metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{N′-[(E)-1-(5-Bromo-2-oxidophen­yl)ethyl­­idene-κO]-4-methyl­benzohydrazidato-κ2N′,O}(pyridine-κN)nickel(II)

aCollege of Environment and Chemical Engineering, Xi'an Polytechnic University, 710048 Xi'an, Shaanxi, People's Republic of China
*Correspondence e-mail: wllily315668256@yahoo.com.cn

(Received 14 July 2011; accepted 19 July 2011; online 23 July 2011)

The central NiII atom in the title complex, [Ni(C16H13BrN2O2)(C5H5N)], is in a square-planar trans-N2O2 environment defined by the NO2 donor atoms of the tridentate hydrazone ligand and the monodentate pyridine ligand. The pyridine mol­ecule forms a dihedral angle of 9.99 (11)° with the least-squares plane through the NiN2O2 atoms.

Related literature

For the biological and coordination properties of aroylhydra­zones, see: Ali et al. (2004[Ali, H. M., Khamis, N. A. & Yamin, B. M. (2004). Acta Cryst. E60, m1708-m1709.]); Carcelli et al. (1995[Carcelli, M., Mazza, P., Pelizzi, G. & Zani, F. (1995). J. Inorg. Biochem. 57, 43-62.]); Cheng et al. (1996[Cheng, P., Liao, D.-Z., Yan, S.-P., Jiang, Z.-H., Wang, G.-L., Yao, X.-K. & Wang, H.-G. (1996). Inorg. Chim. Acta, 248, 135-137.]); Desai et al. (2001[Desai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83-90.]); El-Masry et al. (2000[El-Masry, A. H., Fahmy, H. H. & Abdelwahed, S. H. A. (2000). Molecules, 5, 1429-1438.]); Singh & Dash (1988[Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33-37.]); Zheng et al. (2008[Zheng, C.-Z., Ji, C.-Y., Chang, X.-L. & Zhang, L. (2008). Acta Cryst. E64, o2487.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C16H13BrN2O2)(C5H5N)]

  • Mr = 483.00

  • Monoclinic, C 2/c

  • a = 32.376 (18) Å

  • b = 6.145 (4) Å

  • c = 22.752 (13) Å

  • β = 122.063 (8)°

  • V = 3836 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.12 mm−1

  • T = 298 K

  • 0.21 × 0.16 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.561, Tmax = 0.706

  • 9451 measured reflections

  • 3403 independent reflections

  • 2415 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.093

  • S = 1.03

  • 3403 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O1 1.794 (3)
Ni1—O2 1.826 (3)
Ni1—N2 1.835 (3)
Ni1—N3 1.941 (3)

Data collection: SMART (Bruker, 1996[Bruker (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1996[Bruker (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazones are an important class of Schiff bases compounds which has attracted much attention because of their biological activities (Carcelli et al., 1995) such as antimicrobial, antifungal, antitumor and as herbicides (El-Masry et al., 2000; Singh & Dash, 1988; Desai et al., 2001), and strong tendency to chelate to transition metals (Ali et al., 2004; Cheng et al., 1996). As an extension of our work on the structural characterization of aroylhydrazone derivatives (Zheng et al., 2008), the title compound was synthesized and its crystal structure is reported here.

The coordination polyhedron about the nickel ion in the title complex is essentially planar, Fig. 1. The coordination environment of nickel is comprised of one pyridine ligand and one hydrazone ligand (two O atoms, one N atom) so that the central nickel atom is four-coordinated, Table 1.

Related literature top

For the biological and coordination properties of aroylhydrazones, see: Ali et al. (2004); Carcelli et al. (1995); Cheng et al. (1996); Desai et al. (2001); El-Masry et al. (2000); Singh & Dash (1988); Zheng et al. (2008).

Experimental top

p-Methyl ethylbenzoate (8.21 g, 0.05 mol) was dissolved in ethanol (50 ml) at room temperature and heated at 363 K, followed by the addition of hydrazine hydrate (3.00 g, 0.060 mol). Subsequently, the mixture was refluxed for 10 h, and then cooled to room temperature. The crystals were precipitated and collected by filtration. The product was recrystallized from ethanol and dried under reduced pressure to give 4-methylbenzohydrazide.

4-methylbenzohydrazide (3.75 g, 0.025 mol) was dissolved in ethanol (50 ml) at room temperature and heated at 363 K, followed by the addition of 5-bromo-2-hydroxyphenyl ethyl ketone (5.38 g, 0.025 mol). Subsequently, the mixture was refluxed for 9 h, and then cooled to room temperature. The crystals were precipitated and collected by filtration. The product was recrystallized from ethanol and dried under reduced pressure to give compound N'- [(E)-(5-Bromo-2-hydroxyphenyl)-(methyl)methylene]-4-methylbenzohydrazide.

A mixture of N'-[(E)-(5-Bromo-2-hydroxyphenyl)-(methyl)methylene] -4-methylbenzohydrazide (0.035 g, 0.10 mmol), NiCl2.6H2O (0.024 g, 0.10 mmol), pyridine (0.0079 g, 0.10 mmol), and H2O (5.00 ml), several drops of acetone was placed in a Parr Teflon-lined stainless steel vessel (25 ml). The vessel was sealed and heated at 393 K for 3 d. After the mixture was slowly cooled to room temperature, red crystals were obtained (yield 41%).

Refinement top

All H atoms were positioned geometrically and treated as riding on their parent atoms,with C—H(methyl) = 0.96 Å, C—H(aromatic) = 0.93 Å, and with Uiso(H) =1.5Ueq(Cmethyl) and 1.2Ueq(Caromatic).

Computing details top

Data collection: SMART (Bruker 1996); cell refinement: SAINT (Bruker 1996); data reduction: SAINT (Bruker 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
{N'-[(E)-1-(5-Bromo-2-oxidophenyl)ethylidene-κO]-4- methylbenzohydrazidato-κ2N',O}(pyridine-κN)nickel(II) top
Crystal data top
[Ni(C16H13BrN2O2)(C5H5N)]F(000) = 1952
Mr = 483.00Dx = 1.673 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2511 reflections
a = 32.376 (18) Åθ = 3.2–23.3°
b = 6.145 (4) ŵ = 3.12 mm1
c = 22.752 (13) ÅT = 298 K
β = 122.063 (8)°Block, red
V = 3836 (4) Å30.21 × 0.16 × 0.12 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
3403 independent reflections
Radiation source: fine-focus sealed tube2415 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 25.1°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3138
Tmin = 0.561, Tmax = 0.706k = 67
9451 measured reflectionsl = 2726
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0398P)2 + 0.067P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3403 reflectionsΔρmax = 0.40 e Å3
253 parametersΔρmin = 0.38 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0113 (15)
Crystal data top
[Ni(C16H13BrN2O2)(C5H5N)]V = 3836 (4) Å3
Mr = 483.00Z = 8
Monoclinic, C2/cMo Kα radiation
a = 32.376 (18) ŵ = 3.12 mm1
b = 6.145 (4) ÅT = 298 K
c = 22.752 (13) Å0.21 × 0.16 × 0.12 mm
β = 122.063 (8)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3403 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2415 reflections with I > 2σ(I)
Tmin = 0.561, Tmax = 0.706Rint = 0.044
9451 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.03Δρmax = 0.40 e Å3
3403 reflectionsΔρmin = 0.38 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.039679 (16)0.25481 (7)0.15523 (2)0.04140 (15)
Br10.214719 (15)0.57208 (8)0.01235 (2)0.07427 (19)
O10.01744 (9)0.1671 (4)0.14220 (12)0.0521 (6)
O20.09732 (8)0.3432 (4)0.16657 (11)0.0461 (6)
N10.04942 (11)0.6167 (5)0.09492 (13)0.0453 (7)
N20.01454 (11)0.4946 (4)0.09898 (13)0.0418 (7)
N30.07198 (11)0.0131 (5)0.21834 (14)0.0447 (7)
C10.25839 (16)0.9041 (8)0.1443 (2)0.0827 (14)
H1A0.28390.79780.16050.124*
H1B0.27001.02770.17480.124*
H1C0.24860.94930.09830.124*
C20.21573 (15)0.8065 (7)0.14342 (18)0.0559 (10)
C30.21831 (14)0.6056 (7)0.17226 (19)0.0601 (11)
H30.24770.53060.19470.072*
C40.17830 (14)0.5144 (6)0.16844 (18)0.0534 (10)
H40.18100.37740.18750.064*
C50.13426 (13)0.6209 (6)0.13698 (17)0.0439 (9)
C60.13174 (15)0.8249 (7)0.1090 (2)0.0594 (10)
H60.10260.90180.08760.071*
C70.17177 (16)0.9138 (7)0.1127 (2)0.0647 (11)
H70.16921.05100.09380.078*
C80.09144 (13)0.5231 (6)0.13248 (17)0.0424 (9)
C90.03004 (13)0.5689 (5)0.06399 (16)0.0425 (8)
C100.04099 (14)0.7722 (6)0.02212 (18)0.0537 (10)
H10A0.04670.88950.04480.081*
H10B0.06950.75010.02320.081*
H10C0.01380.80750.01790.081*
C110.06813 (12)0.4555 (6)0.06651 (16)0.0405 (8)
C120.06026 (13)0.2605 (6)0.10355 (17)0.0440 (9)
C130.09983 (14)0.1556 (7)0.09951 (19)0.0545 (10)
H130.09480.02290.12200.065*
C140.14580 (15)0.2406 (7)0.0637 (2)0.0570 (10)
H140.17180.16760.06140.068*
C150.15255 (14)0.4378 (7)0.03092 (17)0.0517 (10)
C160.11546 (14)0.5416 (6)0.03128 (17)0.0479 (9)
H160.12150.67280.00770.058*
C170.04736 (15)0.1465 (6)0.22590 (18)0.0509 (9)
H170.01350.14010.20070.061*
C180.07017 (17)0.3209 (7)0.26964 (19)0.0587 (11)
H180.05180.43010.27330.070*
C190.11926 (17)0.3323 (7)0.30699 (19)0.0645 (12)
H190.13510.44940.33640.077*
C200.14525 (17)0.1681 (8)0.3008 (2)0.0700 (12)
H200.17910.17070.32640.084*
C210.12057 (15)0.0002 (7)0.2563 (2)0.0626 (11)
H210.13850.11050.25230.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0472 (3)0.0340 (3)0.0408 (3)0.0066 (2)0.0218 (2)0.0065 (2)
Br10.0558 (3)0.0908 (4)0.0771 (3)0.0253 (2)0.0359 (2)0.0117 (3)
O10.0495 (15)0.0417 (15)0.0595 (15)0.0057 (13)0.0252 (13)0.0160 (12)
O20.0519 (15)0.0379 (14)0.0463 (13)0.0045 (12)0.0246 (12)0.0109 (12)
N10.0529 (19)0.0368 (19)0.0454 (16)0.0034 (15)0.0256 (15)0.0046 (14)
N20.0534 (19)0.0298 (16)0.0438 (16)0.0051 (14)0.0269 (14)0.0033 (13)
N30.0533 (19)0.0390 (19)0.0411 (16)0.0073 (15)0.0246 (15)0.0047 (13)
C10.069 (3)0.094 (4)0.083 (3)0.022 (3)0.040 (3)0.006 (3)
C20.058 (3)0.059 (3)0.046 (2)0.012 (2)0.025 (2)0.0014 (19)
C30.050 (2)0.066 (3)0.062 (2)0.003 (2)0.028 (2)0.010 (2)
C40.060 (3)0.045 (2)0.059 (2)0.005 (2)0.034 (2)0.0097 (19)
C50.054 (2)0.037 (2)0.0426 (19)0.0020 (18)0.0266 (18)0.0007 (16)
C60.060 (3)0.049 (2)0.067 (3)0.006 (2)0.032 (2)0.013 (2)
C70.075 (3)0.046 (3)0.075 (3)0.006 (2)0.041 (2)0.013 (2)
C80.054 (2)0.034 (2)0.0400 (19)0.0012 (18)0.0247 (17)0.0000 (16)
C90.055 (2)0.032 (2)0.0396 (18)0.0096 (18)0.0239 (17)0.0006 (16)
C100.062 (3)0.041 (2)0.053 (2)0.0079 (19)0.028 (2)0.0117 (18)
C110.045 (2)0.038 (2)0.0388 (18)0.0073 (17)0.0231 (16)0.0006 (16)
C120.046 (2)0.043 (2)0.0408 (19)0.0072 (18)0.0215 (17)0.0007 (17)
C130.056 (2)0.049 (2)0.065 (2)0.006 (2)0.036 (2)0.010 (2)
C140.058 (3)0.059 (3)0.064 (2)0.002 (2)0.040 (2)0.001 (2)
C150.053 (2)0.061 (3)0.045 (2)0.012 (2)0.0281 (18)0.0001 (19)
C160.055 (2)0.044 (2)0.045 (2)0.0145 (19)0.0264 (18)0.0059 (17)
C170.061 (2)0.039 (2)0.050 (2)0.005 (2)0.0271 (19)0.0058 (18)
C180.085 (3)0.042 (2)0.054 (2)0.006 (2)0.041 (2)0.0081 (19)
C190.090 (3)0.054 (3)0.053 (2)0.029 (3)0.040 (3)0.016 (2)
C200.067 (3)0.069 (3)0.073 (3)0.029 (3)0.036 (2)0.030 (2)
C210.059 (3)0.063 (3)0.069 (3)0.016 (2)0.036 (2)0.024 (2)
Geometric parameters (Å, º) top
Ni1—O11.794 (3)C6—H60.9300
Ni1—O21.826 (3)C7—H70.9300
Ni1—N21.835 (3)C9—C111.444 (5)
Ni1—N31.941 (3)C9—C101.495 (5)
Br1—C151.897 (4)C10—H10A0.9600
O1—C121.315 (4)C10—H10B0.9600
O2—C81.305 (4)C10—H10C0.9600
N1—C81.295 (4)C11—C161.402 (5)
N1—N21.399 (4)C11—C121.408 (5)
N2—C91.306 (4)C12—C131.393 (5)
N3—C171.331 (5)C13—C141.365 (5)
N3—C211.336 (5)C13—H130.9300
C1—C21.496 (5)C14—C151.378 (5)
C1—H1A0.9600C14—H140.9300
C1—H1B0.9600C15—C161.356 (5)
C1—H1C0.9600C16—H160.9300
C2—C71.376 (6)C17—C181.380 (5)
C2—C31.380 (5)C17—H170.9300
C3—C41.371 (5)C18—C191.349 (6)
C3—H30.9300C18—H180.9300
C4—C51.375 (5)C19—C201.368 (6)
C4—H40.9300C19—H190.9300
C5—C61.388 (5)C20—C211.367 (5)
C5—C81.464 (5)C20—H200.9300
C6—C71.368 (5)C21—H210.9300
O1—Ni1—O2178.81 (10)N2—C9—C11119.9 (3)
O1—Ni1—N295.14 (12)N2—C9—C10119.5 (3)
O2—Ni1—N284.33 (12)C11—C9—C10120.7 (3)
O1—Ni1—N389.75 (12)C9—C10—H10A109.5
O2—Ni1—N390.82 (12)C9—C10—H10B109.5
N2—Ni1—N3174.87 (13)H10A—C10—H10B109.5
C12—O1—Ni1127.4 (2)C9—C10—H10C109.5
C8—O2—Ni1110.6 (2)H10A—C10—H10C109.5
C8—N1—N2108.7 (3)H10B—C10—H10C109.5
C9—N2—N1116.2 (3)C16—C11—C12117.3 (3)
C9—N2—Ni1130.1 (3)C16—C11—C9119.5 (3)
N1—N2—Ni1113.7 (2)C12—C11—C9123.2 (3)
C17—N3—C21116.8 (3)O1—C12—C13116.6 (3)
C17—N3—Ni1122.3 (3)O1—C12—C11124.3 (3)
C21—N3—Ni1120.8 (3)C13—C12—C11119.1 (3)
C2—C1—H1A109.5C14—C13—C12122.3 (4)
C2—C1—H1B109.5C14—C13—H13118.8
H1A—C1—H1B109.5C12—C13—H13118.8
C2—C1—H1C109.5C13—C14—C15118.0 (4)
H1A—C1—H1C109.5C13—C14—H14121.0
H1B—C1—H1C109.5C15—C14—H14121.0
C7—C2—C3117.1 (4)C16—C15—C14121.6 (4)
C7—C2—C1120.9 (4)C16—C15—Br1119.4 (3)
C3—C2—C1122.0 (4)C14—C15—Br1118.9 (3)
C4—C3—C2121.3 (4)C15—C16—C11121.4 (4)
C4—C3—H3119.4C15—C16—H16119.3
C2—C3—H3119.4C11—C16—H16119.3
C3—C4—C5121.5 (4)N3—C17—C18122.5 (4)
C3—C4—H4119.3N3—C17—H17118.7
C5—C4—H4119.3C18—C17—H17118.7
C4—C5—C6117.4 (3)C19—C18—C17119.6 (4)
C4—C5—C8121.5 (3)C19—C18—H18120.2
C6—C5—C8121.0 (3)C17—C18—H18120.2
C7—C6—C5120.6 (4)C18—C19—C20118.7 (4)
C7—C6—H6119.7C18—C19—H19120.6
C5—C6—H6119.7C20—C19—H19120.6
C6—C7—C2122.1 (4)C21—C20—C19118.9 (4)
C6—C7—H7119.0C21—C20—H20120.6
C2—C7—H7119.0C19—C20—H20120.6
N1—C8—O2122.6 (3)N3—C21—C20123.4 (4)
N1—C8—C5119.2 (3)N3—C21—H21118.3
O2—C8—C5118.2 (3)C20—C21—H21118.3
N2—Ni1—O1—C120.0 (3)N1—N2—C9—C11178.7 (3)
N3—Ni1—O1—C12178.4 (3)Ni1—N2—C9—C110.2 (5)
N2—Ni1—O2—C81.6 (2)N1—N2—C9—C100.8 (4)
N3—Ni1—O2—C8176.7 (2)Ni1—N2—C9—C10179.3 (2)
C8—N1—N2—C9179.6 (3)N2—C9—C11—C16177.2 (3)
C8—N1—N2—Ni10.9 (3)C10—C9—C11—C162.3 (5)
O1—Ni1—N2—C91.2 (3)N2—C9—C11—C122.2 (5)
O2—Ni1—N2—C9179.9 (3)C10—C9—C11—C12178.3 (3)
O1—Ni1—N2—N1179.6 (2)Ni1—O1—C12—C13177.4 (2)
O2—Ni1—N2—N11.4 (2)Ni1—O1—C12—C112.2 (5)
O1—Ni1—N3—C179.5 (3)C16—C11—C12—O1175.9 (3)
O2—Ni1—N3—C17169.5 (3)C9—C11—C12—O13.5 (5)
O1—Ni1—N3—C21170.7 (3)C16—C11—C12—C134.5 (5)
O2—Ni1—N3—C2110.3 (3)C9—C11—C12—C13176.1 (3)
C7—C2—C3—C42.0 (6)O1—C12—C13—C14177.0 (3)
C1—C2—C3—C4177.2 (4)C11—C12—C13—C143.4 (5)
C2—C3—C4—C51.3 (6)C12—C13—C14—C150.3 (6)
C3—C4—C5—C60.1 (5)C13—C14—C15—C162.9 (5)
C3—C4—C5—C8179.6 (3)C13—C14—C15—Br1174.5 (3)
C4—C5—C6—C70.4 (5)C14—C15—C16—C111.6 (5)
C8—C5—C6—C7179.2 (3)Br1—C15—C16—C11175.8 (2)
C5—C6—C7—C20.4 (6)C12—C11—C16—C152.1 (5)
C3—C2—C7—C61.5 (6)C9—C11—C16—C15178.4 (3)
C1—C2—C7—C6177.7 (4)C21—N3—C17—C181.2 (5)
N2—N1—C8—O20.6 (4)Ni1—N3—C17—C18178.6 (3)
N2—N1—C8—C5179.8 (3)N3—C17—C18—C190.5 (6)
Ni1—O2—C8—N11.7 (4)C17—C18—C19—C200.6 (6)
Ni1—O2—C8—C5178.6 (2)C18—C19—C20—C210.9 (6)
C4—C5—C8—N1171.3 (3)C17—N3—C21—C200.8 (6)
C6—C5—C8—N18.2 (5)Ni1—N3—C21—C20179.0 (3)
C4—C5—C8—O28.3 (5)C19—C20—C21—N30.2 (7)
C6—C5—C8—O2172.2 (3)

Experimental details

Crystal data
Chemical formula[Ni(C16H13BrN2O2)(C5H5N)]
Mr483.00
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)32.376 (18), 6.145 (4), 22.752 (13)
β (°) 122.063 (8)
V3)3836 (4)
Z8
Radiation typeMo Kα
µ (mm1)3.12
Crystal size (mm)0.21 × 0.16 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.561, 0.706
No. of measured, independent and
observed [I > 2σ(I)] reflections
9451, 3403, 2415
Rint0.044
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.093, 1.03
No. of reflections3403
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.38

Computer programs: SMART (Bruker 1996), SAINT (Bruker 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—O11.794 (3)Ni1—N21.835 (3)
Ni1—O21.826 (3)Ni1—N31.941 (3)
 

Acknowledgements

The authors thank the National Natural Science Foundation of Shaanxi Province, China, for financial support (2009JM2012).

References

First citationAli, H. M., Khamis, N. A. & Yamin, B. M. (2004). Acta Cryst. E60, m1708–m1709.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarcelli, M., Mazza, P., Pelizzi, G. & Zani, F. (1995). J. Inorg. Biochem. 57, 43–62.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCheng, P., Liao, D.-Z., Yan, S.-P., Jiang, Z.-H., Wang, G.-L., Yao, X.-K. & Wang, H.-G. (1996). Inorg. Chim. Acta, 248, 135–137.  CSD CrossRef CAS Web of Science Google Scholar
First citationDesai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83–90.  CrossRef CAS Google Scholar
First citationEl-Masry, A. H., Fahmy, H. H. & Abdelwahed, S. H. A. (2000). Molecules, 5, 1429–1438.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37.  Google Scholar
First citationZheng, C.-Z., Ji, C.-Y., Chang, X.-L. & Zhang, L. (2008). Acta Cryst. E64, o2487.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds