.085 (4) | 0.067* | |
H2A | 0.050 (4) | 0.053 (2) | 0.304 (4) | 0.067* | |
H2B | 0.248 (4) | 0.027 (2) | 0.394 (4) | 0.067* | |
H3A | 0.368 (4) | 0.1441 (19) | 0.369 (4) | 0.067* | |
H3B | 0.229 (4) | 0.1177 (19) | 0.187 (4) | 0.067* | |
H4A | −0.053 (5) | 0.1527 (19) | 0.457 (4) | 0.067* | |
H4B | 0.088 (5) | 0.1751 (18) | 0.628 (4) | 0.067* | |
H5A | 0.274 (5) | 0.2265 (19) | 0.512 (4) | 0.067* | |
H5B | 0.073 (4) | 0.261 (2) | 0.419 (4) | 0.067* | |
H6A | 0.887 (5) | 0.0884 (19) | 0.966 (4) | 0.067* | |
H6B | 0.748 (4) | 0.031 (2) | 0.863 (4) | 0.067* | |
H7A | 0.582 (5) | 0.1189 (19) | 0.685 (4) | 0.067* | |
H7B | 0.786 (4) | 0.125 (2) | 0.697 (4) | 0.067* | |
H8A | 0.791 (5) | 0.1709 (19) | 1.118 (4) | 0.067* | |
H8B | 0.590 (5) | 0.1737 (19) | 1.108 (4) | 0.067* | |
H9A | 0.481 (5) | 0.2048 (19) | 0.826 (4) | 0.067* | |
H9B | 0.628 (5) | 0.265 (2) | 0.933 (4) | 0.067* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0437 (4) | 0.0446 (4) | 0.0318 (3) | 0.0029 (3) | 0.0197 (3) | 0.0001 (3) |
S2 | 0.0620 (5) | 0.0378 (4) | 0.0438 (4) | 0.0134 (3) | 0.0300 (3) | 0.0079 (3) |
O2 | 0.0626 (14) | 0.0449 (12) | 0.0676 (13) | −0.0052 (10) | 0.0324 (11) | 0.0156 (10) |
O1 | 0.0774 (15) | 0.0474 (12) | 0.0479 (11) | 0.0132 (10) | 0.0324 (10) | 0.0173 (9) |
N1 | 0.0462 (13) | 0.0290 (10) | 0.0307 (10) | 0.0011 (8) | 0.0165 (9) | 0.0002 (8) |
N2 | 0.0395 (12) | 0.0350 (11) | 0.0336 (10) | −0.0027 (9) | 0.0157 (9) | 0.0043 (8) |
C1 | 0.0302 (11) | 0.0313 (11) | 0.0309 (11) | −0.0057 (9) | 0.0131 (9) | −0.0006 (9) |
C2 | 0.0670 (19) | 0.0366 (14) | 0.0269 (12) | −0.0020 (13) | 0.0199 (12) | −0.0014 (10) |
C3 | 0.0606 (19) | 0.0446 (16) | 0.0388 (14) | 0.0013 (14) | 0.0254 (13) | 0.0046 (12) |
C4 | 0.0445 (16) | 0.0373 (14) | 0.0382 (13) | 0.0062 (11) | 0.0180 (12) | 0.0031 (11) |
C5 | 0.0602 (19) | 0.0332 (14) | 0.0537 (17) | 0.0073 (13) | 0.0267 (14) | 0.0094 (12) |
C6 | 0.0612 (19) | 0.0389 (15) | 0.0571 (17) | 0.0089 (14) | 0.0379 (15) | 0.0054 (13) |
C7 | 0.0625 (19) | 0.0549 (18) | 0.0460 (16) | −0.0029 (15) | 0.0336 (15) | 0.0057 (13) |
C8 | 0.071 (2) | 0.0428 (16) | 0.0476 (16) | 0.0035 (14) | 0.0285 (15) | −0.0029 (12) |
C9 | 0.071 (2) | 0.0342 (15) | 0.069 (2) | 0.0078 (15) | 0.0329 (17) | 0.0062 (14) |
S1—C1 | 1.728 (2) | C3—H3B | 0.98 (4) |
S2—C1 | 1.709 (2) | C4—C5 | 1.512 (4) |
O2—C7 | 1.418 (4) | C4—H4A | 0.96 (3) |
O2—C9 | 1.423 (4) | C4—H4B | 0.93 (3) |
O1—C3 | 1.414 (3) | C5—H5A | 1.02 (3) |
O1—C5 | 1.428 (3) | C5—H5B | 0.94 (4) |
N1—C1 | 1.341 (3) | C6—C7 | 1.498 (4) |
N1—C4 | 1.466 (3) | C6—H6A | 1.02 (3) |
N1—C2 | 1.468 (3) | C6—H6B | 0.89 (4) |
N2—C6 | 1.478 (3) | C7—H7A | 0.96 (3) |
N2—C8 | 1.480 (4) | C7—H7B | 0.95 (4) |
N2—H1N | 0.86 (4) | C8—C9 | 1.498 (4) |
N2—H2N | 0.91 (4) | C8—H8A | 1.05 (3) |
C2—C3 | 1.515 (4) | C8—H8B | 0.90 (3) |
C2—H2A | 1.01 (3) | C9—H9A | 1.01 (3) |
C2—H2B | 0.94 (4) | C9—H9B | 0.94 (4) |
C3—H3A | 1.01 (3) | ||
C7—O2—C9 | 110.7 (2) | H4A—C4—H4B | 115 (3) |
C3—O1—C5 | 110.1 (2) | O1—C5—C4 | 111.3 (2) |
C1—N1—C4 | 124.7 (2) | O1—C5—H5A | 108.8 (19) |
C1—N1—C2 | 122.8 (2) | C4—C5—H5A | 107.2 (19) |
C4—N1—C2 | 112.2 (2) | O1—C5—H5B | 103 (2) |
C6—N2—C8 | 111.0 (2) | C4—C5—H5B | 112 (2) |
C6—N2—H1N | 107 (2) | H5A—C5—H5B | 114 (3) |
C8—N2—H1N | 111 (2) | N2—C6—C7 | 108.9 (2) |
C6—N2—H2N | 112 (2) | N2—C6—H6A | 106.0 (19) |
C8—N2—H2N | 107 (2) | C7—C6—H6A | 109.9 (19) |
H1N—N2—H2N | 109 (3) | N2—C6—H6B | 109 (2) |
N1—C1—S2 | 120.49 (17) | C7—C6—H6B | 113 (2) |
N1—C1—S1 | 119.70 (18) | H6A—C6—H6B | 110 (3) |
S2—C1—S1 | 119.79 (13) | O2—C7—C6 | 111.4 (3) |
N1—C2—C3 | 109.9 (2) | O2—C7—H7A | 110 (2) |
N1—C2—H2A | 109.1 (19) | C6—C7—H7A | 110 (2) |
C3—C2—H2A | 111 (2) | O2—C7—H7B | 104 (2) |
N1—C2—H2B | 106 (2) | C6—C7—H7B | 109 (2) |
C3—C2—H2B | 113 (2) | H7A—C7—H7B | 112 (3) |
H2A—C2—H2B | 108 (3) | N2—C8—C9 | 109.5 (2) |
O1—C3—C2 | 111.9 (2) | N2—C8—H8A | 100.0 (19) |
O1—C3—H3A | 106 (2) | C9—C8—H8A | 114.1 (19) |
C2—C3—H3A | 109.6 (19) | N2—C8—H8B | 109 (2) |
O1—C3—H3B | 105 (2) | C9—C8—H8B | 116 (2) |
C2—C3—H3B | 109 (2) | H8A—C8—H8B | 107 (3) |
H3A—C3—H3B | 115 (3) | O2—C9—C8 | 111.6 (3) |
N1—C4—C5 | 110.0 (2) | O2—C9—H9A | 105.6 (19) |
N1—C4—H4A | 109 (2) | C8—C9—H9A | 109.2 (19) |
C5—C4—H4A | 107 (2) | O2—C9—H9B | 106 (2) |
N1—C4—H4B | 107 (2) | C8—C9—H9B | 109 (2) |
C5—C4—H4B | 108 (2) | H9A—C9—H9B | 116 (3) |
C4—N1—C1—S2 | 178.8 (2) | C2—N1—C4—C5 | −53.1 (3) |
C2—N1—C1—S2 | 5.9 (3) | C3—O1—C5—C4 | −60.0 (3) |
C4—N1—C1—S1 | −3.0 (3) | N1—C4—C5—O1 | 56.4 (3) |
C2—N1—C1—S1 | −175.9 (2) | C8—N2—C6—C7 | −55.7 (4) |
C1—N1—C2—C3 | −133.9 (3) | C9—O2—C7—C6 | −60.0 (4) |
C4—N1—C2—C3 | 52.4 (3) | N2—C6—C7—O2 | 58.1 (4) |
C5—O1—C3—C2 | 59.7 (3) | C6—N2—C8—C9 | 54.9 (4) |
N1—C2—C3—O1 | −55.7 (3) | C7—O2—C9—C8 | 59.0 (4) |
C1—N1—C4—C5 | 133.4 (3) | N2—C8—C9—O2 | −56.2 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1N···S1 | 0.86 (4) | 2.47 (4) | 3.284 (3) | 158 (3) |
N2—H2N···S1i | 0.91 (4) | 2.75 (4) | 3.453 (2) | 135 (3) |
N2—H2N···S2i | 0.91 (4) | 2.39 (3) | 3.221 (2) | 151 (3) |
Symmetry code: (i) −x+1, −y, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C4H10NO+·C5H8NOS2− |
Mr | 250.37 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 290 |
a, b, c (Å) | 7.938 (5), 18.3232 (15), 8.8260 (5) |
β (°) | 110.021 (5) |
V (Å3) | 1206.2 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.43 |
Crystal size (mm) | 0.3 × 0.15 × 0.15 |
Data collection | |
Diffractometer | Enraf–Nonius TurboCAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.795, 0.902 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3705, 3487, 2021 |
Rint | 0.041 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.050, 0.145, 1.00 |
No. of reflections | 3487 |
No. of parameters | 190 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.56, −0.39 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999), PLATON (Spek, 2009) and publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1N···S1 | 0.86 (4) | 2.47 (4) | 3.284 (3) | 158 (3) |
N2—H2N···S1i | 0.91 (4) | 2.75 (4) | 3.453 (2) | 135 (3) |
N2—H2N···S2i | 0.91 (4) | 2.39 (3) | 3.221 (2) | 151 (3) |
Symmetry code: (i) −x+1, −y, −z+2. |
Acknowledgements
We are grateful to the Instituto de Química de São Carlos and the Universidade de São Paulo for supporting this study.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Enraf–Nonius (1989). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mafud, A. C. & Gambardella, M. T. P. (2011a). Acta Cryst. E67, o879. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mafud, A. C. & Gambardella, M. T. P. (2011b). Acta Cryst. E67, m942. Web of Science CSD CrossRef IUCr Journals Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wahlberg, A. (1979). Acta Cryst. B35, 485–487. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Wahlberg, A. (1980). Acta Cryst. B36, 2099–2103. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Wahlberg, A. (1981). Acta Cryst. B37, 1240–1244. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The first thiocarbamic acid-ammonium salt, pyrrolidinedithiocarbamic acid-pyrrolidineammonium salt, was reported on previously by (Wahlberg, 1979; 1980; 1981). Our group have recently described the synthesis and crystal structures of ammonium piperidine-1-carbodithioate and sodium piperidine-1-carbodithioate dihydrate (Mafud & Gambardella, 2011a,b). Continuing our research on this subject, we report herein on the synthesis and crystal structure of the title salt, 1-Morpholinedithiocarbamic Acid-morpholineammonium Salt.
In the molecular structure of the title compound (Fig. 1) there is an intramolecular hydrogen bond involving the cation, via the nitrogen atom from amine group, and the anion, via the sulfur atom of dithiocarbamate (Table 1). The six membered rings have chair conformations, with puckering parameters are Q=0.554 (3) Å, θ = 177.4 (3)°, ϕ2 = 168 (6)° for the anion and Q = 0.566 (3) Å, θ = 1.4 (4)°, ϕ2 = 60 (14)° for the cation (Cremer & Pople, 1975).
In the crystal two structurally independent formula units are linked via N—H···S hydrogen bonds (Fig. 2, Table 1), to form a dimer arrangement centered about an inversion center, with graph-set R44(12) [Bernstein et al., 1995].