organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2017-o2018

1-(2-Hy­dr­oxy­eth­yl)-4-{3-[(E)-2-(tri­fluoro­meth­yl)-9H-thioxanthen-9-yl­­idene]prop­yl}piperazine-1,4-diium bis­­(3-carb­­oxy­prop-2-enoate)

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dR. L. Fine Chem, Bangalore 560 064, India
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 6 July 2011; accepted 7 July 2011; online 13 July 2011)

In the title salt, C23H27F3N2OS+·2C4H3O4, a non-merohedral twin [ratio of the twin components = 0.402 (1):0.598 (1)], the –CF3 group is disordered over two sets of sites with occupancy factors in the ratio 0.873 (2):0.127 (2). The dihedral angle between the two outer aromatic rings of the 9H-thioxanthene unit, whose thio­pyran ring has a screw-boat conformation, is 33.01 (9)°. The diprotonated piperazine ring adopts a chair conformation. In the crystal, inter­molecular O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds between neighboring mol­ecules form zigzag chains along the a axis and contribute to the stabilization of the packing.

Related literature

The title compound was formed by the reaction of flupentixol (systematic name: 2-[4-[3-[(EZ)-2-(trifluoro­meth­yl)-9H-thio­xanthen-9-yl­idene]prop­yl]piperazin-1-yl]ethanol and fumaric acid. For the anti­depressant action of flupentixol, see: Robertson & Trimble, (1981[Robertson, M. M. & Trimble, M. R. (1981). Practitioner, 225, 761-763.]). For related structures, see: Post et al. (1975a[Post, M. L., Kennard, O. & Horn, A. S. (1975a). Acta Cryst. B31, 2724-2726.],b[Post, M. L., Kennard, O., Sheldrick, G. M. & Horn, A. S. (1975b). Acta Cryst. B31, 2366-2368.]); Jones et al. (1977[Jones, P. G., Kennard, O. & Horn, A. S. (1977). Acta Cryst. B33, 3744-3747.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C23H27F3N2OS2+·2C4H3O4

  • Mr = 666.66

  • Triclinic, [P \overline 1]

  • a = 6.4175 (2) Å

  • b = 9.6185 (4) Å

  • c = 25.5771 (10) Å

  • α = 96.377 (4)°

  • β = 96.295 (3)°

  • γ = 92.774 (3)°

  • V = 1556.63 (10) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.59 mm−1

  • T = 295 K

  • 0.53 × 0.17 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.643, Tmax = 1.000

  • 11625 measured reflections

  • 11625 independent reflections

  • 9926 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.162

  • S = 1.03

  • 11625 reflections

  • 430 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1Bi 0.82 2.05 2.8365 (16) 162
N1—H1A⋯O1A 0.91 1.81 2.7055 (15) 168
N1—H1A⋯O2A 0.91 2.57 3.2580 (15) 133
N2—H2A⋯O1Bi 0.91 1.86 2.7572 (15) 167
N2—H2A⋯O2Bi 0.91 2.52 3.2230 (15) 134
O4A—H4A⋯O2Aii 0.82 1.73 2.5406 (16) 167
O4B—H4B⋯O2Bi 0.82 1.74 2.5497 (16) 168
C2A—H2AA⋯O3A 0.93 2.51 2.8251 (17) 100
C2B—H2BA⋯O3B 0.93 2.50 2.8165 (17) 100
C16—H16B⋯O3Aiii 0.97 2.56 3.2782 (19) 131
C17—H17B⋯O4Aiv 0.97 2.59 3.4520 (19) 148
C19—H19A⋯O2A 0.97 2.57 3.2871 (18) 131
C19—H19B⋯O1Ai 0.97 2.41 3.2461 (17) 144
C20—H20A⋯O1v 0.97 2.44 3.3877 (18) 167
C21—H21A⋯O1B 0.97 2.41 3.2098 (16) 140
C21—H21B⋯O2Bi 0.97 2.51 3.2367 (17) 132
C22—H22B⋯O3Bvi 0.97 2.51 3.3848 (18) 150
C22—H22B⋯O4Bvi 0.97 2.55 3.4236 (18) 150
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) x, y+1, z; (iv) x+1, y+1, z; (v) -x+2, -y+1, -z+2; (vi) x, y-1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Flupentixol (systematic IUPAC name: 2-[4-[3-[(EZ)-2-(trifluoromethyl)-9H-thioxanthen-9-ylidene] propyl]piperazin-1-yl]ethanol is a typical antipsychotic drug of the thioxanthene class. In addition to pure drug preparations, it is also available as deanxit, a combination product containing both melitracen and flupentixol.The antidepressant action of flupentixol has been described (Robertson & Trimble, 1981). The crystal structures of α-flupenthixol (Post et al., 1975b), β-flupenthixol (Post et al., 1975a) and piflutixol (Jones et al., 1977) have been reported. In view of the importance of flupentixol, this paper reports the crystal structure of the title salt, (I), C23H27F3N2+OS2.2[C4H3O4-], formed by the reaction of flupentixol and fumaric acid.

The crystal studied was a non-merohedral twin, the ratio of the twin components being 0.402 (1): 0.598 (1). In (I), Fig. 1, the thiopyran ring of the 9H-thioxanthene ring system (S1/C1/C2/C7C9/C14) has a screw-boat conformation: the puckering parameters (Cremer & Pople, 1975) of QT = 0.5118 (15) Å, θ = 87.53 (19)° and ϕ = 3.2 (2) °. The dihedral angle between the two outer aromatic rings of the 9H-thioxanthene unit is 33.01 (9) °. The diprotonated piperazine ring (N1/N2/C18–C21) adopts a chair conformation with puckering parameters QT = 0.580 (13) Å, θ = 178.76 (12) ° and ϕ = 177 (7) °.

In the crystal structure, intermolecular O—H···O, N—H···O and C—H···O hydrogen bonds (Table 1) contributes to crystal packing forming the zigzag chains parallel to the [100] direction (Fig. 2).

Related literature top

The title compound was formed by the reaction of flupentixol (systematic name: 2-[4-[3-[(EZ)-2-(trifluoromethyl)-9H-thioxanthen-9-ylidene]propyl]piperazin-1-yl]ethanol and fumaric acid. For the antidepressant action of flupentixol, see: Robertson & Trimble, (1981). For related structures, see: Post et al. (1975a,b); Jones et al. (1977). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

Flupenthixol base (2.0 g, 0.046 mol) was dissolved in 10 ml of ethyl acetate and fumaric acid (1.067 g, 0.092 mol) was added at 323 K. The solution was stirred in a round bottomed flask at 343 K for 30 min. The mixture was cooled to room temperature and the product formed was filtered and dried. X-ray quality crystals were obtained from a 1:1 mixture of dichloromethane and methanol by slow evaporation (M.pt.: 431-433 K).

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.97 Å, N–H = 0.91 Å and O–H = 0.82 Å, and with Uiso(H) = 1.5Ueq(O) for hydroxyl H atoms and 1.2Ueq(C) for other H atoms. The CF3 group is disordered over two sets of sites with occupations of 0.873 (2) and 0.127 (2), respectively. The structure was refined as a non-merohedral twin (using HKLF 5 in SHELXL) with the final ratio of the twin components being 0.402 (1):0.598 (1); as such there is no value for Rint.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with the atom labeling scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level. Hydrogen bond connections between the components of the asymmetric unit are shown as dashed lines. Only the major orientation of the disordered CF3 group is shown.
[Figure 2] Fig. 2. Perspective view of the crystal packing and hydrogen bonding (dashed lines) of (I) down the b axis.
1-(2-Hydroxyethyl)-4-{3-[(E)-2-(trifluoromethyl)-9H-thioxanthen- 9-ylidene]propyl}piperazine-1,4-diium bis(3-carboxyprop-2-enoate) top
Crystal data top
C23H27F3N2OS2+·2C4H3O4Z = 2
Mr = 666.66F(000) = 696
Triclinic, P1Dx = 1.422 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 6.4175 (2) ÅCell parameters from 5369 reflections
b = 9.6185 (4) Åθ = 4.6–75.4°
c = 25.5771 (10) ŵ = 1.59 mm1
α = 96.377 (4)°T = 295 K
β = 96.295 (3)°Thick needle, colourless
γ = 92.774 (3)°0.53 × 0.17 × 0.12 mm
V = 1556.63 (10) Å3
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
11625 independent reflections
Radiation source: Enhance (Cu) X-ray Source9926 reflections with i > 2σ(i)
Graphite monochromatorRint = 0.000
Detector resolution: 10.5081 pixels mm-1θmax = 75.7°, θmin = 4.6°
ω scansh = 85
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
k = 1112
Tmin = 0.643, Tmax = 1.000l = 3131
11625 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0915P)2 + 0.2879P]
where P = (Fo2 + 2Fc2)/3
11625 reflections(Δ/σ)max = 0.001
430 parametersΔρmax = 0.47 e Å3
12 restraintsΔρmin = 0.27 e Å3
Crystal data top
C23H27F3N2OS2+·2C4H3O4γ = 92.774 (3)°
Mr = 666.66V = 1556.63 (10) Å3
Triclinic, P1Z = 2
a = 6.4175 (2) ÅCu Kα radiation
b = 9.6185 (4) ŵ = 1.59 mm1
c = 25.5771 (10) ÅT = 295 K
α = 96.377 (4)°0.53 × 0.17 × 0.12 mm
β = 96.295 (3)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
11625 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
9926 reflections with i > 2σ(i)
Tmin = 0.643, Tmax = 1.000Rint = 0.000
11625 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05512 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 1.03Δρmax = 0.47 e Å3
11625 reflectionsΔρmin = 0.27 e Å3
430 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.28261 (7)0.43649 (6)0.60072 (2)0.0659 (2)
F1A0.4612 (4)0.9150 (2)0.57634 (7)0.1255 (9)0.873 (2)
F2A0.4440 (3)0.8145 (2)0.49990 (8)0.0980 (7)0.873 (2)
F3A0.2283 (3)0.9651 (2)0.51652 (13)0.1469 (15)0.873 (2)
O11.32172 (19)0.39302 (13)0.98491 (5)0.0546 (4)
N10.66238 (16)0.39316 (11)0.79768 (4)0.0305 (3)
N20.91809 (17)0.37193 (11)0.89824 (4)0.0306 (3)
C10.1779 (2)0.48863 (17)0.64991 (6)0.0438 (4)
C20.1109 (3)0.56962 (18)0.60557 (6)0.0477 (5)
C30.2459 (3)0.66960 (18)0.58916 (7)0.0516 (5)
C40.1775 (3)0.7513 (2)0.55001 (8)0.0582 (6)
C50.0262 (3)0.7307 (2)0.52472 (8)0.0656 (7)
C60.1606 (3)0.6297 (2)0.53930 (8)0.0651 (7)
C70.0948 (3)0.55110 (19)0.58004 (7)0.0521 (5)
C80.3238 (3)0.8631 (2)0.53587 (8)0.0680 (7)
C90.1214 (3)0.3095 (2)0.62478 (7)0.0547 (5)
C100.2118 (4)0.1745 (2)0.62336 (9)0.0729 (7)
C110.0916 (4)0.0699 (2)0.64065 (10)0.0856 (9)
C120.1184 (4)0.0977 (2)0.65792 (9)0.0724 (8)
C130.2079 (3)0.23213 (19)0.66001 (7)0.0562 (6)
C140.0877 (3)0.34244 (18)0.64521 (6)0.0477 (5)
C150.3059 (2)0.54985 (16)0.69190 (6)0.0451 (5)
C160.3723 (2)0.49081 (16)0.74246 (6)0.0429 (4)
C170.6030 (2)0.45802 (15)0.74784 (5)0.0371 (4)
C180.8816 (2)0.34649 (14)0.79991 (5)0.0341 (3)
C190.9388 (2)0.27621 (13)0.84905 (5)0.0340 (4)
C200.6999 (2)0.42049 (14)0.89560 (5)0.0340 (3)
C210.6437 (2)0.49041 (13)0.84642 (5)0.0337 (4)
C220.9676 (2)0.30256 (14)0.94779 (6)0.0382 (4)
C231.1958 (3)0.27466 (16)0.95978 (6)0.0461 (5)
F3B0.268 (2)0.8830 (13)0.4868 (3)0.1469 (15)0.127 (2)
F1B0.304 (2)0.9803 (8)0.5651 (4)0.1255 (9)0.127 (2)
F2B0.5195 (10)0.8365 (13)0.5404 (5)0.0980 (7)0.127 (2)
O1A0.35437 (16)0.18909 (10)0.79446 (5)0.0436 (3)
O2A0.60481 (16)0.05328 (11)0.77149 (6)0.0524 (4)
O3A0.02774 (18)0.30289 (11)0.78941 (6)0.0588 (4)
O4A0.25463 (17)0.18840 (12)0.77479 (7)0.0663 (5)
C1A0.4234 (2)0.07131 (14)0.78390 (6)0.0364 (4)
C2A0.2834 (2)0.05762 (14)0.78550 (6)0.0385 (4)
C3A0.0781 (2)0.06083 (14)0.78089 (6)0.0383 (4)
C4A0.0509 (2)0.19431 (14)0.78216 (7)0.0422 (4)
O1B0.24341 (15)0.57369 (10)0.90547 (4)0.0412 (3)
O2B0.01770 (15)0.70858 (11)0.92034 (5)0.0456 (3)
O3B0.55830 (18)1.06667 (11)0.90607 (7)0.0639 (5)
O4B0.84275 (17)0.95113 (12)0.91559 (7)0.0623 (5)
C1B0.1684 (2)0.69183 (13)0.91202 (5)0.0337 (4)
C2B0.3074 (2)0.82060 (14)0.91032 (6)0.0391 (4)
C3B0.5119 (2)0.82417 (13)0.91468 (6)0.0362 (4)
C4B0.6382 (2)0.95740 (14)0.91189 (7)0.0424 (4)
H1A0.573800.316400.797700.0370*
H5A0.071500.784600.498100.0790*
H2A1.009300.448000.899600.0370*
H3A0.384400.681800.604700.0620*
H11.326300.452700.964500.0820*
H12A0.200200.026000.668200.0870*
H13A0.350300.249800.671400.0670*
H15A0.360100.640000.689300.0540*
H16A0.286700.405700.743900.0510*
H6A0.296100.613800.521900.0780*
H10A0.352800.154800.610800.0870*
H11A0.152800.019700.640600.1030*
H18A0.978700.426900.799800.0410*
H18B0.894400.281500.768800.0410*
H19A0.847600.192300.848000.0410*
H19B1.082200.248400.849700.0410*
H20A0.687800.486000.926600.0410*
H20B0.601400.340900.895900.0410*
H21A0.500900.519500.845800.0400*
H21B0.736500.573400.847100.0400*
H22A0.925500.361800.977600.0460*
H22B0.884500.214400.944300.0460*
H23A1.206800.200100.982400.0550*
H23B1.250100.242200.926900.0550*
H16B0.347800.557500.772100.0510*
H17A0.629400.394200.717500.0450*
H17B0.689500.543700.748200.0450*
H2AA0.347100.140900.790100.0460*
H3AA0.010800.021400.776700.0460*
H4A0.284000.107400.771800.0990*
H2BA0.243200.903800.905800.0470*
H3BA0.580200.742700.919600.0430*
H4B0.873700.871100.919800.0930*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0438 (2)0.0814 (3)0.0728 (3)0.0019 (2)0.0006 (2)0.0191 (2)
F1A0.170 (2)0.1107 (15)0.0830 (12)0.0800 (15)0.0226 (12)0.0305 (11)
F2A0.1009 (13)0.0998 (12)0.0986 (13)0.0100 (10)0.0312 (10)0.0223 (11)
F3A0.1041 (14)0.0976 (15)0.267 (4)0.0260 (11)0.0317 (17)0.126 (2)
O10.0495 (6)0.0579 (7)0.0531 (6)0.0124 (5)0.0078 (5)0.0118 (5)
N10.0287 (5)0.0269 (5)0.0353 (5)0.0042 (4)0.0045 (4)0.0035 (4)
N20.0294 (5)0.0255 (5)0.0361 (5)0.0052 (4)0.0029 (4)0.0036 (4)
C10.0413 (8)0.0470 (8)0.0442 (7)0.0051 (6)0.0033 (6)0.0112 (6)
C20.0482 (9)0.0500 (8)0.0446 (8)0.0046 (7)0.0014 (6)0.0097 (6)
C30.0498 (9)0.0530 (9)0.0525 (9)0.0025 (7)0.0012 (7)0.0155 (7)
C40.0674 (11)0.0531 (10)0.0563 (10)0.0080 (8)0.0036 (8)0.0175 (8)
C50.0748 (13)0.0643 (11)0.0585 (10)0.0112 (9)0.0086 (9)0.0239 (9)
C60.0575 (11)0.0723 (12)0.0632 (11)0.0093 (9)0.0139 (8)0.0161 (9)
C70.0477 (9)0.0575 (9)0.0508 (9)0.0049 (7)0.0001 (7)0.0096 (7)
C80.0813 (14)0.0591 (11)0.0668 (12)0.0025 (10)0.0049 (10)0.0258 (9)
C90.0535 (10)0.0628 (10)0.0470 (8)0.0071 (8)0.0020 (7)0.0115 (7)
C100.0738 (13)0.0746 (13)0.0660 (12)0.0245 (11)0.0044 (10)0.0145 (10)
C110.112 (2)0.0604 (12)0.0783 (14)0.0293 (12)0.0090 (13)0.0156 (11)
C120.0983 (17)0.0516 (10)0.0644 (12)0.0033 (10)0.0059 (11)0.0127 (9)
C130.0656 (11)0.0499 (9)0.0516 (9)0.0005 (8)0.0009 (8)0.0088 (7)
C140.0534 (9)0.0508 (9)0.0386 (7)0.0028 (7)0.0030 (6)0.0084 (6)
C150.0456 (8)0.0420 (8)0.0477 (8)0.0038 (6)0.0003 (6)0.0109 (6)
C160.0417 (8)0.0444 (8)0.0425 (7)0.0044 (6)0.0009 (6)0.0081 (6)
C170.0380 (7)0.0363 (7)0.0372 (7)0.0030 (5)0.0030 (5)0.0086 (5)
C180.0300 (6)0.0335 (6)0.0390 (6)0.0002 (5)0.0084 (5)0.0020 (5)
C190.0322 (7)0.0283 (6)0.0407 (7)0.0011 (5)0.0048 (5)0.0003 (5)
C200.0301 (6)0.0337 (6)0.0382 (6)0.0014 (5)0.0078 (5)0.0021 (5)
C210.0320 (7)0.0287 (6)0.0396 (7)0.0015 (5)0.0045 (5)0.0010 (5)
C220.0410 (8)0.0324 (6)0.0406 (7)0.0061 (5)0.0016 (5)0.0085 (5)
C230.0504 (9)0.0390 (7)0.0479 (8)0.0036 (6)0.0044 (6)0.0099 (6)
F3B0.1041 (14)0.0976 (15)0.267 (4)0.0260 (11)0.0317 (17)0.126 (2)
F1B0.170 (2)0.1107 (15)0.0830 (12)0.0800 (15)0.0226 (12)0.0305 (11)
F2B0.1009 (13)0.0998 (12)0.0986 (13)0.0100 (10)0.0312 (10)0.0223 (11)
O1A0.0335 (5)0.0286 (5)0.0689 (7)0.0024 (4)0.0080 (4)0.0069 (4)
O2A0.0296 (5)0.0373 (5)0.0908 (9)0.0036 (4)0.0150 (5)0.0038 (5)
O3A0.0432 (6)0.0316 (5)0.1042 (10)0.0014 (4)0.0123 (6)0.0179 (6)
O4A0.0322 (6)0.0350 (5)0.1307 (13)0.0056 (4)0.0127 (6)0.0059 (7)
C1A0.0283 (7)0.0299 (6)0.0501 (7)0.0038 (5)0.0012 (5)0.0071 (5)
C2A0.0328 (7)0.0274 (6)0.0561 (8)0.0006 (5)0.0046 (6)0.0101 (5)
C3A0.0327 (7)0.0264 (6)0.0558 (8)0.0015 (5)0.0062 (6)0.0055 (5)
C4A0.0343 (7)0.0295 (6)0.0630 (9)0.0034 (5)0.0104 (6)0.0046 (6)
O1B0.0353 (5)0.0274 (4)0.0616 (6)0.0028 (4)0.0073 (4)0.0085 (4)
O2B0.0287 (5)0.0359 (5)0.0730 (7)0.0039 (4)0.0117 (4)0.0066 (5)
O3B0.0389 (6)0.0322 (5)0.1227 (12)0.0019 (4)0.0075 (6)0.0216 (6)
O4B0.0291 (6)0.0342 (5)0.1242 (12)0.0051 (4)0.0110 (6)0.0134 (6)
C1B0.0293 (7)0.0292 (6)0.0423 (7)0.0045 (5)0.0024 (5)0.0076 (5)
C2B0.0318 (7)0.0266 (6)0.0599 (8)0.0007 (5)0.0047 (6)0.0113 (6)
C3B0.0301 (7)0.0260 (6)0.0522 (8)0.0024 (5)0.0029 (5)0.0071 (5)
C4B0.0305 (7)0.0296 (6)0.0671 (9)0.0037 (5)0.0051 (6)0.0087 (6)
Geometric parameters (Å, º) top
S1—C71.757 (2)C12—C131.382 (3)
S1—C91.758 (2)C13—C141.403 (3)
F1A—C81.319 (3)C15—C161.497 (2)
F1B—C81.301 (9)C16—C171.5233 (18)
F2A—C81.325 (3)C18—C191.5110 (18)
F2B—C81.289 (7)C20—C211.5088 (18)
F3A—C81.297 (3)C22—C231.506 (2)
F3B—C81.304 (8)C3—H3A0.9300
O1—C231.413 (2)C5—H5A0.9300
O1—H10.8200C6—H6A0.9300
O1A—C1A1.2488 (17)C10—H10A0.9300
O2A—C1A1.2548 (17)C11—H11A0.9300
O3A—C4A1.2055 (18)C12—H12A0.9300
O4A—C4A1.3053 (17)C13—H13A0.9300
O4A—H4A0.8200C15—H15A0.9300
O1B—C1B1.2567 (16)C16—H16B0.9700
O2B—C1B1.2507 (16)C16—H16A0.9700
O3B—C4B1.2083 (18)C17—H17A0.9700
O4B—C4B1.3105 (17)C17—H17B0.9700
O4B—H4B0.8200C18—H18B0.9700
N1—C211.4927 (16)C18—H18A0.9700
N1—C181.4944 (17)C19—H19A0.9700
N1—C171.5009 (17)C19—H19B0.9700
N2—C221.5074 (18)C20—H20B0.9700
N2—C201.4943 (17)C20—H20A0.9700
N2—C191.4965 (16)C21—H21B0.9700
N1—H1A0.9100C21—H21A0.9700
N2—H2A0.9100C22—H22B0.9700
C1—C141.482 (2)C22—H22A0.9700
C1—C151.340 (2)C23—H23A0.9700
C1—C21.483 (2)C23—H23B0.9700
C2—C71.401 (3)C1A—C2A1.5028 (19)
C2—C31.393 (3)C2A—C3A1.3084 (18)
C3—C41.387 (3)C3A—C4A1.4990 (19)
C4—C51.388 (3)C2A—H2AA0.9300
C4—C81.494 (3)C3A—H3AA0.9300
C5—C61.377 (3)C1B—C2B1.4984 (18)
C6—C71.395 (3)C2B—C3B1.3033 (18)
C9—C101.391 (3)C3B—C4B1.4956 (19)
C9—C141.394 (3)C2B—H2BA0.9300
C10—C111.379 (3)C3B—H3BA0.9300
C11—C121.375 (4)
C7—S1—C9100.77 (9)C10—C11—H11A120.00
C23—O1—H1110.00C11—C12—H12A120.00
C4A—O4A—H4A109.00C13—C12—H12A120.00
C4B—O4B—H4B109.00C14—C13—H13A119.00
C17—N1—C21112.51 (10)C12—C13—H13A119.00
C17—N1—C18111.12 (10)C1—C15—H15A116.00
C18—N1—C21108.81 (9)C16—C15—H15A116.00
C20—N2—C22109.94 (10)C15—C16—H16B109.00
C19—N2—C22112.35 (10)C17—C16—H16B109.00
C19—N2—C20109.06 (10)H16A—C16—H16B108.00
C18—N1—H1A108.00C15—C16—H16A109.00
C21—N1—H1A108.00C17—C16—H16A109.00
C17—N1—H1A108.00N1—C17—H17B109.00
C22—N2—H2A108.00N1—C17—H17A109.00
C20—N2—H2A108.00H17A—C17—H17B108.00
C19—N2—H2A109.00C16—C17—H17A109.00
C14—C1—C15123.86 (14)C16—C17—H17B109.00
C2—C1—C15120.13 (15)N1—C18—H18B109.00
C2—C1—C14115.96 (13)C19—C18—H18B109.00
C1—C2—C3121.69 (16)H18A—C18—H18B108.00
C3—C2—C7117.77 (16)C19—C18—H18A109.00
C1—C2—C7120.50 (15)N1—C18—H18A109.00
C2—C3—C4121.22 (17)N2—C19—H19B109.00
C3—C4—C5120.28 (18)C18—C19—H19B109.00
C3—C4—C8119.45 (17)H19A—C19—H19B108.00
C5—C4—C8120.27 (18)N2—C19—H19A109.00
C4—C5—C6119.44 (18)C18—C19—H19A109.00
C5—C6—C7120.41 (18)N2—C20—H20B109.00
C2—C7—C6120.82 (17)C21—C20—H20A109.00
S1—C7—C2121.38 (14)H20A—C20—H20B108.00
S1—C7—C6117.70 (15)N2—C20—H20A109.00
F1B—C8—F2B108.3 (8)C21—C20—H20B109.00
F1B—C8—F3B107.2 (7)N1—C21—H21A109.00
F2B—C8—F3B108.1 (8)C20—C21—H21B109.00
F2A—C8—F3A105.9 (2)H21A—C21—H21B108.00
F2A—C8—C4112.33 (17)C20—C21—H21A109.00
F2B—C8—C4115.3 (6)N1—C21—H21B109.00
F1B—C8—C4109.6 (5)N2—C22—H22B109.00
F1A—C8—F2A103.16 (19)C23—C22—H22A109.00
F1A—C8—F3A109.0 (2)H22A—C22—H22B108.00
F1A—C8—C4112.26 (18)C23—C22—H22B109.00
F3A—C8—C4113.45 (18)N2—C22—H22A109.00
F3B—C8—C4108.1 (6)C22—C23—H23A109.00
S1—C9—C14121.65 (14)O1—C23—H23A109.00
S1—C9—C10117.29 (16)O1—C23—H23B109.00
C10—C9—C14121.06 (18)H23A—C23—H23B108.00
C9—C10—C11119.8 (2)C22—C23—H23B109.00
C10—C11—C12120.24 (19)O2A—C1A—C2A117.17 (12)
C11—C12—C13120.02 (19)O1A—C1A—O2A123.74 (13)
C12—C13—C14121.17 (19)O1A—C1A—C2A119.10 (12)
C1—C14—C9120.51 (16)C1A—C2A—C3A124.55 (13)
C9—C14—C13117.48 (17)C2A—C3A—C4A121.36 (12)
C1—C14—C13122.01 (16)O4A—C4A—C3A116.89 (12)
C1—C15—C16127.88 (14)O3A—C4A—O4A120.88 (13)
C15—C16—C17112.50 (11)O3A—C4A—C3A122.23 (12)
N1—C17—C16111.24 (11)C1A—C2A—H2AA118.00
N1—C18—C19111.20 (10)C3A—C2A—H2AA118.00
N2—C19—C18111.35 (10)C4A—C3A—H3AA119.00
N2—C20—C21111.66 (10)C2A—C3A—H3AA119.00
N1—C21—C20110.95 (10)O1B—C1B—O2B123.45 (12)
N2—C22—C23114.20 (11)O2B—C1B—C2B117.50 (11)
O1—C23—C22113.68 (13)O1B—C1B—C2B119.05 (12)
C4—C3—H3A119.00C1B—C2B—C3B124.58 (12)
C2—C3—H3A119.00C2B—C3B—C4B120.93 (12)
C6—C5—H5A120.00O3B—C4B—C3B122.51 (12)
C4—C5—H5A120.00O4B—C4B—C3B116.97 (12)
C7—C6—H6A120.00O3B—C4B—O4B120.52 (13)
C5—C6—H6A120.00C1B—C2B—H2BA118.00
C9—C10—H10A120.00C3B—C2B—H2BA118.00
C11—C10—H10A120.00C2B—C3B—H3BA120.00
C12—C11—H11A120.00C4B—C3B—H3BA120.00
C9—S1—C7—C230.94 (17)C3—C4—C8—F1A29.5 (3)
C9—S1—C7—C6152.85 (15)C3—C4—C8—F2A86.2 (2)
C7—S1—C9—C10152.63 (16)C3—C4—C8—F3A153.7 (2)
C7—S1—C9—C1428.28 (17)C5—C4—C8—F1A149.5 (2)
C18—N1—C17—C16173.66 (11)C5—C4—C8—F2A94.8 (2)
C21—N1—C17—C1664.06 (14)C5—C4—C8—F3A25.4 (3)
C17—N1—C18—C19177.84 (10)C4—C5—C6—C71.7 (3)
C21—N1—C18—C1957.75 (13)C5—C6—C7—S1173.90 (15)
C17—N1—C21—C20178.72 (10)C5—C6—C7—C22.3 (3)
C18—N1—C21—C2057.70 (13)S1—C9—C10—C11178.60 (18)
C20—N2—C19—C1855.99 (13)C14—C9—C10—C112.3 (3)
C22—N2—C19—C18178.15 (10)S1—C9—C14—C13.3 (2)
C19—N2—C20—C2156.27 (13)S1—C9—C14—C13175.63 (13)
C22—N2—C20—C21179.87 (11)C10—C9—C14—C1175.76 (17)
C19—N2—C22—C2369.51 (14)C10—C9—C14—C135.3 (3)
C20—N2—C22—C23168.83 (11)C9—C10—C11—C121.8 (4)
C14—C1—C2—C3146.11 (16)C10—C11—C12—C132.6 (4)
C14—C1—C2—C736.3 (2)C11—C12—C13—C140.6 (3)
C15—C1—C2—C336.4 (2)C12—C13—C14—C1176.62 (17)
C15—C1—C2—C7141.17 (16)C12—C13—C14—C94.5 (3)
C2—C1—C14—C939.3 (2)C1—C15—C16—C17110.09 (16)
C2—C1—C14—C13139.62 (16)C15—C16—C17—N1177.47 (12)
C15—C1—C14—C9138.10 (16)N1—C18—C19—N258.15 (14)
C15—C1—C14—C1343.0 (2)N2—C20—C21—N158.42 (13)
C2—C1—C15—C16173.11 (14)N2—C22—C23—O181.02 (15)
C14—C1—C15—C164.1 (2)O1A—C1A—C2A—C3A22.3 (2)
C1—C2—C3—C4175.68 (17)O2A—C1A—C2A—C3A157.25 (16)
C7—C2—C3—C42.0 (3)C1A—C2A—C3A—C4A179.16 (14)
C1—C2—C7—S12.1 (2)C2A—C3A—C4A—O3A2.8 (3)
C1—C2—C7—C6178.20 (16)C2A—C3A—C4A—O4A176.90 (16)
C3—C2—C7—S1175.58 (14)O1B—C1B—C2B—C3B16.6 (2)
C3—C2—C7—C60.5 (3)O2B—C1B—C2B—C3B162.92 (15)
C2—C3—C4—C52.7 (3)C1B—C2B—C3B—C4B179.28 (14)
C2—C3—C4—C8176.38 (17)C2B—C3B—C4B—O3B0.7 (3)
C3—C4—C5—C60.8 (3)C2B—C3B—C4B—O4B178.69 (16)
C8—C4—C5—C6178.23 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1Bi0.822.052.8365 (16)162
N1—H1A···O1A0.911.812.7055 (15)168
N1—H1A···O2A0.912.573.2580 (15)133
N2—H2A···O1Bi0.911.862.7572 (15)167
N2—H2A···O2Bi0.912.523.2230 (15)134
O4A—H4A···O2Aii0.821.732.5406 (16)167
O4B—H4B···O2Bi0.821.742.5497 (16)168
C2A—H2AA···O3A0.932.512.8251 (17)100
C2B—H2BA···O3B0.932.502.8165 (17)100
C16—H16B···O3Aiii0.972.563.2782 (19)131
C17—H17B···O4Aiv0.972.593.4520 (19)148
C19—H19A···O2A0.972.573.2871 (18)131
C19—H19B···O1Ai0.972.413.2461 (17)144
C20—H20A···O1v0.972.443.3877 (18)167
C21—H21A···O1B0.972.413.2098 (16)140
C21—H21B···O2Bi0.972.513.2367 (17)132
C22—H22B···O3Bvi0.972.513.3848 (18)150
C22—H22B···O4Bvi0.972.553.4236 (18)150
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x, y+1, z; (iv) x+1, y+1, z; (v) x+2, y+1, z+2; (vi) x, y1, z.

Experimental details

Crystal data
Chemical formulaC23H27F3N2OS2+·2C4H3O4
Mr666.66
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)6.4175 (2), 9.6185 (4), 25.5771 (10)
α, β, γ (°)96.377 (4), 96.295 (3), 92.774 (3)
V3)1556.63 (10)
Z2
Radiation typeCu Kα
µ (mm1)1.59
Crystal size (mm)0.53 × 0.17 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
Tmin, Tmax0.643, 1.000
No. of measured, independent and
observed [i > 2σ(i)] reflections
11625, 11625, 9926
Rint0.000
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.162, 1.03
No. of reflections11625
No. of parameters430
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.27

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1Bi0.822.052.8365 (16)162
N1—H1A···O1A0.911.812.7055 (15)168
N1—H1A···O2A0.912.573.2580 (15)133
N2—H2A···O1Bi0.911.862.7572 (15)167
N2—H2A···O2Bi0.912.523.2230 (15)134
O4A—H4A···O2Aii0.821.732.5406 (16)167
O4B—H4B···O2Bi0.821.742.5497 (16)168
C2A—H2AA···O3A0.932.512.8251 (17)100
C2B—H2BA···O3B0.932.502.8165 (17)100
C16—H16B···O3Aiii0.972.563.2782 (19)131
C17—H17B···O4Aiv0.972.593.4520 (19)148
C19—H19A···O2A0.972.573.2871 (18)131
C19—H19B···O1Ai0.972.413.2461 (17)144
C20—H20A···O1v0.972.443.3877 (18)167
C21—H21A···O1B0.972.413.2098 (16)140
C21—H21B···O2Bi0.972.513.2367 (17)132
C22—H22B···O3Bvi0.972.513.3848 (18)150
C22—H22B···O4Bvi0.972.553.4236 (18)150
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x, y+1, z; (iv) x+1, y+1, z; (v) x+2, y+1, z+2; (vi) x, y1, z.
 

Acknowledgements

MSS thanks the University of Mysore for the research facilities. RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer.

References

First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJones, P. G., Kennard, O. & Horn, A. S. (1977). Acta Cryst. B33, 3744–3747.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPost, M. L., Kennard, O. & Horn, A. S. (1975a). Acta Cryst. B31, 2724–2726.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPost, M. L., Kennard, O., Sheldrick, G. M. & Horn, A. S. (1975b). Acta Cryst. B31, 2366–2368.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationRobertson, M. M. & Trimble, M. R. (1981). Practitioner, 225, 761–763.  CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2017-o2018
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds