organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(5-Bromo-2-hy­dr­oxy­benzyl­­idene)-4-nitro­benzohydrazide methanol monosolvate

aHebei Key Laboratory of Bioinorganic Chemistry, College of Sciences, Agricultural University of Hebei, Baoding 071001, People's Republic of China
*Correspondence e-mail: majingjun71@yahoo.cn

(Received 23 July 2011; accepted 25 July 2011; online 30 July 2011)

In the title compound, C14H10BrN3O4·CH4O, the benzohydrazide mol­ecule is nearly planar [maximum deviation = 0.110 (2) Å]. The mean planes of the two benzene rings make a dihedral angle of 8.4 (3)°. In the benzohydrazide mol­ecule, there is an intra­molecular O—H⋯N hydrogen bond and the NH group is hydrogen bonded to the methanol solvent mol­ecule. In the crystal, inter­molecular O—H⋯O hydrogen bonds involving the methanol solvent mol­ecule link the benzohydrazide mol­ecules to form chains which propagate along the a axis.

Related literature

For the biological activities of benzohydrazide compounds, see: El-Sayed et al. (2011[El-Sayed, M. A. A., Abdel-Aziz, N. I., Abdel-Aziz, A. A. M., El-Azab, A. S., Asiri, Y. A. & ElTahir, K. E. H. (2011). Bioorg. Med. Chem. 19, 3416-3424.]); Horiuchi et al. (2009[Horiuchi, T., Nagata, M., Kitagawa, M., Akahane, K. & Uoto, K. (2009). Bioorg. Med. Chem. 17, 7850-7860.]). For coordination compounds of benzohydrazide compounds, see: El-Dissouky et al. (2010[El-Dissouky, A., Al-Fulaij, O., Awad, M. K. & Rizk, S. (2010). J. Coord. Chem. 63, 330-345.]); Zhang et al. (2010[Zhang, S.-P., Wei, Y. & Shao, S.-C. (2010). Acta Cryst. E66, m1635.]). For standard bond distances, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orphen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Suleiman Gwaram et al. (2010[Suleiman Gwaram, N., Khaledi, H., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2010). Acta Cryst. E66, o721.]); Dai & Mao (2010[Dai, C.-H. & Mao, F.-L. (2010). Acta Cryst. E66, o2942.]); Ban (2010[Ban, H.-Y. (2010). Acta Cryst. E66, o3240.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10BrN3O4·CH4O

  • Mr = 396.20

  • Monoclinic, P 21 /n

  • a = 6.660 (2) Å

  • b = 19.068 (3) Å

  • c = 12.730 (2) Å

  • β = 93.222 (2)°

  • V = 1614.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.58 mm−1

  • T = 298 K

  • 0.17 × 0.13 × 0.12 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.668, Tmax = 0.747

  • 8673 measured reflections

  • 3442 independent reflections

  • 1824 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.101

  • S = 0.95

  • 3442 reflections

  • 222 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O5 0.89 (1) 2.00 (2) 2.875 (4) 166 (4)
O1—H1⋯N1 0.82 2.03 2.737 (4) 143
O1—H1⋯O5i 0.82 2.51 2.952 (4) 115
O5—H5⋯O2ii 0.82 1.90 2.710 (4) 171
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzohydrazide compounds are well known for their biological activities (El-Sayed et al., 2011; Horiuchi et al., 2009). In addition, benzohydrazide compounds have also been used as versatile ligands in coordination chemistry (El-Dissouky et al., 2010, Zhang et al., 2010). As a contribution to a structural study on hydrazone compounds, we present here the crystal structure of the title compound, that was obtained as the product of the reaction of 5-bromosalicylaldehyde with 4-nitrobenzohydrazide in methanol.

The title compound contains a benzohydrazide molecule and a methanol solvent molecule of crystallization (Fig. 1). In the benzohydrazide molecule there is an intramolecular O-H···N hydrogen bond and NH group is hydrogen bonded to the methanol solvate molecule. The bond distances (Allen et al., 1987) and angles are within normal ranges and agree well with the corresponding bond distances and angles reported in closely related compounds (Suleiman Gwaram et al., 2010; Dai & Mao, 2010; Ban, 2010). The benzohydrazide molecule is nearly planar [maximum deviation of 0.110 (2) Å], with the mean planes of the two benzene rings making a dihedral angle of 8.4 (3)°.

In the crystal, intermolecular O—H···O hydrogen bonds involving the methanol solvate molecule link the benzohydrazide molecules to form chains which propagate along along the a axis direction (Table 1, Fig. 2).

Related literature top

For the biological activities of benzohydrazide compounds, see: El-Sayed et al. (2011); Horiuchi et al. (2009). For the coordination compounds of benzohydrazide compounds, see: El-Dissouky et al. (2010); Zhang et al. (2010). For standard bond distances, see: Allen et al. (1987). For the crystal structures of similar compounds, see: Suleiman Gwaram et al. (2010); Dai & Mao (2010); Ban (2010).

Experimental top

To a methanol solution (20 ml) of 5-bromosalicylaldehyde (0.1 mmol, 20.1 mg) and 4-nitrobenzohydrazide (0.1 mmol, 18.1 mg), a few drops of acetic acid were added. The mixture was refluxed for 1 h and then cooled to room temperature. The white crystalline solid was collected by filtration, washed with cold methanol and dried in air. Single crystals, suitable for X-ray diffraction, were obtained by slow evaporation of a methanol solution of the product in air.

Refinement top

The NH H-atom was located in a difference Fourier map and was refined with a distance restraint, N-H = 0.90 (1) Å, and Uiso(H) = 0.08 Å2. The OH and C-bound H atoms were positioned geometrically and refined using a riding model: O-H = 0.82 Å, C—H = 0.93 and 0.96 Å, for CH and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(O,C) where k = 1.5 for OH and CH3 H-atoms and k = 1.2 for all other H-atoms.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the numbering scheme and displacement ellipsoids drawn at the 30% probability level. The N-H···O and O-H···N hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing the N-H···O and O-H···O hydrogen-bonds (dashed lines) forming the chains propagating in [100]. H-atoms not involved in the hydrogen bonding have been omitted for clarity.
N'-(5-Bromo-2-hydroxybenzylidene)-4-nitrobenzohydrazide methanol monosolvate top
Crystal data top
C14H10BrN3O4·CH4OF(000) = 800
Mr = 396.20Dx = 1.630 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.660 (2) ÅCell parameters from 1199 reflections
b = 19.068 (3) Åθ = 2.6–24.7°
c = 12.730 (2) ŵ = 2.58 mm1
β = 93.222 (2)°T = 298 K
V = 1614.1 (6) Å3Block, yellow
Z = 40.17 × 0.13 × 0.12 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3442 independent reflections
Radiation source: fine-focus sealed tube1824 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ω scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.668, Tmax = 0.747k = 2224
8673 measured reflectionsl = 1016
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0375P)2]
where P = (Fo2 + 2Fc2)/3
3442 reflections(Δ/σ)max = 0.001
222 parametersΔρmax = 0.31 e Å3
1 restraintΔρmin = 0.43 e Å3
Crystal data top
C14H10BrN3O4·CH4OV = 1614.1 (6) Å3
Mr = 396.20Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.660 (2) ŵ = 2.58 mm1
b = 19.068 (3) ÅT = 298 K
c = 12.730 (2) Å0.17 × 0.13 × 0.12 mm
β = 93.222 (2)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3442 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1824 reflections with I > 2σ(I)
Tmin = 0.668, Tmax = 0.747Rint = 0.062
8673 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0491 restraint
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.31 e Å3
3442 reflectionsΔρmin = 0.43 e Å3
222 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.68607 (7)0.04160 (2)0.91805 (4)0.06305 (19)
N10.9844 (5)0.36314 (16)0.8690 (2)0.0446 (9)
N20.8848 (5)0.42751 (16)0.8642 (3)0.0451 (9)
H20.7512 (18)0.427 (2)0.853 (3)0.080*
N30.5371 (7)0.74331 (19)0.8890 (3)0.0577 (10)
O11.2966 (4)0.26998 (14)0.8658 (3)0.0627 (9)
H11.24830.30940.86940.094*
O21.1708 (4)0.49115 (14)0.8668 (2)0.0563 (8)
O30.3577 (5)0.73870 (16)0.9023 (3)0.0786 (10)
O40.6261 (5)0.79787 (17)0.8773 (3)0.0821 (11)
O50.4668 (4)0.40586 (15)0.8042 (3)0.0661 (9)
H50.37060.42780.82490.099*
C10.9471 (6)0.23839 (19)0.8828 (3)0.0391 (10)
C21.1502 (6)0.2216 (2)0.8756 (3)0.0433 (10)
C31.2093 (6)0.1525 (2)0.8787 (3)0.0572 (12)
H31.34430.14140.87330.069*
C41.0715 (7)0.0993 (2)0.8896 (3)0.0581 (12)
H41.11330.05280.89070.070*
C50.8718 (6)0.1156 (2)0.8989 (3)0.0448 (10)
C60.8105 (6)0.18444 (19)0.8959 (3)0.0424 (10)
H60.67550.19510.90260.051*
C70.8712 (6)0.3099 (2)0.8769 (3)0.0450 (10)
H70.73340.31710.87910.054*
C80.9875 (6)0.4882 (2)0.8666 (3)0.0411 (10)
C90.8637 (5)0.55344 (18)0.8725 (3)0.0384 (9)
C100.6648 (6)0.55357 (19)0.8983 (3)0.0483 (11)
H100.60100.51130.91120.058*
C110.5605 (6)0.6152 (2)0.9052 (3)0.0518 (11)
H110.42740.61480.92390.062*
C120.6532 (6)0.6769 (2)0.8845 (3)0.0445 (10)
C130.8513 (6)0.6794 (2)0.8602 (3)0.0504 (11)
H130.91440.72210.84880.060*
C140.9540 (6)0.61711 (19)0.8530 (3)0.0468 (11)
H141.08710.61780.83460.056*
C150.4336 (8)0.3910 (2)0.6962 (4)0.0810 (16)
H15A0.52050.41960.65650.122*
H15B0.29600.40080.67470.122*
H15C0.46180.34240.68380.122*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0601 (3)0.0462 (3)0.0829 (4)0.0063 (2)0.0049 (2)0.0158 (3)
N10.042 (2)0.0374 (19)0.054 (2)0.0118 (16)0.0029 (17)0.0009 (16)
N20.0325 (18)0.0361 (18)0.066 (3)0.0090 (17)0.0054 (18)0.0002 (17)
N30.074 (3)0.045 (2)0.054 (3)0.017 (2)0.002 (2)0.0011 (18)
O10.0411 (17)0.0452 (16)0.102 (3)0.0002 (14)0.0036 (17)0.0050 (18)
O20.0337 (17)0.0477 (16)0.087 (2)0.0049 (13)0.0019 (15)0.0032 (15)
O30.066 (2)0.071 (2)0.100 (3)0.0291 (19)0.012 (2)0.0011 (19)
O40.103 (3)0.0429 (19)0.101 (3)0.0126 (19)0.007 (2)0.0085 (18)
O50.0413 (18)0.064 (2)0.092 (3)0.0117 (15)0.0014 (17)0.0201 (18)
C10.040 (2)0.040 (2)0.037 (3)0.0072 (18)0.0015 (19)0.0007 (18)
C20.040 (2)0.039 (2)0.051 (3)0.0014 (19)0.005 (2)0.0023 (19)
C30.038 (2)0.042 (2)0.091 (4)0.010 (2)0.002 (2)0.002 (2)
C40.057 (3)0.037 (2)0.080 (4)0.007 (2)0.001 (3)0.007 (2)
C50.043 (3)0.041 (2)0.050 (3)0.0022 (19)0.001 (2)0.009 (2)
C60.038 (2)0.039 (2)0.051 (3)0.0006 (18)0.002 (2)0.001 (2)
C70.040 (2)0.042 (2)0.053 (3)0.006 (2)0.004 (2)0.002 (2)
C80.040 (3)0.039 (2)0.043 (3)0.003 (2)0.005 (2)0.0016 (19)
C90.037 (2)0.035 (2)0.044 (3)0.0050 (17)0.0002 (19)0.0004 (18)
C100.046 (3)0.036 (2)0.064 (3)0.0013 (19)0.007 (2)0.006 (2)
C110.038 (2)0.048 (3)0.070 (3)0.006 (2)0.009 (2)0.008 (2)
C120.054 (3)0.039 (2)0.040 (3)0.012 (2)0.004 (2)0.0030 (19)
C130.052 (3)0.037 (2)0.062 (3)0.002 (2)0.002 (2)0.007 (2)
C140.037 (2)0.039 (2)0.064 (3)0.0001 (19)0.002 (2)0.005 (2)
C150.090 (4)0.070 (3)0.083 (5)0.004 (3)0.006 (3)0.001 (3)
Geometric parameters (Å, º) top
Br1—C51.901 (4)C4—C51.377 (5)
N1—C71.271 (4)C4—H40.9300
N1—N21.395 (4)C5—C61.375 (5)
N2—C81.343 (5)C6—H60.9300
N2—H20.894 (10)C7—H70.9300
N3—O41.211 (4)C8—C91.497 (5)
N3—O31.219 (4)C9—C101.383 (5)
N3—C121.486 (5)C9—C141.384 (5)
O1—C21.353 (4)C10—C111.370 (5)
O1—H10.8200C10—H100.9300
O2—C81.222 (4)C11—C121.362 (5)
O5—C151.409 (5)C11—H110.9300
O5—H50.8200C12—C131.373 (5)
C1—C61.390 (5)C13—C141.377 (5)
C1—C21.398 (5)C13—H130.9300
C1—C71.456 (5)C14—H140.9300
C2—C31.375 (5)C15—H15A0.9600
C3—C41.379 (5)C15—H15B0.9600
C3—H30.9300C15—H15C0.9600
C7—N1—N2115.0 (3)C1—C7—H7118.4
C8—N2—N1121.1 (3)O2—C8—N2123.1 (4)
C8—N2—H2121 (3)O2—C8—C9121.0 (4)
N1—N2—H2117 (3)N2—C8—C9115.9 (3)
O4—N3—O3124.7 (4)C10—C9—C14118.2 (3)
O4—N3—C12117.9 (4)C10—C9—C8123.4 (3)
O3—N3—C12117.4 (4)C14—C9—C8118.3 (3)
C2—O1—H1109.5C11—C10—C9120.9 (4)
C15—O5—H5109.5C11—C10—H10119.6
C6—C1—C2118.7 (3)C9—C10—H10119.6
C6—C1—C7118.2 (3)C12—C11—C10119.5 (4)
C2—C1—C7123.1 (4)C12—C11—H11120.3
O1—C2—C3116.7 (3)C10—C11—H11120.3
O1—C2—C1123.7 (3)C11—C12—C13121.7 (4)
C3—C2—C1119.6 (4)C11—C12—N3119.1 (4)
C2—C3—C4121.1 (4)C13—C12—N3119.2 (4)
C2—C3—H3119.5C12—C13—C14118.2 (4)
C4—C3—H3119.5C12—C13—H13120.9
C5—C4—C3119.6 (4)C14—C13—H13120.9
C5—C4—H4120.2C13—C14—C9121.5 (4)
C3—C4—H4120.2C13—C14—H14119.2
C6—C5—C4120.0 (4)C9—C14—H14119.2
C6—C5—Br1121.2 (3)O5—C15—H15A109.5
C4—C5—Br1118.9 (3)O5—C15—H15B109.5
C5—C6—C1121.0 (4)H15A—C15—H15B109.5
C5—C6—H6119.5O5—C15—H15C109.5
C1—C6—H6119.5H15A—C15—H15C109.5
N1—C7—C1123.1 (4)H15B—C15—H15C109.5
N1—C7—H7118.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O50.89 (1)2.00 (2)2.875 (4)166 (4)
O1—H1···N10.822.032.737 (4)143
O1—H1···O5i0.822.512.952 (4)115
O5—H5···O2ii0.821.902.710 (4)171
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC14H10BrN3O4·CH4O
Mr396.20
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)6.660 (2), 19.068 (3), 12.730 (2)
β (°) 93.222 (2)
V3)1614.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.58
Crystal size (mm)0.17 × 0.13 × 0.12
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.668, 0.747
No. of measured, independent and
observed [I > 2σ(I)] reflections
8673, 3442, 1824
Rint0.062
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.101, 0.95
No. of reflections3442
No. of parameters222
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.43

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O50.894 (10)2.000 (15)2.875 (4)166 (4)
O1—H1···N10.822.032.737 (4)143
O1—H1···O5i0.822.512.952 (4)115
O5—H5···O2ii0.821.902.710 (4)171
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

Acknowledgements

This project was sponsored by the Nature Development Foundation of Hebei Province (gant No. B2011204051), the Development Foundation of the Department of Education of Hebei Province (grant No. 2010137) and the Research Development Foundation of the Agricultural University of Hebei.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orphen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBan, H.-Y. (2010). Acta Cryst. E66, o3240.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDai, C.-H. & Mao, F.-L. (2010). Acta Cryst. E66, o2942.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEl-Dissouky, A., Al-Fulaij, O., Awad, M. K. & Rizk, S. (2010). J. Coord. Chem. 63, 330–345.  Web of Science CrossRef CAS Google Scholar
First citationEl-Sayed, M. A. A., Abdel-Aziz, N. I., Abdel-Aziz, A. A. M., El-Azab, A. S., Asiri, Y. A. & ElTahir, K. E. H. (2011). Bioorg. Med. Chem. 19, 3416–3424.  Web of Science CAS PubMed Google Scholar
First citationHoriuchi, T., Nagata, M., Kitagawa, M., Akahane, K. & Uoto, K. (2009). Bioorg. Med. Chem. 17, 7850–7860.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuleiman Gwaram, N., Khaledi, H., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2010). Acta Cryst. E66, o721.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, S.-P., Wei, Y. & Shao, S.-C. (2010). Acta Cryst. E66, m1635.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds