organic compounds
6-Bromo-4-hydrazinylidene-1-methyl-3H-2λ6,1-benzothiazine-2,2-dione
aMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan, bApplied Chemistry Research Center, PCSIR Laboratories Complex, Ferozpur Road, Lahore 54600, Pakistan, cX-ray Diffraction and Physical Laboratory, Department of Physics, School of Physical Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan, and dThe Center of Excellence for Advanced Materials Research, King Abdul Aziz University, Jeddah, PO Box 80203, Saudi Arabia
*Correspondence e-mail: mnachemist@hotmail.com
In the title molecule, C9H10BrN3O2S, the thiazine ring has an with the S atom at the flap. The geometry around the S atom is distorted tetrahedral. In the crystal, inversion dimers linked by pairs of N—H⋯N hydrogen bonds occur, generating R22(6) ring motifs. N—H⋯O hydrogen bonds and C—H⋯O interactions connect the dimers, forming a three-dimentional network structure.
Related literature
For the related structures of 6-bromo-1-methyl-1H-2,1-benzothiazin-4(3H)-one 2,2-dioxide and 6-bromo-1-ethyl-1H-2,1-benzothiazin-4(3H)-one 2,2-dioxide, see: Shafiq et al. (2009a,b), respectively. For the structures of other benzothiazine derivatives, see: Shafiq et al. (2011); Arshad et al. (2011). For graph-set notation, see: Bernstein et al. (1995). For puckering parameters, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.
Supporting information
10.1107/S1600536811027930/su2288sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811027930/su2288Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811027930/su2288Isup3.cml
A mixture of 1-methyl-2,2-dioxo-2,3-dihydro-1H-2λ6-benzo [c][1,2]thiazin-4-one (10.60 g; 50.0 mmoles), hydrazine hydrate (85%) (5.0 ml) and ethanol (200 ml) was reacted at 318 K using an ultrasound reaction bath for about 35 mins. After completion of the reaction, excess hydrazine and solvent were removed under vacuum. The crude product obtained was washed with water and dried; Yield: 74%. Suitable crystals were produced through recrystalization in methanol under slow evaporation.
The NH H-atom was located in a difference Fourier map and refined with Uiso(H)=1.2Ueq(N). The C-bound H-atoms were included in calculated positions and treated as riding atoms: C-H = 0.93, 0.96, and 0.97 Å for CH(aromatic), CH3 and CH2 H-atoms, respectively, with Uiso(H) = k × Ueq(parent C-atom), where k = 1.5 for CH3 H-atoms and k = 1.2 for all other H-atoms.
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).C9H10BrN3O2S | F(000) = 608 |
Mr = 304.17 | Dx = 1.844 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 3531 reflections |
a = 10.1483 (5) Å | θ = 2.7–24.7° |
b = 9.6375 (4) Å | µ = 3.93 mm−1 |
c = 11.2118 (5) Å | T = 296 K |
β = 92.278 (2)° | Needle, yellow |
V = 1095.69 (9) Å3 | 0.21 × 0.09 × 0.07 mm |
Z = 4 |
Bruker Kappa APEXII CCD diffractometer | 2719 independent reflections |
Radiation source: fine-focus sealed tube | 1972 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
ϕ and ω scans | θmax = 28.3°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −13→13 |
Tmin = 0.492, Tmax = 0.771 | k = −12→7 |
12176 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.079 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0403P)2 + 0.1092P] where P = (Fo2 + 2Fc2)/3 |
2719 reflections | (Δ/σ)max = 0.001 |
152 parameters | Δρmax = 0.40 e Å−3 |
0 restraints | Δρmin = −0.35 e Å−3 |
C9H10BrN3O2S | V = 1095.69 (9) Å3 |
Mr = 304.17 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 10.1483 (5) Å | µ = 3.93 mm−1 |
b = 9.6375 (4) Å | T = 296 K |
c = 11.2118 (5) Å | 0.21 × 0.09 × 0.07 mm |
β = 92.278 (2)° |
Bruker Kappa APEXII CCD diffractometer | 2719 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 1972 reflections with I > 2σ(I) |
Tmin = 0.492, Tmax = 0.771 | Rint = 0.037 |
12176 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.079 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | Δρmax = 0.40 e Å−3 |
2719 reflections | Δρmin = −0.35 e Å−3 |
152 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.94817 (3) | 0.62148 (3) | 1.15166 (3) | 0.04753 (12) | |
S1 | 0.86913 (6) | 1.05109 (6) | 0.65175 (5) | 0.03060 (16) | |
O1 | 0.81377 (18) | 0.92236 (19) | 0.60884 (16) | 0.0413 (4) | |
O2 | 0.90132 (19) | 1.15392 (19) | 0.56664 (16) | 0.0433 (5) | |
N1 | 1.00013 (19) | 1.0224 (2) | 0.73776 (18) | 0.0321 (5) | |
N2 | 0.6567 (2) | 1.0222 (2) | 0.9307 (2) | 0.0400 (5) | |
N3 | 0.5556 (3) | 1.1148 (3) | 0.9019 (3) | 0.0551 (7) | |
H32 | 0.507 (4) | 1.115 (3) | 0.962 (3) | 0.066* | |
H31 | 0.586 (3) | 1.199 (4) | 0.881 (3) | 0.066* | |
C1 | 0.9838 (2) | 0.9263 (2) | 0.8314 (2) | 0.0290 (5) | |
C2 | 1.0852 (3) | 0.8338 (3) | 0.8633 (2) | 0.0363 (6) | |
H2 | 1.1616 | 0.8335 | 0.8202 | 0.044* | |
C3 | 1.0743 (3) | 0.7436 (3) | 0.9567 (2) | 0.0377 (6) | |
H3 | 1.1427 | 0.6829 | 0.9774 | 0.045* | |
C4 | 0.9602 (3) | 0.7443 (2) | 1.0195 (2) | 0.0341 (6) | |
C5 | 0.8576 (2) | 0.8322 (2) | 0.9895 (2) | 0.0319 (6) | |
H5 | 0.7813 | 0.8299 | 1.0328 | 0.038* | |
C6 | 0.8669 (2) | 0.9253 (2) | 0.8943 (2) | 0.0274 (5) | |
C7 | 0.7567 (2) | 1.0212 (2) | 0.8646 (2) | 0.0290 (5) | |
C8 | 0.7637 (3) | 1.1175 (2) | 0.7582 (2) | 0.0343 (6) | |
H8A | 0.7954 | 1.2077 | 0.7848 | 0.041* | |
H8B | 0.6761 | 1.1295 | 0.7219 | 0.041* | |
C9 | 1.1299 (3) | 1.0488 (3) | 0.6900 (3) | 0.0457 (7) | |
H9A | 1.1927 | 1.0658 | 0.7546 | 0.069* | |
H9B | 1.1250 | 1.1284 | 0.6385 | 0.069* | |
H9C | 1.1571 | 0.9694 | 0.6454 | 0.069* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.04682 (19) | 0.04001 (17) | 0.0552 (2) | −0.00435 (13) | −0.00552 (14) | 0.01513 (13) |
S1 | 0.0277 (3) | 0.0349 (3) | 0.0292 (3) | 0.0003 (3) | 0.0004 (3) | 0.0005 (2) |
O1 | 0.0432 (11) | 0.0436 (10) | 0.0366 (10) | −0.0068 (9) | −0.0041 (8) | −0.0078 (8) |
O2 | 0.0411 (11) | 0.0484 (11) | 0.0406 (11) | 0.0029 (9) | 0.0046 (9) | 0.0129 (8) |
N1 | 0.0234 (11) | 0.0400 (11) | 0.0330 (12) | −0.0015 (9) | 0.0008 (9) | 0.0032 (9) |
N2 | 0.0375 (13) | 0.0384 (12) | 0.0447 (14) | 0.0089 (10) | 0.0113 (11) | 0.0073 (10) |
N3 | 0.0439 (16) | 0.0518 (16) | 0.071 (2) | 0.0180 (13) | 0.0243 (14) | 0.0177 (14) |
C1 | 0.0265 (13) | 0.0311 (12) | 0.0290 (13) | −0.0005 (10) | −0.0034 (10) | −0.0058 (10) |
C2 | 0.0283 (14) | 0.0411 (14) | 0.0394 (16) | 0.0041 (11) | 0.0000 (12) | −0.0047 (11) |
C3 | 0.0337 (15) | 0.0352 (13) | 0.0436 (16) | 0.0073 (11) | −0.0062 (12) | −0.0033 (11) |
C4 | 0.0395 (15) | 0.0257 (11) | 0.0362 (14) | −0.0052 (10) | −0.0086 (12) | −0.0002 (10) |
C5 | 0.0300 (14) | 0.0319 (12) | 0.0335 (14) | −0.0037 (10) | −0.0015 (11) | −0.0033 (10) |
C6 | 0.0283 (13) | 0.0259 (11) | 0.0279 (13) | −0.0023 (10) | −0.0021 (10) | −0.0050 (9) |
C7 | 0.0276 (13) | 0.0293 (12) | 0.0302 (13) | −0.0001 (10) | 0.0022 (10) | −0.0035 (10) |
C8 | 0.0322 (14) | 0.0348 (13) | 0.0360 (14) | 0.0045 (11) | 0.0028 (11) | 0.0017 (11) |
C9 | 0.0265 (14) | 0.0676 (19) | 0.0432 (16) | −0.0013 (13) | 0.0049 (12) | 0.0035 (14) |
Br1—C4 | 1.904 (2) | C2—H2 | 0.9300 |
S1—O2 | 1.4228 (19) | C3—C4 | 1.380 (4) |
S1—O1 | 1.4369 (19) | C3—H3 | 0.9300 |
S1—N1 | 1.635 (2) | C4—C5 | 1.374 (3) |
S1—C8 | 1.755 (3) | C5—C6 | 1.400 (3) |
N1—C1 | 1.415 (3) | C5—H5 | 0.9300 |
N1—C9 | 1.464 (3) | C6—C7 | 1.479 (3) |
N2—C7 | 1.280 (3) | C7—C8 | 1.515 (3) |
N2—N3 | 1.388 (3) | C8—H8A | 0.9700 |
N3—H32 | 0.85 (4) | C8—H8B | 0.9700 |
N3—H31 | 0.90 (4) | C9—H9A | 0.9600 |
C1—C2 | 1.397 (4) | C9—H9B | 0.9600 |
C1—C6 | 1.404 (3) | C9—H9C | 0.9600 |
C2—C3 | 1.369 (4) | ||
O2—S1—O1 | 118.29 (11) | C5—C4—Br1 | 120.2 (2) |
O2—S1—N1 | 108.09 (11) | C3—C4—Br1 | 118.40 (19) |
O1—S1—N1 | 110.45 (11) | C4—C5—C6 | 120.6 (2) |
O2—S1—C8 | 111.38 (11) | C4—C5—H5 | 119.7 |
O1—S1—C8 | 107.55 (12) | C6—C5—H5 | 119.7 |
N1—S1—C8 | 99.44 (11) | C5—C6—C1 | 118.1 (2) |
C1—N1—C9 | 121.3 (2) | C5—C6—C7 | 120.0 (2) |
C1—N1—S1 | 115.59 (16) | C1—C6—C7 | 121.9 (2) |
C9—N1—S1 | 118.49 (17) | N2—C7—C6 | 118.9 (2) |
C7—N2—N3 | 117.8 (2) | N2—C7—C8 | 120.9 (2) |
N2—N3—H32 | 105 (2) | C6—C7—C8 | 120.1 (2) |
N2—N3—H31 | 112 (2) | C7—C8—S1 | 111.17 (16) |
H32—N3—H31 | 115 (3) | C7—C8—H8A | 109.4 |
C2—C1—C6 | 119.7 (2) | S1—C8—H8A | 109.4 |
C2—C1—N1 | 120.0 (2) | C7—C8—H8B | 109.4 |
C6—C1—N1 | 120.2 (2) | S1—C8—H8B | 109.4 |
C3—C2—C1 | 121.4 (2) | H8A—C8—H8B | 108.0 |
C3—C2—H2 | 119.3 | N1—C9—H9A | 109.5 |
C1—C2—H2 | 119.3 | N1—C9—H9B | 109.5 |
C2—C3—C4 | 118.8 (2) | H9A—C9—H9B | 109.5 |
C2—C3—H3 | 120.6 | N1—C9—H9C | 109.5 |
C4—C3—H3 | 120.6 | H9A—C9—H9C | 109.5 |
C5—C4—C3 | 121.4 (2) | H9B—C9—H9C | 109.5 |
O2—S1—N1—C1 | 177.43 (17) | C4—C5—C6—C1 | −0.3 (3) |
O1—S1—N1—C1 | −51.7 (2) | C4—C5—C6—C7 | −178.8 (2) |
C8—S1—N1—C1 | 61.13 (19) | C2—C1—C6—C5 | 1.4 (3) |
O2—S1—N1—C9 | −26.3 (2) | N1—C1—C6—C5 | −177.3 (2) |
O1—S1—N1—C9 | 104.5 (2) | C2—C1—C6—C7 | 179.8 (2) |
C8—S1—N1—C9 | −142.6 (2) | N1—C1—C6—C7 | 1.1 (3) |
C9—N1—C1—C2 | −13.4 (3) | N3—N2—C7—C6 | 179.0 (2) |
S1—N1—C1—C2 | 142.1 (2) | N3—N2—C7—C8 | −0.3 (4) |
C9—N1—C1—C6 | 165.3 (2) | C5—C6—C7—N2 | 3.4 (3) |
S1—N1—C1—C6 | −39.2 (3) | C1—C6—C7—N2 | −174.9 (2) |
C6—C1—C2—C3 | −1.4 (4) | C5—C6—C7—C8 | −177.2 (2) |
N1—C1—C2—C3 | 177.3 (2) | C1—C6—C7—C8 | 4.4 (3) |
C1—C2—C3—C4 | 0.4 (4) | N2—C7—C8—S1 | −155.8 (2) |
C2—C3—C4—C5 | 0.6 (4) | C6—C7—C8—S1 | 24.9 (3) |
C2—C3—C4—Br1 | −178.47 (19) | O2—S1—C8—C7 | −165.88 (17) |
C3—C4—C5—C6 | −0.7 (4) | O1—S1—C8—C7 | 63.0 (2) |
Br1—C4—C5—C6 | 178.42 (17) | N1—S1—C8—C7 | −52.11 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H32···N2i | 0.85 (4) | 2.47 (4) | 3.198 (4) | 144 (3) |
N3—H31···O1ii | 0.90 (4) | 2.38 (4) | 3.252 (4) | 162 (3) |
C3—H3···O1iii | 0.93 | 2.45 | 3.323 (3) | 156 |
Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) −x+3/2, y+1/2, −z+3/2; (iii) x+1/2, −y+3/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C9H10BrN3O2S |
Mr | 304.17 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 296 |
a, b, c (Å) | 10.1483 (5), 9.6375 (4), 11.2118 (5) |
β (°) | 92.278 (2) |
V (Å3) | 1095.69 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.93 |
Crystal size (mm) | 0.21 × 0.09 × 0.07 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.492, 0.771 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12176, 2719, 1972 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.079, 1.01 |
No. of reflections | 2719 |
No. of parameters | 152 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.40, −0.35 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H32···N2i | 0.85 (4) | 2.47 (4) | 3.198 (4) | 144 (3) |
N3—H31···O1ii | 0.90 (4) | 2.38 (4) | 3.252 (4) | 162 (3) |
C3—H3···O1iii | 0.93 | 2.45 | 3.323 (3) | 156.0 |
Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) −x+3/2, y+1/2, −z+3/2; (iii) x+1/2, −y+3/2, z+1/2. |
Acknowledgements
The authors acknowledge the Higher Education Commission of Pakistan for providing a grant for the project to strengthen the Materials Chemistry Laboratory at GC University, Lahore, Pakistan.
References
Arshad, M. N., Khan, I. U., Zia-ur-Rehman, M. & Shafiq, M. (2011). Asian J. Chem. 23, 2801–2805. CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Shafiq, M., Khan, I. U., Arshad, M. N. & Siddiqui, W. A. (2011). Asian J. Chem. 23, 2101–2105. CAS Google Scholar
Shafiq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Asghar, M. N. (2009a). Acta Cryst. E65, o1182. Web of Science CSD CrossRef IUCr Journals Google Scholar
Shafiq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Safdar, M. (2009b). Acta Cryst. E65, o393. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Continuing our research on the synthesis (Shafiq et al., 2011; Arshad et al., 2011) and crystal structure studies of benzothiazine derivatives (Shafiq et al., 2009a), we present herein the crystal structure of the title compound, (I).
The molecular structure of the title molecule, (I), is illustrated in Fig. 1. The structure differs to a similar published compound, 6-Bromo-1-methyl-1H-2,1-benzothiazin-4(3H)-one 2,2-dioxide (II) [Shafiq et al., 2009a], in that the carbonyl group in (II) has been replaced with a hydrazide moiety in (I). The bond lengths and angles in the title compound are similar to those of (II) and in 6-Bromo-1-ethyl-1H-2,1-benzothiazin-4(3H)-one 2,2-dioxide (III) (Shafiq et al., 2009b). In (I) atom Br1, attached to the planar aromatic ring (C1—C6), lies out of the plane by 0.0547 (3) Å, while in (II) and (III) the deviations are slightly greater, i.e. 0.064 (4) and 0.073 (4) Å, respectively. The thiazine ring, (C1/C6/C7/C8/S1/N1), has an envelope conformation with atom S1 as the flap [puckering parameters: Q (puckering amplitude) = 0.5873 (18) Å, θ = 124.31 (19) °, and ϕ = 185.9 (3) ° (Cromer & Pople, 1975)].
In the crystal structure of compound (I) the functional hydrazide group is involved in the formation of inversion dimers, through N3—H32···N2 hydrogen bonding, and generates a six-membered R22(6) ring motif (Bernstein et al., 1995). These dimers are further connected through N—H···O hydrogen bonds and weak C—H···O interactions to form a three dimensional network structure (Table 1, Fig. 2).