organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-Bromo-N-(2-chloro­benzyl­­idene)­aniline

aState Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: wangchuang119@163.com

(Received 22 July 2011; accepted 25 July 2011; online 30 July 2011)

In the title Schiff base mol­ecule, C13H9BrClN, the dihedral angle between the benzene rings is 49.8 (2)° and the mol­ecule has an E configuration about the C=N bond. In the crystal, there are no directional interactions but only van der Waals inter­molecular inter­action forces between neighbouring mol­ecules.

Related literature

For the anti­bacterial activities of Schiff base compounds, see: El Masry et al. (2000[El Masry, A. H., Fahmy, H. H. & Abdelwahed, S. H. A. (2000). Molecules, 5, 1429-1438.]). For the anti­cancer properties of Schiff base compounds, see: Dao et al. (2000[Dao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805-813.]). For related crystal structures, see: Sun et al. (2011a[Sun, L.-X., Yu, Y.-D. & Wei, G.-Y. (2011a). Acta Cryst. E67, o1564.],b[Sun, L.-X., Yu, Y.-D. & Wei, G.-Y. (2011b). Acta Cryst. E67, o1578.]); Guo et al. (2011[Guo, Y., Pan, M.-X., Xiang, H., Liu, W.-H. & Song, Z.-C. (2011). Acta Cryst. E67, o1999.]). For standard bond-length values, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9BrClN

  • Mr = 294.57

  • Monoclinic, P 21 /n

  • a = 15.243 (13) Å

  • b = 4.020 (4) Å

  • c = 20.142 (18) Å

  • β = 103.248 (8)°

  • V = 1201.4 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.61 mm−1

  • T = 296 K

  • 0.25 × 0.23 × 0.21 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.]) Tmin = 0.465, Tmax = 0.518

  • 7879 measured reflections

  • 2219 independent reflections

  • 1413 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.138

  • S = 1.04

  • 2219 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.43 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases compounds have attracted a lot of attention for a long time, because of their applications as antibacterial (El Masry et al., 2000), and anticancer (Dao et al., 2000) agents. We report herein, on the crystal structure of the title new Schiff base compound.

The molecular structure of the title molecule is illustrated in Fig. 1. The geometric parameters agree well with those reported for similar structures (Sun et al., 2011a,b; Guo et al., 2011), and all the bond lengths are within normal ranges (Allen et al., 1987). The dihedral angle between the two aromatic rings in the Schiff base molecule is 49.8 (2)°.

In the crystal, there are only van der Waals intermolecular forces between neighbouring molecules.

Related literature top

For the antibacterial activities of Schiff base compounds, see: El Masry et al. (2000). For the anticancer properties of Schiff base compounds, see: Dao et al. (2000). For related crystal structures, see: Sun et al. (2011a,b); Guo et al. (2011). For standard bond-length values, see: Allen et al. (1987).

Experimental top

A mixture of 2-chlorobenzaldehyde (10 mmol), 4-bromoaniline (10 mmol) and methanol (50 ml) was refluxed for 6 h. It was then allowed to cool and was filtered. Recrystallization of the crude product from methanol yielded colourless crystals, suitable for X-ray diffraction analysis.

Refinement top

The H atoms were positioned geometrically and refined using the riding-model approximation: C—H = 0.93 Å, Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labels and displacement ellipsoids drawn at the 50% probability level.
(E)-4-Bromo-N-(2-chlorobenzylidene)aniline top
Crystal data top
C13H9BrClNF(000) = 584
Mr = 294.57Dx = 1.629 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1725 reflections
a = 15.243 (13) Åθ = 2.8–21.7°
b = 4.020 (4) ŵ = 3.61 mm1
c = 20.142 (18) ÅT = 296 K
β = 103.248 (8)°Block, colourless
V = 1201.4 (18) Å30.25 × 0.23 × 0.21 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2219 independent reflections
Radiation source: fine-focus sealed tube1413 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ϕ and ω scansθmax = 25.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1817
Tmin = 0.465, Tmax = 0.518k = 44
7879 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0738P)2 + 0.0187P]
where P = (Fo2 + 2Fc2)/3
2219 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C13H9BrClNV = 1201.4 (18) Å3
Mr = 294.57Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.243 (13) ŵ = 3.61 mm1
b = 4.020 (4) ÅT = 296 K
c = 20.142 (18) Å0.25 × 0.23 × 0.21 mm
β = 103.248 (8)°
Data collection top
Bruker APEXII CCD
diffractometer
2219 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1413 reflections with I > 2σ(I)
Tmin = 0.465, Tmax = 0.518Rint = 0.049
7879 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.04Δρmax = 0.54 e Å3
2219 reflectionsΔρmin = 0.43 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.28006 (4)0.71850 (15)1.03703 (3)0.0824 (3)
C10.4330 (3)0.6328 (11)0.8929 (2)0.0499 (11)
H10.49170.68540.89060.060*
C20.4042 (3)0.6997 (11)0.9513 (2)0.0544 (12)
H20.44310.80140.98800.065*
C30.3186 (3)0.6179 (11)0.9560 (2)0.0501 (11)
C40.2584 (3)0.4713 (12)0.9009 (2)0.0544 (12)
H40.20030.41540.90410.065*
C50.2870 (3)0.4110 (12)0.8416 (2)0.0527 (12)
H50.24690.31890.80420.063*
C60.3744 (3)0.4854 (11)0.8366 (2)0.0440 (10)
C70.4763 (3)0.2977 (10)0.7752 (2)0.0479 (11)
H70.51360.24250.81710.057*
C80.5086 (3)0.2397 (10)0.7133 (2)0.0438 (10)
C90.4571 (3)0.3496 (11)0.6495 (2)0.0506 (11)
H90.40200.45320.64730.061*
C100.4871 (4)0.3061 (12)0.5909 (3)0.0603 (13)
H100.45200.38000.54950.072*
C110.5684 (4)0.1546 (13)0.5928 (3)0.0633 (14)
H110.58860.12970.55280.076*
C120.6206 (3)0.0384 (12)0.6542 (2)0.0575 (13)
H120.67530.06700.65570.069*
C130.5897 (3)0.0821 (11)0.7133 (2)0.0452 (10)
Cl10.65673 (8)0.0722 (3)0.78942 (6)0.0647 (4)
N10.3988 (2)0.4211 (9)0.77412 (18)0.0491 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1072 (6)0.0843 (5)0.0678 (4)0.0119 (3)0.0453 (4)0.0171 (3)
C10.046 (2)0.052 (3)0.052 (3)0.006 (2)0.011 (2)0.002 (2)
C20.054 (3)0.057 (3)0.049 (3)0.011 (2)0.004 (2)0.005 (2)
C30.061 (3)0.046 (3)0.045 (3)0.002 (2)0.016 (2)0.000 (2)
C40.043 (2)0.057 (3)0.065 (3)0.004 (2)0.015 (2)0.010 (2)
C50.038 (3)0.062 (3)0.053 (3)0.000 (2)0.001 (2)0.004 (2)
C60.048 (3)0.042 (3)0.042 (2)0.006 (2)0.009 (2)0.002 (2)
C70.047 (3)0.051 (3)0.045 (3)0.000 (2)0.008 (2)0.000 (2)
C80.044 (2)0.042 (3)0.045 (3)0.000 (2)0.010 (2)0.002 (2)
C90.049 (3)0.054 (3)0.045 (3)0.003 (2)0.003 (2)0.005 (2)
C100.064 (3)0.065 (3)0.050 (3)0.001 (3)0.010 (2)0.004 (2)
C110.073 (3)0.068 (3)0.053 (3)0.006 (3)0.022 (3)0.012 (3)
C120.046 (3)0.062 (3)0.066 (3)0.001 (2)0.015 (2)0.014 (3)
C130.043 (2)0.047 (3)0.043 (2)0.005 (2)0.005 (2)0.005 (2)
Cl10.0567 (7)0.0718 (9)0.0585 (8)0.0150 (6)0.0019 (6)0.0042 (6)
N10.046 (2)0.052 (2)0.048 (2)0.0069 (19)0.0096 (17)0.0027 (18)
Geometric parameters (Å, º) top
Br1—C31.900 (5)C7—C81.461 (6)
C1—C21.374 (6)C7—H70.9300
C1—C61.404 (6)C8—C131.390 (6)
C1—H10.9300C8—C91.414 (6)
C2—C31.369 (7)C9—C101.371 (7)
C2—H20.9300C9—H90.9300
C3—C41.399 (6)C10—C111.374 (8)
C4—C51.384 (6)C10—H100.9300
C4—H40.9300C11—C121.390 (7)
C5—C61.391 (6)C11—H110.9300
C5—H50.9300C12—C131.387 (6)
C6—N11.416 (5)C12—H120.9300
C7—N11.276 (5)C13—Cl11.750 (4)
C2—C1—C6120.3 (4)C8—C7—H7118.7
C2—C1—H1119.9C13—C8—C9116.8 (4)
C6—C1—H1119.9C13—C8—C7123.2 (4)
C3—C2—C1120.6 (4)C9—C8—C7120.0 (4)
C3—C2—H2119.7C10—C9—C8121.2 (4)
C1—C2—H2119.7C10—C9—H9119.4
C2—C3—C4120.6 (4)C8—C9—H9119.4
C2—C3—Br1119.7 (4)C9—C10—C11120.7 (5)
C4—C3—Br1119.7 (3)C9—C10—H10119.7
C5—C4—C3118.7 (4)C11—C10—H10119.7
C5—C4—H4120.7C10—C11—C12120.1 (5)
C3—C4—H4120.7C10—C11—H11119.9
C4—C5—C6121.4 (4)C12—C11—H11119.9
C4—C5—H5119.3C13—C12—C11118.9 (4)
C6—C5—H5119.3C13—C12—H12120.5
C5—C6—C1118.4 (4)C11—C12—H12120.5
C5—C6—N1118.4 (4)C12—C13—C8122.4 (4)
C1—C6—N1123.1 (4)C12—C13—Cl1117.5 (3)
N1—C7—C8122.6 (4)C8—C13—Cl1120.1 (3)
N1—C7—H7118.7C7—N1—C6119.1 (4)
C6—C1—C2—C31.3 (7)C7—C8—C9—C10178.2 (4)
C1—C2—C3—C41.4 (7)C8—C9—C10—C110.2 (7)
C1—C2—C3—Br1179.2 (3)C9—C10—C11—C121.1 (8)
C2—C3—C4—C50.1 (7)C10—C11—C12—C130.8 (7)
Br1—C3—C4—C5177.7 (4)C11—C12—C13—C80.3 (7)
C3—C4—C5—C61.6 (7)C11—C12—C13—Cl1179.2 (4)
C4—C5—C6—C11.7 (7)C9—C8—C13—C121.2 (6)
C4—C5—C6—N1179.3 (4)C7—C8—C13—C12178.0 (4)
C2—C1—C6—C50.2 (6)C9—C8—C13—Cl1178.4 (3)
C2—C1—C6—N1177.7 (4)C7—C8—C13—Cl12.5 (6)
N1—C7—C8—C13174.9 (4)C8—C7—N1—C6176.8 (4)
N1—C7—C8—C96.0 (6)C5—C6—N1—C7139.1 (4)
C13—C8—C9—C101.0 (7)C1—C6—N1—C743.5 (6)

Experimental details

Crystal data
Chemical formulaC13H9BrClN
Mr294.57
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)15.243 (13), 4.020 (4), 20.142 (18)
β (°) 103.248 (8)
V3)1201.4 (18)
Z4
Radiation typeMo Kα
µ (mm1)3.61
Crystal size (mm)0.25 × 0.23 × 0.21
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.465, 0.518
No. of measured, independent and
observed [I > 2σ(I)] reflections
7879, 2219, 1413
Rint0.049
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.138, 1.04
No. of reflections2219
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.43

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The author wishes to thank Professor Shao, Lanzhou University, for collecting the X-ray diffraction data.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805–813.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl Masry, A. H., Fahmy, H. H. & Abdelwahed, S. H. A. (2000). Molecules, 5, 1429–1438.  Web of Science CrossRef CAS Google Scholar
First citationGuo, Y., Pan, M.-X., Xiang, H., Liu, W.-H. & Song, Z.-C. (2011). Acta Cryst. E67, o1999.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, L.-X., Yu, Y.-D. & Wei, G.-Y. (2011a). Acta Cryst. E67, o1564.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSun, L.-X., Yu, Y.-D. & Wei, G.-Y. (2011b). Acta Cryst. E67, o1578.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds