organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Bromo-4-hydrazinyl­­idene-1-methyl-3H-2λ6,1-benzo­thia­zine-2,2-dione

aMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan, bApplied Chemistry Research Center, PCSIR Laboratories Complex, Ferozpur Road, Lahore 54600, Pakistan, cX-ray Diffraction and Physical Laboratory, Department of Physics, School of Physical Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan, and dThe Center of Excellence for Advanced Materials Research, King Abdul Aziz University, Jeddah, PO Box 80203, Saudi Arabia
*Correspondence e-mail: mnachemist@hotmail.com

(Received 24 June 2011; accepted 12 July 2011; online 23 July 2011)

In the title mol­ecule, C9H10BrN3O2S, the thia­zine ring has an envelope conformation with the S atom at the flap. The geometry around the S atom is distorted tetra­hedral. In the crystal, inversion dimers linked by pairs of N—H⋯N hydrogen bonds occur, generating R22(6) ring motifs. N—H⋯O hydrogen bonds and C—H⋯O inter­actions connect the dimers, forming a three-dimentional network structure.

Related literature

For the related structures of 6-bromo-1-methyl-1H-2,1-benzo­thia­zin-4(3H)-one 2,2-dioxide and 6-bromo-1-ethyl-1H-2,1-benzo­thia­zin-4(3H)-one 2,2-dioxide, see: Shafiq et al. (2009a[Shafiq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Asghar, M. N. (2009a). Acta Cryst. E65, o1182.],b[Shafiq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Safdar, M. (2009b). Acta Cryst. E65, o393.]), respectively. For the structures of other benzothia­zine derivatives, see: Shafiq et al. (2011[Shafiq, M., Khan, I. U., Arshad, M. N. & Siddiqui, W. A. (2011). Asian J. Chem. 23, 2101-2105.]); Arshad et al. (2011[Arshad, M. N., Khan, I. U., Zia-ur-Rehman, M. & Shafiq, M. (2011). Asian J. Chem. 23, 2801-2805.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C9H10BrN3O2S

  • Mr = 304.17

  • Monoclinic, P 21 /n

  • a = 10.1483 (5) Å

  • b = 9.6375 (4) Å

  • c = 11.2118 (5) Å

  • β = 92.278 (2)°

  • V = 1095.69 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.93 mm−1

  • T = 296 K

  • 0.21 × 0.09 × 0.07 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.492, Tmax = 0.771

  • 12176 measured reflections

  • 2719 independent reflections

  • 1972 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.079

  • S = 1.01

  • 2719 reflections

  • 152 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H32⋯N2i 0.85 (4) 2.47 (4) 3.198 (4) 144 (3)
N3—H31⋯O1ii 0.90 (4) 2.38 (4) 3.252 (4) 162 (3)
C3—H3⋯O1iii 0.93 2.45 3.323 (3) 156
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Continuing our research on the synthesis (Shafiq et al., 2011; Arshad et al., 2011) and crystal structure studies of benzothiazine derivatives (Shafiq et al., 2009a), we present herein the crystal structure of the title compound, (I).

The molecular structure of the title molecule, (I), is illustrated in Fig. 1. The structure differs to a similar published compound, 6-Bromo-1-methyl-1H-2,1-benzothiazin-4(3H)-one 2,2-dioxide (II) [Shafiq et al., 2009a], in that the carbonyl group in (II) has been replaced with a hydrazide moiety in (I). The bond lengths and angles in the title compound are similar to those of (II) and in 6-Bromo-1-ethyl-1H-2,1-benzothiazin-4(3H)-one 2,2-dioxide (III) (Shafiq et al., 2009b). In (I) atom Br1, attached to the planar aromatic ring (C1—C6), lies out of the plane by 0.0547 (3) Å, while in (II) and (III) the deviations are slightly greater, i.e. 0.064 (4) and 0.073 (4) Å, respectively. The thiazine ring, (C1/C6/C7/C8/S1/N1), has an envelope conformation with atom S1 as the flap [puckering parameters: Q (puckering amplitude) = 0.5873 (18) Å, θ = 124.31 (19) °, and ϕ = 185.9 (3) ° (Cromer & Pople, 1975)].

In the crystal structure of compound (I) the functional hydrazide group is involved in the formation of inversion dimers, through N3—H32···N2 hydrogen bonding, and generates a six-membered R22(6) ring motif (Bernstein et al., 1995). These dimers are further connected through N—H···O hydrogen bonds and weak C—H···O interactions to form a three dimensional network structure (Table 1, Fig. 2).

Related literature top

For the related structures 6-bromo-1-methyl-1H-2,1-benzothiazin-4(3H)-one 2,2-dioxide and 6-bromo-1-ethyl-1H-2,1-benzothiazin-4(3H)-one 2,2-dioxide, see: Shafiq et al. (2009a,b). For the structures of other benzothiazine derivatives, see: Shafiq et al. (2011); Arshad et al. (2011). For graph-set notation, see: Bernstein et al. (1995). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

A mixture of 1-methyl-2,2-dioxo-2,3-dihydro-1H-2λ6-benzo [c][1,2]thiazin-4-one (10.60 g; 50.0 mmoles), hydrazine hydrate (85%) (5.0 ml) and ethanol (200 ml) was reacted at 318 K using an ultrasound reaction bath for about 35 mins. After completion of the reaction, excess hydrazine and solvent were removed under vacuum. The crude product obtained was washed with water and dried; Yield: 74%. Suitable crystals were produced through recrystalization in methanol under slow evaporation.

Refinement top

The NH H-atom was located in a difference Fourier map and refined with Uiso(H)=1.2Ueq(N). The C-bound H-atoms were included in calculated positions and treated as riding atoms: C-H = 0.93, 0.96, and 0.97 Å for CH(aromatic), CH3 and CH2 H-atoms, respectively, with Uiso(H) = k × Ueq(parent C-atom), where k = 1.5 for CH3 H-atoms and k = 1.2 for all other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule, (I), showing the labelling scheme and 50% displacement ellipsoids.
[Figure 2] Fig. 2. A perspective view of the crystal packing of compound (I), showing the inversion dimers formed through N—H···N hydrogen bonds (dashed lines; see Table 1 for details).
6-Bromo-4-hydrazinylidene-1-methyl-3H-2λ6,1-benzothiazine-2,2-dione top
Crystal data top
C9H10BrN3O2SF(000) = 608
Mr = 304.17Dx = 1.844 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3531 reflections
a = 10.1483 (5) Åθ = 2.7–24.7°
b = 9.6375 (4) ŵ = 3.93 mm1
c = 11.2118 (5) ÅT = 296 K
β = 92.278 (2)°Needle, yellow
V = 1095.69 (9) Å30.21 × 0.09 × 0.07 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2719 independent reflections
Radiation source: fine-focus sealed tube1972 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 28.3°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1313
Tmin = 0.492, Tmax = 0.771k = 127
12176 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0403P)2 + 0.1092P]
where P = (Fo2 + 2Fc2)/3
2719 reflections(Δ/σ)max = 0.001
152 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C9H10BrN3O2SV = 1095.69 (9) Å3
Mr = 304.17Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.1483 (5) ŵ = 3.93 mm1
b = 9.6375 (4) ÅT = 296 K
c = 11.2118 (5) Å0.21 × 0.09 × 0.07 mm
β = 92.278 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2719 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1972 reflections with I > 2σ(I)
Tmin = 0.492, Tmax = 0.771Rint = 0.037
12176 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.40 e Å3
2719 reflectionsΔρmin = 0.35 e Å3
152 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.94817 (3)0.62148 (3)1.15166 (3)0.04753 (12)
S10.86913 (6)1.05109 (6)0.65175 (5)0.03060 (16)
O10.81377 (18)0.92236 (19)0.60884 (16)0.0413 (4)
O20.90132 (19)1.15392 (19)0.56664 (16)0.0433 (5)
N11.00013 (19)1.0224 (2)0.73776 (18)0.0321 (5)
N20.6567 (2)1.0222 (2)0.9307 (2)0.0400 (5)
N30.5556 (3)1.1148 (3)0.9019 (3)0.0551 (7)
H320.507 (4)1.115 (3)0.962 (3)0.066*
H310.586 (3)1.199 (4)0.881 (3)0.066*
C10.9838 (2)0.9263 (2)0.8314 (2)0.0290 (5)
C21.0852 (3)0.8338 (3)0.8633 (2)0.0363 (6)
H21.16160.83350.82020.044*
C31.0743 (3)0.7436 (3)0.9567 (2)0.0377 (6)
H31.14270.68290.97740.045*
C40.9602 (3)0.7443 (2)1.0195 (2)0.0341 (6)
C50.8576 (2)0.8322 (2)0.9895 (2)0.0319 (6)
H50.78130.82991.03280.038*
C60.8669 (2)0.9253 (2)0.8943 (2)0.0274 (5)
C70.7567 (2)1.0212 (2)0.8646 (2)0.0290 (5)
C80.7637 (3)1.1175 (2)0.7582 (2)0.0343 (6)
H8A0.79541.20770.78480.041*
H8B0.67611.12950.72190.041*
C91.1299 (3)1.0488 (3)0.6900 (3)0.0457 (7)
H9A1.19271.06580.75460.069*
H9B1.12501.12840.63850.069*
H9C1.15710.96940.64540.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.04682 (19)0.04001 (17)0.0552 (2)0.00435 (13)0.00552 (14)0.01513 (13)
S10.0277 (3)0.0349 (3)0.0292 (3)0.0003 (3)0.0004 (3)0.0005 (2)
O10.0432 (11)0.0436 (10)0.0366 (10)0.0068 (9)0.0041 (8)0.0078 (8)
O20.0411 (11)0.0484 (11)0.0406 (11)0.0029 (9)0.0046 (9)0.0129 (8)
N10.0234 (11)0.0400 (11)0.0330 (12)0.0015 (9)0.0008 (9)0.0032 (9)
N20.0375 (13)0.0384 (12)0.0447 (14)0.0089 (10)0.0113 (11)0.0073 (10)
N30.0439 (16)0.0518 (16)0.071 (2)0.0180 (13)0.0243 (14)0.0177 (14)
C10.0265 (13)0.0311 (12)0.0290 (13)0.0005 (10)0.0034 (10)0.0058 (10)
C20.0283 (14)0.0411 (14)0.0394 (16)0.0041 (11)0.0000 (12)0.0047 (11)
C30.0337 (15)0.0352 (13)0.0436 (16)0.0073 (11)0.0062 (12)0.0033 (11)
C40.0395 (15)0.0257 (11)0.0362 (14)0.0052 (10)0.0086 (12)0.0002 (10)
C50.0300 (14)0.0319 (12)0.0335 (14)0.0037 (10)0.0015 (11)0.0033 (10)
C60.0283 (13)0.0259 (11)0.0279 (13)0.0023 (10)0.0021 (10)0.0050 (9)
C70.0276 (13)0.0293 (12)0.0302 (13)0.0001 (10)0.0022 (10)0.0035 (10)
C80.0322 (14)0.0348 (13)0.0360 (14)0.0045 (11)0.0028 (11)0.0017 (11)
C90.0265 (14)0.0676 (19)0.0432 (16)0.0013 (13)0.0049 (12)0.0035 (14)
Geometric parameters (Å, º) top
Br1—C41.904 (2)C2—H20.9300
S1—O21.4228 (19)C3—C41.380 (4)
S1—O11.4369 (19)C3—H30.9300
S1—N11.635 (2)C4—C51.374 (3)
S1—C81.755 (3)C5—C61.400 (3)
N1—C11.415 (3)C5—H50.9300
N1—C91.464 (3)C6—C71.479 (3)
N2—C71.280 (3)C7—C81.515 (3)
N2—N31.388 (3)C8—H8A0.9700
N3—H320.85 (4)C8—H8B0.9700
N3—H310.90 (4)C9—H9A0.9600
C1—C21.397 (4)C9—H9B0.9600
C1—C61.404 (3)C9—H9C0.9600
C2—C31.369 (4)
O2—S1—O1118.29 (11)C5—C4—Br1120.2 (2)
O2—S1—N1108.09 (11)C3—C4—Br1118.40 (19)
O1—S1—N1110.45 (11)C4—C5—C6120.6 (2)
O2—S1—C8111.38 (11)C4—C5—H5119.7
O1—S1—C8107.55 (12)C6—C5—H5119.7
N1—S1—C899.44 (11)C5—C6—C1118.1 (2)
C1—N1—C9121.3 (2)C5—C6—C7120.0 (2)
C1—N1—S1115.59 (16)C1—C6—C7121.9 (2)
C9—N1—S1118.49 (17)N2—C7—C6118.9 (2)
C7—N2—N3117.8 (2)N2—C7—C8120.9 (2)
N2—N3—H32105 (2)C6—C7—C8120.1 (2)
N2—N3—H31112 (2)C7—C8—S1111.17 (16)
H32—N3—H31115 (3)C7—C8—H8A109.4
C2—C1—C6119.7 (2)S1—C8—H8A109.4
C2—C1—N1120.0 (2)C7—C8—H8B109.4
C6—C1—N1120.2 (2)S1—C8—H8B109.4
C3—C2—C1121.4 (2)H8A—C8—H8B108.0
C3—C2—H2119.3N1—C9—H9A109.5
C1—C2—H2119.3N1—C9—H9B109.5
C2—C3—C4118.8 (2)H9A—C9—H9B109.5
C2—C3—H3120.6N1—C9—H9C109.5
C4—C3—H3120.6H9A—C9—H9C109.5
C5—C4—C3121.4 (2)H9B—C9—H9C109.5
O2—S1—N1—C1177.43 (17)C4—C5—C6—C10.3 (3)
O1—S1—N1—C151.7 (2)C4—C5—C6—C7178.8 (2)
C8—S1—N1—C161.13 (19)C2—C1—C6—C51.4 (3)
O2—S1—N1—C926.3 (2)N1—C1—C6—C5177.3 (2)
O1—S1—N1—C9104.5 (2)C2—C1—C6—C7179.8 (2)
C8—S1—N1—C9142.6 (2)N1—C1—C6—C71.1 (3)
C9—N1—C1—C213.4 (3)N3—N2—C7—C6179.0 (2)
S1—N1—C1—C2142.1 (2)N3—N2—C7—C80.3 (4)
C9—N1—C1—C6165.3 (2)C5—C6—C7—N23.4 (3)
S1—N1—C1—C639.2 (3)C1—C6—C7—N2174.9 (2)
C6—C1—C2—C31.4 (4)C5—C6—C7—C8177.2 (2)
N1—C1—C2—C3177.3 (2)C1—C6—C7—C84.4 (3)
C1—C2—C3—C40.4 (4)N2—C7—C8—S1155.8 (2)
C2—C3—C4—C50.6 (4)C6—C7—C8—S124.9 (3)
C2—C3—C4—Br1178.47 (19)O2—S1—C8—C7165.88 (17)
C3—C4—C5—C60.7 (4)O1—S1—C8—C763.0 (2)
Br1—C4—C5—C6178.42 (17)N1—S1—C8—C752.11 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H32···N2i0.85 (4)2.47 (4)3.198 (4)144 (3)
N3—H31···O1ii0.90 (4)2.38 (4)3.252 (4)162 (3)
C3—H3···O1iii0.932.453.323 (3)156
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+3/2, y+1/2, z+3/2; (iii) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H10BrN3O2S
Mr304.17
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)10.1483 (5), 9.6375 (4), 11.2118 (5)
β (°) 92.278 (2)
V3)1095.69 (9)
Z4
Radiation typeMo Kα
µ (mm1)3.93
Crystal size (mm)0.21 × 0.09 × 0.07
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.492, 0.771
No. of measured, independent and
observed [I > 2σ(I)] reflections
12176, 2719, 1972
Rint0.037
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.079, 1.01
No. of reflections2719
No. of parameters152
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.35

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H32···N2i0.85 (4)2.47 (4)3.198 (4)144 (3)
N3—H31···O1ii0.90 (4)2.38 (4)3.252 (4)162 (3)
C3—H3···O1iii0.932.453.323 (3)156.0
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+3/2, y+1/2, z+3/2; (iii) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Higher Education Commission of Pakistan for providing a grant for the project to strengthen the Materials Chemistry Laboratory at GC University, Lahore, Pakistan.

References

First citationArshad, M. N., Khan, I. U., Zia-ur-Rehman, M. & Shafiq, M. (2011). Asian J. Chem. 23, 2801–2805.  CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationShafiq, M., Khan, I. U., Arshad, M. N. & Siddiqui, W. A. (2011). Asian J. Chem. 23, 2101–2105.  CAS Google Scholar
First citationShafiq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Asghar, M. N. (2009a). Acta Cryst. E65, o1182.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Safdar, M. (2009b). Acta Cryst. E65, o393.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds