organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Hy­dr­oxy­pyridine-4-carboxamide

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: handongyin@163.com

(Received 2 June 2011; accepted 29 June 2011; online 6 July 2011)

The title compound, C6H6N2O2, is approximately planar with an r.m.s. deviation for the non-H atoms of 0.052 Å. In the crystal, a two-dimensional array in the bc plane is stabilized by O—H⋯N and N—H⋯O hydrogen bonds.

Related literature

For background to the coordination chemistry of hydroxamic acid derivatives, see: Codd (2008[Codd, R. (2008). Coord. Chem. Rev. 252, 1387-1408.]). For related structures, see: Wang et al. (1988[Wang, R., Bai, C., Huang, S. & Shi, K. (1988). Jiegou Huaxue (Chin. J. Struct. Chem.), 7, 26-29.]); Makhmudova et al. (2000[Makhmudova, N. K., Kadyrova, Z. Ch. & Delyaridi, E. A. (2000). Koord. Khim. 26, 580.]); Golenya et al. (2007[Golenya, I. A., Haukka, M., Fritsky, I. O. & Gumienna-Kontecka, E. (2007). Acta Cryst. E63, o1515-o1517.]).

[Scheme 1]

Experimental

Crystal data
  • C6H6N2O2

  • Mr = 138.13

  • Monoclinic, P 21 /c

  • a = 4.8765 (5) Å

  • b = 13.4476 (16) Å

  • c = 9.6656 (11) Å

  • β = 99.579 (1)°

  • V = 625.01 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.35 × 0.24 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.961, Tmax = 0.983

  • 3030 measured reflections

  • 1092 independent reflections

  • 769 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.115

  • S = 1.05

  • 1092 reflections

  • 92 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2i 0.82 1.92 2.721 (2) 166
N1—H2⋯O2ii 0.86 2.01 2.844 (2) 162
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydroxamic acid, R1C(O)N(R2)OH (R1 = alkyl/aryl; R2 = alkyl/aryl or H), relevant to chemical biology, coordinate a wide variety of metal ions predominantly as the monoanionic hydroxamato or as a dianionic (R2 = H) hydroximato O,O-bidentate chelate (Codd, 2008). To the best of our knowledge, while a large number of transition metal derivatives with hydroxamic acids have been reported, organoantimony complexes with hydroxamic acids are limited. To further extend this field and to construct novel structures of organoantimony, we choose to investigate reactions involving the title compound (I). Herein, we present its crystal structure determination.

In (I), the non-hydrogen atoms are in the same plane (Fig. 1) with the rms deviation being 0.052 Å. All the bond lengths and angles are normal and correspond to those observed in the related compounds (Wang et al., 1988; Makhmudova et al., 2000; Golenya et al., 2007). In the crystal structure, intermolecular O1—H1···N2 and N1—H2···O2 hydrogen bonds (Table 1) link the molecules into a two-dimensional array in the bc plane (Fig. 2).

Related literature top

For background to the coordination chemistry of hydroxamic acid derivatives, see: Codd (2008). For related structures, see: Wang et al. (1988); Makhmudova et al. (2000); Golenya et al. (2007).

Experimental top

4-pyridinecarboxylic acid was dissolved in methanol (50 mL) and concentrated sulfuric acid (5 mL) was added drop wise into the reactor. The mixture was then stirred and refluxed for 3 h, after which time the solution was adjusted to pH 8 by the use of a 5% sodium carbonate aqueous solution. Methyl 4-pyridinecarboxylate was obtained by extraction with diethyl ether. Yield: 61.6%. A mixture of hydroxylamine hydrochloride and sodium hydroxide was added drop wise to the methanol solution of methyl 4-pyridinecarboxylate. The reaction was allowed to continue at room temperature for 72 h, when the mixture was acidified to pH 5.5 by 5% HCl solution. The solvent was removed in vacuo and the product was recrystallized from water to give pale-red crystals. Yield: 82%, M.pt. 421 K.

Refinement top

The H atoms were geometrically placed (O—H = 0.82 Å, N—H = 0.86 Å and C—H = 0.93 Å) and refined as riding with Uiso(H) = 1.2-1.5Ueq(parent atom).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing atom-labelling and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The supramolecular 2-D array in the bc plane stabilised by N—H···O and O—H···N hydrogen bonds (dashed lines).
N-Hydroxypyridine-4-carboxamide top
Crystal data top
C6H6N2O2F(000) = 288
Mr = 138.13Dx = 1.468 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1066 reflections
a = 4.8765 (5) Åθ = 2.6–26.0°
b = 13.4476 (16) ŵ = 0.11 mm1
c = 9.6656 (11) ÅT = 298 K
β = 99.579 (1)°Block, pale-red
V = 625.01 (12) Å30.35 × 0.24 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1092 independent reflections
Radiation source: fine-focus sealed tube769 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 55
Tmin = 0.961, Tmax = 0.983k = 1316
3030 measured reflectionsl = 1110
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.208P]
where P = (Fo2 + 2Fc2)/3
1092 reflections(Δ/σ)max < 0.001
92 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C6H6N2O2V = 625.01 (12) Å3
Mr = 138.13Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.8765 (5) ŵ = 0.11 mm1
b = 13.4476 (16) ÅT = 298 K
c = 9.6656 (11) Å0.35 × 0.24 × 0.15 mm
β = 99.579 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1092 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
769 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.983Rint = 0.024
3030 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.05Δρmax = 0.15 e Å3
1092 reflectionsΔρmin = 0.16 e Å3
92 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.1487 (3)0.30086 (10)0.06585 (14)0.0430 (4)
O10.1208 (3)0.35086 (10)0.27794 (16)0.0437 (5)
H10.04650.40550.27700.065*
N10.0809 (4)0.27699 (12)0.28861 (17)0.0364 (5)
H20.12750.24530.36620.044*
C10.2019 (4)0.25531 (14)0.1785 (2)0.0324 (5)
C20.4074 (4)0.17092 (14)0.1980 (2)0.0331 (5)
N20.7903 (4)0.01429 (13)0.2167 (2)0.0477 (5)
C60.5567 (5)0.15118 (16)0.0916 (2)0.0420 (6)
H60.53250.19050.01140.050*
C30.4594 (6)0.11050 (18)0.3153 (2)0.0570 (7)
H30.36720.12140.39080.068*
C50.7415 (5)0.07300 (17)0.1049 (2)0.0462 (6)
H50.83770.06060.03130.055*
C40.6486 (6)0.03405 (19)0.3196 (3)0.0659 (8)
H40.67900.00610.39900.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0581 (10)0.0425 (9)0.0303 (8)0.0067 (8)0.0127 (7)0.0035 (6)
O10.0467 (9)0.0354 (8)0.0525 (10)0.0019 (7)0.0187 (7)0.0029 (7)
N10.0442 (11)0.0354 (10)0.0312 (9)0.0040 (8)0.0107 (8)0.0002 (7)
C10.0404 (12)0.0305 (10)0.0272 (10)0.0053 (9)0.0084 (9)0.0039 (9)
C20.0382 (12)0.0292 (10)0.0325 (11)0.0044 (9)0.0078 (9)0.0043 (8)
N20.0514 (12)0.0356 (10)0.0584 (12)0.0025 (9)0.0162 (10)0.0023 (9)
C60.0448 (13)0.0485 (14)0.0341 (12)0.0047 (11)0.0103 (10)0.0022 (9)
C30.0782 (19)0.0518 (15)0.0495 (14)0.0206 (13)0.0353 (13)0.0163 (11)
C50.0455 (14)0.0488 (14)0.0469 (14)0.0045 (11)0.0156 (11)0.0046 (11)
C40.090 (2)0.0537 (16)0.0620 (17)0.0249 (15)0.0364 (16)0.0262 (13)
Geometric parameters (Å, º) top
O2—C11.239 (2)N2—C51.327 (3)
O1—N11.390 (2)N2—C41.329 (3)
O1—H10.8200C6—C51.377 (3)
N1—C11.332 (2)C6—H60.9300
N1—H20.8600C3—C41.378 (3)
C1—C21.505 (3)C3—H30.9300
C2—C61.381 (3)C5—H50.9300
C2—C31.384 (3)C4—H40.9300
N1—O1—H1109.5C5—C6—H6120.2
C1—N1—O1119.96 (16)C2—C6—H6120.2
C1—N1—H2120.0C4—C3—C2119.5 (2)
O1—N1—H2120.0C4—C3—H3120.2
O2—C1—N1122.57 (19)C2—C3—H3120.2
O2—C1—C2121.35 (17)N2—C5—C6123.8 (2)
N1—C1—C2116.07 (17)N2—C5—H5118.1
C6—C2—C3116.7 (2)C6—C5—H5118.1
C6—C2—C1118.33 (18)N2—C4—C3123.8 (2)
C3—C2—C1124.92 (18)N2—C4—H4118.1
C5—N2—C4116.4 (2)C3—C4—H4118.1
C5—C6—C2119.7 (2)
O1—N1—C1—O22.4 (3)C1—C2—C6—C5178.48 (19)
O1—N1—C1—C2177.12 (15)C6—C2—C3—C41.3 (4)
O2—C1—C2—C66.1 (3)C1—C2—C3—C4178.6 (2)
N1—C1—C2—C6174.36 (18)C4—N2—C5—C60.2 (3)
O2—C1—C2—C3173.7 (2)C2—C6—C5—N20.9 (3)
N1—C1—C2—C35.8 (3)C5—N2—C4—C30.1 (4)
C3—C2—C6—C51.4 (3)C2—C3—C4—N20.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.821.922.721 (2)166
N1—H2···O2ii0.862.012.844 (2)162
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H6N2O2
Mr138.13
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)4.8765 (5), 13.4476 (16), 9.6656 (11)
β (°) 99.579 (1)
V3)625.01 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.35 × 0.24 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.961, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
3030, 1092, 769
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.115, 1.05
No. of reflections1092
No. of parameters92
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.16

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.821.922.721 (2)166
N1—H2···O2ii0.862.012.844 (2)162
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

We acknowledge the National Natural Science Foundation of China (20771053), the National Basic Research Program (No. 2010CB234601) and the Natural Science Foundation of Shandong Province (Y2008B48) for financial support.

References

First citationCodd, R. (2008). Coord. Chem. Rev. 252, 1387–1408.  Web of Science CrossRef CAS Google Scholar
First citationGolenya, I. A., Haukka, M., Fritsky, I. O. & Gumienna-Kontecka, E. (2007). Acta Cryst. E63, o1515–o1517.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMakhmudova, N. K., Kadyrova, Z. Ch. & Delyaridi, E. A. (2000). Koord. Khim. 26, 580.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWang, R., Bai, C., Huang, S. & Shi, K. (1988). Jiegou Huaxue (Chin. J. Struct. Chem.), 7, 26–29.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds