metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1073-m1074

{4,6-Bis[(E)-1-methyl-2-(pyridin-2-yl­methyl­­idene-κN)hydrazinyl-κN2]pyrimidine-κN1}di­chloridocopper(II) methanol disolvate monohydrate

aSchool of Chemistry & CRANN, The University of Dublin, Trinity College, Dublin 2, Ireland
*Correspondence e-mail: schmittw@tcd.ie

(Received 23 June 2011; accepted 28 June 2011; online 9 July 2011)

The title compound, [CuCl2(C18H18N8)]·2CH3OH·H2O, contains a penta­coordinated Cu(II) atom bonded to the tridentate 4,6-bis­[(E)-1-methyl-2-(pyridin-2-yl­methyl­idene)hydrazin­yl]pyrimidine ligand and two Cl atoms. The geometry around the CuII atom is distorted square-pyramidal. The mol­ecules pack in the crystal structure via O—H⋯Cl, O—H⋯N, C—H⋯Cl and C—H⋯O hydrogen bonds, C—H⋯π and ππ inter­actions [centroid–centroid distances of the pyrimidine–pyridine and pyridine–pyridine inter­actions are 3.750 (3) and 3.850 (3) Å, respectively], forming sheet-like assemblies.

Related literature

For the coordination chemistry of similar ligand-types, see: Stadler et al. (2005[Stadler, A.-M., Puntoriero, F., Campagna, S., Kyritsakas, N., Welter, R. & Lehn, J.-M. (2005). Chem. Eur. J. 11, 3997-4009.], 2006[Stadler, A.-M., Kyritsakas, N., Graff, R. & Lehn, J.-M. (2006). Chem. Eur. J. 12, 4503-4522.]). For additional geometric analysis, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl2(C18H18N8)]·2CH4O·H2O

  • Mr = 560.94

  • Triclinic, [P \overline 1]

  • a = 7.430 (5) Å

  • b = 11.627 (8) Å

  • c = 14.026 (9) Å

  • α = 95.848 (7)°

  • β = 93.477 (13)°

  • γ = 92.920 (9)°

  • V = 1201.2 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.17 mm−1

  • T = 116 K

  • 0.30 × 0.25 × 0.10 mm

Data collection
  • Rigaku Saturn724 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.786, Tmax = 1.000

  • 26094 measured reflections

  • 7050 independent reflections

  • 4093 reflections with I > 2σ(I)

  • Rint = 0.091

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.104

  • S = 0.82

  • 7050 reflections

  • 311 parameters

  • H-atom parameters constrained

  • Δρmax = 1.20 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—Cl1 2.2306 (15)
Cu1—Cl2 2.5353 (16)
Cu1—N1 2.038 (3)
Cu1—N2 1.989 (2)
Cu1—N4 2.011 (2)

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N4,N5,C16–C19 and N1,C15,C28,C29–C31 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Cl2i 0.84 2.36 3.144 (3) 155
O3—H3a⋯N8ii 0.84 1.96 2.773 (4) 164
C2—H2⋯Cl1iii 0.95 2.78 3.683 (4) 158
C32—H32⋯Cl2iv 0.95 2.64 3.480 (3) 148
C33—H33⋯Cl2v 0.95 2.80 3.694 (4) 158
C36—H36b⋯O3ii 0.98 2.26 3.225 (4) 169
C29—H29⋯O5 0.95 2.47 3.289 (5) 145
C20—H20b⋯Cg1v 0.98 2.58 3.381 (4) 139
C36—H36c⋯Cg2iv 0.98 2.81 3.646 (4) 144
Symmetry codes: (i) x-1, y, z; (ii) -x, -y, -z+1; (iii) x-1, y-1, z; (iv) -x+1, -y, -z+1; (v) -x+1, -y, -z+2.

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Heterocyclic N-containing ligands have been heavily exploited to create metallo-supramolecular structures such as helicates, grids, molecular ladders, etc. Lehn and co-workers recently reported (pyridin-2-ylmethylene)hydrazinyl)pyrimidine-based ligands and their PbII, ZnII, HgII and LaIII complexes (Stadler et al., 2005; Stadler et al. 2006).

The asymmetric unit in the title compound contains a mononuclear CuII complex of 4,6-bis[(E)-1-methyl-2-(pyrindin-2-ylmethylene)hydrazinyl]pyrimidine (Fig. 1), two solvent methanol molecules and a water solvent molecule. The CuII atom is penta-coordinated by three N atoms of the organic ligand and two chloride atoms, Table 1. The coordination geometry of the central CuII is best described as distorted square pyramid. The structural distortion index (Addison et al., 1984), τ, is 0.08 compared with an ideal τ value of 0.0 for a square pyramid. In this description, the N1 N2 N4 Cl2 atoms form the basal plane, and Cl1 occupies the apical position . The bond angles around the central Cu atom range between 78.04 (10)–159.90 (7)°. The configuration around both imine bonds is assigned to be E.

The crystal structure is stabilized by hydrogen bonds between the CuII complex and the constitutional solvent molecules, Table 2, and ππ interactions between the pyrimidine and pyridine rings of symmetry related molecules (Figs 2 & 3). The centroid-centroid distances of the pyrimidine···pyridine (symmetry code:-x, -y, 2 - z) and pyridine···pyridine (symmetry code: -x, -1 - y, 2 - z) interactions are 3.750 (3) and 3.850 (3) Å, respectively. In addition, weak C—H···π interactions are also observed, Table 2.

Related literature top

For the coordination chemistry of similar ligand-types, see: Stadler et al. (2005, 2006). For additional geometric analysis, see: Addison et al. (1984);

Experimental top

4,6-bis[N-Methyl-2-(pyrindin-2-ylmethylene)hydrazinyl]pyrimidine (0.007 g. 0.025 mmol) was dissolved in 5 ml of chloroform and 4.75 ml of ethanol. Then, 0.25 ml of an ethanolic 0.1 M copper(II) chloride dihydrate solution was added and the mixture was left for slow evaporation. Green blocks of the title compound were collected after 2 days. Yield: ca 75%.

Refinement top

All the hydrogen atoms were positioned geometrically (C—H = 0.95–0.98 Å; O—H = 0.84 Å) and were included in the refinement in the riding model approximation with Uiso(H)= 1.2Ueq(C) and 1.5Ueq(O). The H atoms of O5 of the water molecule could not be located. The maximum and minimum residual electron density peaks of 1.20 and 0.64 eÅ-3, respectively, were located 0.07 Å and 0.67 Å from the O5 atom, respectively.

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997), DIAMOND (Brandenburg, 1998) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound drawn at 50% probability thermal ellipsoids. Solvent molecules are omitted for clarity.
[Figure 2] Fig. 2. Packing of the CuII complex and constitutional solvent molecules; views in the direction of the crystallographic b- (left) and c-axes.
[Figure 3] Fig. 3. ππ Stacking between the CuII complexes; view in the direction of the c-axis.
{4,6-Bis[(E)-1-methyl-2-(pyridin-2-ylmethylidene-κN)hydrazinyl- κN2]pyrimidine-κN1}dichloridocopper(II) methanol disolvate monohydrate top
Crystal data top
[CuCl2(C20H18N8)]·2CH4O·H2OZ = 2
Mr = 560.94F(000) = 578
Triclinic, P1Dx = 1.551 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 7.430 (5) ÅCell parameters from 4091 reflections
b = 11.627 (8) Åθ = 1.5–31.2°
c = 14.026 (9) ŵ = 1.17 mm1
α = 95.848 (7)°T = 116 K
β = 93.477 (13)°Block, green
γ = 92.920 (9)°0.30 × 0.25 × 0.10 mm
V = 1201.2 (14) Å3
Data collection top
Rigaku Saturn724
diffractometer
7050 independent reflections
Radiation source: fine-focus sealed tube4093 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.091
Detector resolution: 28.5714 pixels mm-1θmax = 31.0°, θmin = 2.8°
ϕ and ω scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
k = 1616
Tmin = 0.786, Tmax = 1.000l = 2020
26094 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 0.82 w = 1/[σ2(Fo2) + (0.0252P)2]
where P = (Fo2 + 2Fc2)/3
7050 reflections(Δ/σ)max = 0.001
311 parametersΔρmax = 1.20 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
[CuCl2(C20H18N8)]·2CH4O·H2Oγ = 92.920 (9)°
Mr = 560.94V = 1201.2 (14) Å3
Triclinic, P1Z = 2
a = 7.430 (5) ÅMo Kα radiation
b = 11.627 (8) ŵ = 1.17 mm1
c = 14.026 (9) ÅT = 116 K
α = 95.848 (7)°0.30 × 0.25 × 0.10 mm
β = 93.477 (13)°
Data collection top
Rigaku Saturn724
diffractometer
7050 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
4093 reflections with I > 2σ(I)
Tmin = 0.786, Tmax = 1.000Rint = 0.091
26094 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 0.82Δρmax = 1.20 e Å3
7050 reflectionsΔρmin = 0.64 e Å3
311 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.51669 (5)0.23008 (3)0.67322 (2)0.02337 (11)
Cl10.60610 (11)0.40752 (6)0.74048 (5)0.03137 (19)
Cl20.80299 (10)0.12043 (6)0.67078 (5)0.02719 (17)
N80.0738 (3)0.3088 (2)0.95926 (17)0.0257 (6)
N70.1465 (3)0.1045 (2)0.99451 (17)0.0224 (5)
N60.2460 (3)0.00054 (19)1.01525 (16)0.0212 (5)
N50.4077 (3)0.15083 (19)0.95650 (16)0.0218 (5)
N40.4243 (3)0.16279 (19)0.78868 (16)0.0212 (5)
N10.5074 (3)0.2629 (2)0.53308 (16)0.0235 (5)
N20.3547 (3)0.09759 (19)0.61299 (16)0.0210 (5)
N30.2856 (3)0.02344 (19)0.67263 (17)0.0236 (5)
C10.0123 (4)0.2672 (2)1.0503 (2)0.0222 (6)
C20.1852 (4)0.4043 (2)0.9493 (2)0.0298 (7)
H20.22860.43480.88620.036*
C30.2412 (4)0.4615 (3)1.0258 (2)0.0306 (7)
H30.32170.52841.01490.037*
C40.1776 (4)0.4193 (3)1.1175 (2)0.0308 (7)
H40.21360.45651.17110.037*
C50.0597 (4)0.3212 (2)1.1308 (2)0.0264 (7)
H50.01220.29151.19330.032*
C150.5832 (4)0.3533 (3)0.4945 (2)0.0284 (7)
H150.65400.41070.53560.034*
C160.3030 (4)0.0512 (2)0.9371 (2)0.0205 (6)
C170.2558 (4)0.0018 (2)0.84227 (19)0.0205 (6)
H170.18390.06860.82880.025*
C180.4602 (4)0.2000 (2)0.8816 (2)0.0224 (6)
H180.53220.27040.89510.027*
C190.3201 (4)0.0616 (2)0.7704 (2)0.0211 (6)
C200.2746 (4)0.0561 (2)1.11368 (19)0.0246 (6)
H20A0.33520.13281.11280.037*
H20B0.35000.00911.15220.037*
H20C0.15780.06441.14180.037*
C280.5623 (4)0.3661 (3)0.3978 (2)0.0312 (7)
H280.61650.43180.37330.037*
C290.4617 (4)0.2825 (3)0.3368 (2)0.0321 (7)
H290.44660.28990.27000.039*
C300.3827 (4)0.1872 (3)0.3747 (2)0.0299 (7)
H300.31350.12820.33440.036*
C310.4081 (4)0.1808 (3)0.4734 (2)0.0252 (7)
C320.3240 (4)0.0875 (2)0.5211 (2)0.0237 (6)
H320.25260.02470.48690.028*
C330.1001 (3)0.1588 (2)1.0661 (2)0.0212 (6)
H330.13960.12811.12970.025*
C360.1671 (4)0.0758 (2)0.6330 (2)0.0250 (6)
H36A0.05830.04870.60130.037*
H36B0.13280.12120.68490.037*
H36C0.23040.12430.58610.037*
O10.0092 (3)0.26564 (19)0.52994 (16)0.0421 (6)
H10.07500.23420.55720.063*
C370.0780 (4)0.3696 (3)0.5842 (3)0.0458 (9)
H37A0.01730.40300.62170.069*
H37B0.11950.42470.54070.069*
H37C0.17940.35310.62770.069*
O30.0217 (4)0.24581 (19)0.21711 (17)0.0615 (8)
H3A0.02570.25780.16590.092*
C380.0030 (4)0.3467 (3)0.2806 (2)0.0374 (8)
H38A0.01550.32710.34620.056*
H38B0.09680.39880.26380.056*
H38C0.11630.38500.27620.056*
O50.6024 (5)0.2970 (3)0.1203 (2)0.0990 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0281 (2)0.0221 (2)0.01938 (19)0.00223 (15)0.00150 (15)0.00127 (14)
Cl10.0424 (5)0.0232 (4)0.0269 (4)0.0065 (3)0.0001 (3)0.0000 (3)
Cl20.0285 (4)0.0287 (4)0.0238 (4)0.0021 (3)0.0010 (3)0.0002 (3)
N80.0256 (14)0.0267 (14)0.0242 (13)0.0000 (11)0.0023 (11)0.0005 (11)
N70.0199 (13)0.0239 (13)0.0233 (13)0.0009 (10)0.0029 (10)0.0013 (10)
N60.0232 (13)0.0205 (12)0.0195 (12)0.0000 (10)0.0023 (10)0.0004 (10)
N50.0210 (13)0.0221 (13)0.0217 (13)0.0005 (10)0.0017 (10)0.0003 (10)
N40.0203 (13)0.0211 (12)0.0221 (12)0.0015 (10)0.0025 (10)0.0022 (10)
N10.0230 (14)0.0268 (13)0.0212 (13)0.0004 (11)0.0023 (10)0.0049 (11)
N20.0217 (13)0.0192 (12)0.0212 (12)0.0018 (10)0.0035 (10)0.0013 (10)
N30.0284 (15)0.0221 (13)0.0190 (12)0.0042 (11)0.0017 (10)0.0012 (10)
C10.0205 (16)0.0222 (15)0.0239 (15)0.0029 (12)0.0034 (12)0.0000 (12)
C20.0251 (18)0.0288 (17)0.0336 (18)0.0020 (14)0.0005 (14)0.0023 (14)
C30.0274 (18)0.0231 (16)0.041 (2)0.0029 (13)0.0035 (15)0.0037 (14)
C40.0292 (18)0.0286 (17)0.0364 (19)0.0004 (14)0.0059 (14)0.0110 (15)
C50.0236 (17)0.0302 (17)0.0252 (16)0.0008 (13)0.0005 (13)0.0032 (13)
C150.0281 (18)0.0277 (17)0.0289 (17)0.0002 (13)0.0033 (14)0.0002 (14)
C160.0185 (15)0.0218 (14)0.0212 (14)0.0030 (12)0.0022 (12)0.0008 (12)
C170.0172 (15)0.0222 (14)0.0215 (15)0.0027 (11)0.0010 (11)0.0009 (12)
C180.0205 (16)0.0185 (14)0.0264 (15)0.0025 (12)0.0007 (12)0.0031 (12)
C190.0201 (15)0.0223 (15)0.0204 (14)0.0032 (12)0.0004 (12)0.0016 (12)
C200.0304 (17)0.0228 (15)0.0199 (15)0.0025 (13)0.0017 (12)0.0006 (12)
C280.0331 (19)0.0321 (18)0.0295 (17)0.0005 (14)0.0053 (14)0.0082 (14)
C290.038 (2)0.0390 (19)0.0200 (15)0.0006 (15)0.0019 (14)0.0062 (14)
C300.0351 (19)0.0316 (17)0.0219 (16)0.0001 (14)0.0016 (14)0.0008 (13)
C310.0239 (16)0.0298 (16)0.0230 (15)0.0041 (13)0.0052 (12)0.0047 (13)
C320.0229 (16)0.0246 (15)0.0227 (15)0.0020 (12)0.0004 (12)0.0004 (12)
C330.0181 (15)0.0238 (15)0.0207 (14)0.0008 (12)0.0001 (12)0.0002 (12)
C360.0264 (17)0.0249 (15)0.0220 (15)0.0066 (13)0.0002 (12)0.0004 (12)
O10.0430 (15)0.0446 (15)0.0378 (14)0.0067 (12)0.0104 (11)0.0002 (12)
C370.038 (2)0.043 (2)0.054 (2)0.0052 (17)0.0018 (18)0.0018 (19)
O30.112 (2)0.0336 (14)0.0366 (15)0.0247 (15)0.0352 (15)0.0096 (12)
C380.043 (2)0.040 (2)0.0297 (18)0.0002 (16)0.0058 (15)0.0024 (15)
O50.115 (3)0.101 (3)0.079 (3)0.008 (2)0.018 (2)0.001 (2)
Geometric parameters (Å, º) top
Cu1—Cl12.2306 (15)C15—H150.9500
Cu1—Cl22.5353 (16)C16—C171.410 (4)
Cu1—N12.038 (3)C17—C191.377 (4)
Cu1—N21.989 (2)C17—H170.9500
Cu1—N42.011 (2)C18—H180.9500
N8—C21.342 (3)C20—H20A0.9800
N8—C11.362 (4)C20—H20B0.9800
N7—C331.294 (3)C20—H20C0.9800
N7—N61.380 (3)C28—C291.384 (4)
N6—C161.381 (3)C28—H280.9500
N6—C201.466 (3)C29—C301.395 (4)
N5—C181.317 (3)C29—H290.9500
N5—C161.356 (3)C30—C311.397 (4)
N4—C181.337 (3)C30—H300.9500
N4—C191.368 (3)C31—C321.464 (4)
N1—C151.344 (3)C32—H320.9500
N1—C311.358 (4)C33—H330.9500
N2—C321.288 (3)C36—H36A0.9800
N2—N31.364 (3)C36—H36B0.9800
N3—C191.402 (3)C36—H36C0.9800
N3—C361.457 (3)O1—C371.416 (4)
C1—C51.401 (4)O1—H10.8400
C1—C331.465 (4)C37—H37A0.9800
C2—C31.392 (4)C37—H37B0.9800
C2—H20.9500C37—H37C0.9800
C3—C41.377 (4)O3—C381.394 (4)
C3—H30.9500O3—H3A0.8399
C4—C51.391 (4)C38—H38A0.9800
C4—H40.9500C38—H38B0.9800
C5—H50.9500C38—H38C0.9800
C15—C281.381 (4)
N2—Cu1—N478.01 (10)C16—C17—H17122.0
N2—Cu1—N179.32 (10)N5—C18—N4127.7 (3)
N4—Cu1—N1155.14 (9)N5—C18—H18116.1
N2—Cu1—Cl1159.91 (7)N4—C18—H18116.1
N4—Cu1—Cl199.43 (8)N4—C19—C17122.7 (3)
N1—Cu1—Cl198.34 (8)N4—C19—N3114.5 (2)
N2—Cu1—Cl295.54 (8)C17—C19—N3122.8 (3)
N4—Cu1—Cl295.41 (7)N6—C20—H20A109.5
N1—Cu1—Cl296.80 (7)N6—C20—H20B109.5
Cl1—Cu1—Cl2104.54 (5)H20A—C20—H20B109.5
C2—N8—C1116.9 (3)N6—C20—H20C109.5
C33—N7—N6117.5 (2)H20A—C20—H20C109.5
C16—N6—N7115.9 (2)H20B—C20—H20C109.5
C16—N6—C20122.2 (2)C15—C28—C29119.4 (3)
N7—N6—C20121.7 (2)C15—C28—H28120.3
C18—N5—C16116.1 (2)C29—C28—H28120.3
C18—N4—C19115.4 (2)C28—C29—C30119.2 (3)
C18—N4—Cu1128.5 (2)C28—C29—H29120.4
C19—N4—Cu1115.97 (18)C30—C29—H29120.4
C15—N1—C31118.0 (3)C29—C30—C31118.1 (3)
C15—N1—Cu1128.7 (2)C29—C30—H30120.9
C31—N1—Cu1113.24 (18)C31—C30—H30120.9
C32—N2—N3124.9 (2)N1—C31—C30122.6 (3)
C32—N2—Cu1118.0 (2)N1—C31—C32114.9 (3)
N3—N2—Cu1117.15 (17)C30—C31—C32122.5 (3)
N2—N3—C19113.7 (2)N2—C32—C31114.5 (3)
N2—N3—C36119.9 (2)N2—C32—H32122.8
C19—N3—C36125.9 (2)C31—C32—H32122.8
N8—C1—C5122.4 (3)N7—C33—C1120.9 (3)
N8—C1—C33119.3 (3)N7—C33—H33119.6
C5—C1—C33118.2 (3)C1—C33—H33119.6
N8—C2—C3124.0 (3)N3—C36—H36A109.5
N8—C2—H2118.0N3—C36—H36B109.5
C3—C2—H2118.0H36A—C36—H36B109.5
C4—C3—C2118.7 (3)N3—C36—H36C109.5
C4—C3—H3120.7H36A—C36—H36C109.5
C2—C3—H3120.7H36B—C36—H36C109.5
C3—C4—C5119.1 (3)C37—O1—H1110.9
C3—C4—H4120.5O1—C37—H37A109.5
C5—C4—H4120.5O1—C37—H37B109.5
C4—C5—C1118.9 (3)H37A—C37—H37B109.5
C4—C5—H5120.5O1—C37—H37C109.5
C1—C5—H5120.5H37A—C37—H37C109.5
N1—C15—C28122.7 (3)H37B—C37—H37C109.5
N1—C15—H15118.7C38—O3—H3A109.4
C28—C15—H15118.7O3—C38—H38A109.5
N5—C16—N6116.5 (2)O3—C38—H38B109.5
N5—C16—C17122.1 (2)H38A—C38—H38B109.5
N6—C16—C17121.4 (3)O3—C38—H38C109.5
C19—C17—C16116.0 (3)H38A—C38—H38C109.5
C19—C17—H17122.0H38B—C38—H38C109.5
C33—N7—N6—C16175.9 (2)Cu1—N1—C15—C28178.4 (2)
C33—N7—N6—C209.5 (4)C18—N5—C16—N6179.5 (2)
N2—Cu1—N4—C18178.6 (2)C18—N5—C16—C171.2 (4)
N1—Cu1—N4—C18154.0 (2)N7—N6—C16—N5177.2 (2)
Cl1—Cu1—N4—C1818.9 (2)C20—N6—C16—N58.3 (4)
Cl2—Cu1—N4—C1886.9 (2)N7—N6—C16—C172.2 (4)
N2—Cu1—N4—C195.93 (18)C20—N6—C16—C17172.4 (2)
N1—Cu1—N4—C1930.6 (3)N5—C16—C17—C190.9 (4)
Cl1—Cu1—N4—C19165.64 (18)N6—C16—C17—C19179.8 (2)
Cl2—Cu1—N4—C1988.61 (19)C16—N5—C18—N40.8 (4)
N2—Cu1—N1—C15176.8 (3)C19—N4—C18—N50.2 (4)
N4—Cu1—N1—C15152.3 (2)Cu1—N4—C18—N5175.3 (2)
Cl1—Cu1—N1—C1517.1 (3)C18—N4—C19—C170.1 (4)
Cl2—Cu1—N1—C1588.8 (2)Cu1—N4—C19—C17176.2 (2)
N2—Cu1—N1—C312.32 (19)C18—N4—C19—N3179.4 (2)
N4—Cu1—N1—C3126.8 (3)Cu1—N4—C19—N33.3 (3)
Cl1—Cu1—N1—C31162.08 (18)C16—C17—C19—N40.3 (4)
Cl2—Cu1—N1—C3192.1 (2)C16—C17—C19—N3179.7 (2)
N4—Cu1—N2—C32172.7 (2)N2—N3—C19—N43.2 (3)
N1—Cu1—N2—C322.9 (2)C36—N3—C19—N4174.6 (2)
Cl1—Cu1—N2—C3288.0 (3)N2—N3—C19—C17177.3 (2)
Cl2—Cu1—N2—C3293.0 (2)C36—N3—C19—C175.9 (4)
N4—Cu1—N2—N37.87 (18)N1—C15—C28—C290.9 (5)
N1—Cu1—N2—N3177.6 (2)C15—C28—C29—C300.3 (5)
Cl1—Cu1—N2—N392.5 (3)C28—C29—C30—C310.4 (5)
Cl2—Cu1—N2—N386.50 (18)C15—N1—C31—C300.1 (4)
C32—N2—N3—C19172.1 (3)Cu1—N1—C31—C30179.3 (2)
Cu1—N2—N3—C198.5 (3)C15—N1—C31—C32177.7 (2)
C32—N2—N3—C360.1 (4)Cu1—N1—C31—C321.6 (3)
Cu1—N2—N3—C36179.56 (18)C29—C30—C31—N10.6 (5)
C2—N8—C1—C50.9 (4)C29—C30—C31—C32177.0 (3)
C2—N8—C1—C33176.0 (2)N3—N2—C32—C31177.7 (2)
C1—N8—C2—C30.4 (4)Cu1—N2—C32—C312.9 (3)
N8—C2—C3—C40.9 (5)N1—C31—C32—N20.8 (4)
C2—C3—C4—C50.1 (4)C30—C31—C32—N2176.9 (3)
C3—C4—C5—C11.3 (4)N6—N7—C33—C1177.3 (2)
N8—C1—C5—C41.7 (4)N8—C1—C33—N72.3 (4)
C33—C1—C5—C4175.2 (3)C5—C1—C33—N7179.3 (3)
C31—N1—C15—C280.7 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N4,N5,C16–C19 and N1,C15,C28,C29–C31 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl2i0.842.363.144 (3)155
O3—H3a···N8ii0.841.962.773 (4)164
C2—H2···Cl1iii0.952.783.683 (4)158
C32—H32···Cl2iv0.952.643.480 (3)148
C33—H33···Cl2v0.952.803.694 (4)158
C36—H36b···O3ii0.982.263.225 (4)169
C29—H29···O50.952.473.289 (5)145
C20—H20b···Cg1v0.982.583.381 (4)139
C36—H36c···Cg2iv0.982.813.646 (4)144
Symmetry codes: (i) x1, y, z; (ii) x, y, z+1; (iii) x1, y1, z; (iv) x+1, y, z+1; (v) x+1, y, z+2.

Experimental details

Crystal data
Chemical formula[CuCl2(C20H18N8)]·2CH4O·H2O
Mr560.94
Crystal system, space groupTriclinic, P1
Temperature (K)116
a, b, c (Å)7.430 (5), 11.627 (8), 14.026 (9)
α, β, γ (°)95.848 (7), 93.477 (13), 92.920 (9)
V3)1201.2 (14)
Z2
Radiation typeMo Kα
µ (mm1)1.17
Crystal size (mm)0.30 × 0.25 × 0.10
Data collection
DiffractometerRigaku Saturn724
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2008)
Tmin, Tmax0.786, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
26094, 7050, 4093
Rint0.091
(sin θ/λ)max1)0.725
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.104, 0.82
No. of reflections7050
No. of parameters311
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.20, 0.64

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), DIAMOND (Brandenburg, 1998) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Cu1—Cl12.2306 (15)Cu1—N21.989 (2)
Cu1—Cl22.5353 (16)Cu1—N42.011 (2)
Cu1—N12.038 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N4,N5,C16–C19 and N1,C15,C28,C29–C31 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl2i0.842.363.144 (3)155
O3—H3a···N8ii0.841.962.773 (4)164
C2—H2···Cl1iii0.952.783.683 (4)158
C32—H32···Cl2iv0.952.643.480 (3)148
C33—H33···Cl2v0.952.803.694 (4)158
C36—H36b···O3ii0.982.263.225 (4)169
C29—H29···O50.952.473.289 (5)145
C20—H20b···Cg1v0.982.583.381 (4)139
C36—H36c···Cg2iv0.982.813.646 (4)144
Symmetry codes: (i) x1, y, z; (ii) x, y, z+1; (iii) x1, y1, z; (iv) x+1, y, z+1; (v) x+1, y, z+2.
 

Acknowledgements

The authors thank the Science Foundation Ireland for financial support (SFI; 06/RFP/CHE174 and 08/IN.1/I2047). Financial support from DRHEA (BM) and Trinity College is gratefully acknowledged.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStadler, A.-M., Kyritsakas, N., Graff, R. & Lehn, J.-M. (2006). Chem. Eur. J. 12, 4503–4522.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationStadler, A.-M., Puntoriero, F., Campagna, S., Kyritsakas, N., Welter, R. & Lehn, J.-M. (2005). Chem. Eur. J. 11, 3997–4009.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1073-m1074
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds