organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Nitro-2,3-di­hydro-1H-pyrrolo­[2,1-c][1,4]benzodiazepine-5,11(10H,11aH)-dione

aLaboratoire de Chimie Biorganique & Analytique, URAC 22, Université Hassan II, Mohammedia-Casablanca, BP 146, 20800 Mohammedia, Morocco, bLaboratoires de Diffraction des Rayons X, Centre National pour la Recherche Scientifique et Technique, Rabat, Morocco, and cLaboratoire de Biochimie, Environnement & Agroalimentaire, URAC 36, Université Hassan II, Mohammedia-Casablanca, BP 146, 20800 Mohammedia, Morocco
*Correspondence e-mail: a_elhakmaoui@yahoo.fr

(Received 10 June 2011; accepted 22 June 2011; online 9 July 2011)

In the two mol­ecules of the asymmetric unit of the title compound, C12H11N3O4, the seven-membered diazepine ring adopts a boat conformation (with the two phenyl­ene C atoms representing the stern and the methine C atom the prow). The five-membered pyrrole ring, which has an envelope conformation, makes dihedral angles of 60.47 (10) and 54.69 (9)° with the benzene ring of the benzodiazepine unit in the two mol­ecules. In the crystal, inter­molecular N—H⋯O hydrogen bonds and ππ stacking inter­actions [centroid–centroid distance = 3.8023 (7)–3.8946 (7) Å] lead to the formation of a three-dimensional framework.

Related literature

For the biological activity of pyrrolo­[2,1-c][1,4]benzodiazepine derivatives, see: Dervan (1986[Dervan, P. B. (1986). Science 232, 464-471.]); Leimgruber et al. (1975[Leimgruber, W., Stefanovic, V., Schenker, F., Karr, A. & Berger, J. (1975). J. Am. Chem. Soc. 87, 5791-5793.]); Da Settimo et al. (2007[Da Settimo, F., Taliani, S., Trincavelli, M. L., Montali, M. & Martini, C. (2007). Curr. Med. Chem. 14, 2680-???.]); Herpin et al. (2000[Herpin, T. F., Van Kirk, K. G., Salvino, J. M., Yu, S. T. & Labaudiniere, R. F. (2000). J. Comb. Chem. 2, 513-521.]); Arima et al. (1983[Arima, K., Kohsaka, M., Tamura, J., Imanaka, H. & Sakai, H. (1983). J. Antibiot. 25, 437-444.]).

[Scheme 1]

Experimental

Crystal data
  • C12H11N3O4

  • Mr = 261.24

  • Monoclinic, P 21

  • a = 10.7364 (2) Å

  • b = 6.8925 (1) Å

  • c = 16.3901 (3) Å

  • β = 101.870 (1)°

  • V = 1186.94 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.23 × 0.20 × 0.15 mm

Data collection
  • Bruker APEXII CCD detector diffractometer

  • 14768 measured reflections

  • 2543 independent reflections

  • 2452 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.080

  • S = 1.04

  • 2543 reflections

  • 351 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N10—H10N⋯O11i 0.85 (3) 1.98 (3) 2.821 (2) 169 (3)
N20—H20N⋯O22ii 0.84 (3) 2.15 (3) 2.980 (2) 169 (2)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) x, y, z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Benzodiazepines form a well known and widely applied class of biologically active compounds (Da Settimo et al., 2007) and are representatives of the family of privileged structures (Herpin et al., 2000). In the area of molecular recognition considerable efforts have been devoted to the synthesis of pyrrolo[2,1 c][1,4]benzodiazepines (PBDs) that can recognize and bind to specific sequences of DNA. They are potential regulators of gene expression with possible application as therapeutic agents in the treatment of genetic disorders including cancer. Furthermore, they can be used as affinity-cleavage reagents in molecular biology (Dervan, 1986). The PBD ring system is also found in natural antitumor antibiotics from Streptomyces species such as Anthramycin (Leimgruber et al., 1975), Tomaymycine (Arima et al., 1983).

The compound, C24H22N6O8, crystallizes with two reasonably similar molecules in the asymmetric unit (Fig. 1, r.m.s. deviation of 0.1051 Å for 19 non-H atoms fitted). The nitro and benzene systems are inclined at dihedral angles of 30.0 (3) and 41.0 (3)° in the first and second molecule of the asymetric unit, respectively. The seven-membered diazepine ring adopts a boat conformation (with the two phenylene C atoms representing the stern and the methine C atom the prow). The five-membered pyrrolo ring, which has an envelope conformation, makes dihedral angles of 60.47 (10)° and 54.69 (9)° with the benzene ring of the benzodiazepine in the two independent molecules of the unit.

In the crystal structure, intermolecular N—H···O hydrogen bonds (Fig. 2, Table 1) and ππ stacking interactions (centroid-centroid distance = 3.8023 (7) Å to 3.8946 (7) Å) lead to the formation of a three-dimensional framework.

Related literature top

For the biological activity of pyrrolo[2,1-c][1,4]benzodiazepine derivatives, see: Dervan (1986); Leimgruber et al. (1975); Da Settimo et al. (2007); Herpin et al. (2000); Arima et al. (1983).

Experimental top

5-Nitro-1H-benzo[d][1,3]oxazine-2,4-dione (0.5 g, 2.5 mmol) and L-proline (0.29 g, 2.5 mmol) were dissolved in DMF (10 ml) and were then heated under reflux for 3 h. After cooling, the solvent was removed under reduced pressure to yield an oily residue; the residue was then purified over silica gel column chromatography using a mixture of hexane and ethyl acetate (3:1) as eluent. Under these conditions the compound was obtained as colourless crystals.

Refinement top

The H atoms bound to C were treated as riding with their parent atoms [C—H distances are 0.93Å for CH groups with Uiso(H) = 1.2 Ueq(C), and 0.97 Å for CH3 groups with Uiso(H) = 1.5 Ueq(C)]. The nitrogen-bound H atoms were located in a difference Fourier map, and were refined with distance restraints of N–H 0.88±0.01. 2133 Friedel pairs were merged.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view showing the chain formed by N—H···O hydrogen bonds. H atoms not involved in hydrogen bonds have been omitted for clarity.
6-Nitro-2,3-dihydro-1H-pyrrolo[2,1-c][1,4]benzodiazepine- 5,11(10H,11aH)-dione top
Crystal data top
C12H11N3O4F(000) = 544
Mr = 261.24Dx = 1.462 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 246 reflections
a = 10.7364 (2) Åθ = 2.4–26.3°
b = 6.8925 (1) ŵ = 0.11 mm1
c = 16.3901 (3) ÅT = 296 K
β = 101.870 (1)°Prism, colourless
V = 1186.94 (4) Å30.23 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD detector
diffractometer
2452 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 26.0°, θmin = 2.5°
ω and ϕ scansh = 1313
14768 measured reflectionsk = 88
2543 independent reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0518P)2 + 0.1616P]
where P = (Fo2 + 2Fc2)/3
2543 reflections(Δ/σ)max < 0.001
351 parametersΔρmax = 0.17 e Å3
1 restraintΔρmin = 0.16 e Å3
Crystal data top
C12H11N3O4V = 1186.94 (4) Å3
Mr = 261.24Z = 4
Monoclinic, P21Mo Kα radiation
a = 10.7364 (2) ŵ = 0.11 mm1
b = 6.8925 (1) ÅT = 296 K
c = 16.3901 (3) Å0.23 × 0.20 × 0.15 mm
β = 101.870 (1)°
Data collection top
Bruker APEXII CCD detector
diffractometer
2452 reflections with I > 2σ(I)
14768 measured reflectionsRint = 0.021
2543 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0301 restraint
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.17 e Å3
2543 reflectionsΔρmin = 0.16 e Å3
351 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1000.4871 (2)0.4617 (3)1.03240 (11)0.0410 (4)
C1010.3608 (2)0.4649 (3)0.99613 (13)0.0445 (5)
C1020.32175 (19)0.4505 (3)0.91009 (14)0.0442 (5)
C1030.41314 (17)0.4215 (3)0.86410 (11)0.0359 (4)
C1040.54297 (16)0.4047 (3)0.89854 (10)0.0311 (4)
C1050.58012 (18)0.4374 (3)0.98486 (10)0.0336 (4)
C1060.8095 (2)0.5177 (3)1.00041 (13)0.0483 (5)
C1070.63255 (16)0.3127 (3)0.85085 (10)0.0316 (4)
C1090.84963 (18)0.3029 (4)0.82441 (13)0.0479 (5)
C1100.9600 (2)0.4396 (6)0.8535 (2)0.0749 (9)
C1110.9040 (3)0.6286 (5)0.8754 (2)0.0752 (9)
C1120.7860 (2)0.5679 (4)0.90711 (14)0.0485 (5)
C2000.44163 (18)0.4931 (3)0.38760 (12)0.0399 (4)
C2010.40473 (19)0.4968 (3)0.46329 (13)0.0440 (5)
C2020.4948 (2)0.5030 (3)0.53689 (12)0.0430 (4)
C2030.62060 (19)0.5134 (3)0.53182 (11)0.0374 (4)
C2040.66333 (16)0.5194 (3)0.45691 (10)0.0318 (4)
C2050.57090 (16)0.4986 (3)0.38404 (10)0.0318 (4)
C2060.70022 (18)0.4042 (3)0.28050 (11)0.0378 (4)
C2070.79608 (17)0.5876 (3)0.45641 (11)0.0360 (4)
C2090.98134 (19)0.5664 (4)0.39103 (15)0.0522 (6)
C2101.0011 (2)0.4484 (5)0.31649 (15)0.0655 (8)
C2110.9243 (2)0.2650 (4)0.32000 (15)0.0559 (6)
C2120.80720 (17)0.3350 (3)0.35062 (11)0.0369 (4)
H1000.51180.47601.08990.049*
H1010.30040.47671.02920.053*
H1020.23620.46030.88450.053*
H10A0.82580.29950.76400.058*
H10B0.87000.17240.84510.058*
H10N0.539 (3)0.528 (5)0.2657 (18)0.056 (8)*
H1120.71920.66650.89320.058*
H11A0.88150.71150.82670.090*
H11B0.96360.69720.91820.090*
H11C1.01740.38670.90190.090*
H11D1.00700.45950.80960.090*
H2000.38030.48700.33850.048*
H2010.31870.49500.46490.053*
H2020.47090.50020.58830.052*
H20A1.04690.53880.43990.063*
H20B0.98120.70430.37930.063*
H20N0.716 (2)0.416 (5)1.0780 (17)0.058 (7)*
H2120.77650.23410.38370.044*
H21A0.97220.17180.35840.067*
H21B0.90050.20580.26530.067*
H21C0.97030.51830.26490.079*
H21D1.09050.41830.32080.079*
N100.60011 (15)0.4905 (3)0.30409 (9)0.0369 (4)
N110.71691 (17)0.5079 (3)0.61116 (9)0.0464 (4)
N120.85585 (14)0.5013 (3)0.40290 (9)0.0371 (4)
N200.70780 (16)0.4399 (3)1.02707 (10)0.0413 (4)
N210.36959 (16)0.4213 (3)0.77185 (11)0.0479 (4)
N220.74763 (15)0.3889 (3)0.86106 (10)0.0380 (4)
O110.60185 (13)0.1634 (2)0.81012 (8)0.0435 (4)
O120.91105 (16)0.5401 (4)1.04775 (12)0.0739 (6)
O130.26234 (16)0.3669 (4)0.74408 (12)0.0761 (6)
O140.44340 (18)0.4853 (4)0.73230 (10)0.0743 (6)
O210.84147 (15)0.7225 (3)0.50119 (10)0.0571 (4)
O220.70331 (15)0.3858 (3)0.20681 (8)0.0581 (5)
O230.6951 (2)0.5986 (4)0.66967 (9)0.0723 (6)
O240.80876 (17)0.4033 (4)0.61259 (10)0.0725 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1000.0594 (12)0.0344 (10)0.0313 (8)0.0026 (9)0.0144 (8)0.0011 (8)
C1010.0534 (12)0.0395 (11)0.0477 (11)0.0024 (9)0.0268 (9)0.0014 (9)
C1020.0350 (9)0.0462 (12)0.0522 (11)0.0019 (9)0.0107 (8)0.0011 (10)
C1030.0352 (9)0.0384 (10)0.0328 (8)0.0023 (8)0.0039 (7)0.0010 (8)
C1040.0335 (8)0.0321 (9)0.0275 (7)0.0022 (7)0.0057 (6)0.0010 (7)
C1050.0420 (9)0.0288 (9)0.0290 (8)0.0006 (8)0.0054 (7)0.0002 (7)
C1060.0483 (11)0.0426 (11)0.0478 (11)0.0081 (10)0.0043 (9)0.0095 (10)
C1070.0311 (8)0.0397 (10)0.0225 (7)0.0023 (8)0.0021 (6)0.0011 (7)
C1090.0339 (10)0.0676 (15)0.0441 (10)0.0059 (10)0.0124 (8)0.0114 (11)
C1100.0398 (12)0.097 (2)0.0907 (19)0.0091 (14)0.0187 (12)0.021 (2)
C1110.0662 (17)0.079 (2)0.0801 (18)0.0344 (16)0.0148 (14)0.0114 (17)
C1120.0483 (11)0.0458 (12)0.0499 (11)0.0153 (10)0.0064 (9)0.0005 (10)
C2000.0364 (9)0.0400 (10)0.0417 (9)0.0023 (9)0.0046 (7)0.0022 (9)
C2010.0381 (10)0.0452 (11)0.0519 (11)0.0033 (9)0.0163 (8)0.0039 (10)
C2020.0537 (11)0.0398 (10)0.0407 (9)0.0029 (10)0.0217 (8)0.0050 (9)
C2030.0479 (10)0.0353 (9)0.0289 (8)0.0061 (9)0.0079 (7)0.0014 (8)
C2040.0358 (9)0.0313 (9)0.0282 (8)0.0027 (7)0.0059 (7)0.0000 (7)
C2050.0359 (9)0.0294 (8)0.0299 (8)0.0005 (8)0.0065 (7)0.0018 (7)
C2060.0412 (9)0.0434 (10)0.0273 (8)0.0008 (9)0.0038 (7)0.0013 (8)
C2070.0346 (9)0.0420 (10)0.0292 (8)0.0010 (8)0.0015 (7)0.0022 (8)
C2090.0338 (10)0.0653 (15)0.0589 (12)0.0050 (10)0.0124 (9)0.0021 (12)
C2100.0449 (11)0.100 (2)0.0558 (13)0.0031 (14)0.0205 (10)0.0026 (15)
C2110.0461 (12)0.0721 (17)0.0486 (11)0.0161 (12)0.0078 (9)0.0136 (12)
C2120.0393 (10)0.0408 (10)0.0298 (8)0.0036 (8)0.0047 (7)0.0026 (8)
N100.0374 (8)0.0469 (9)0.0236 (7)0.0050 (8)0.0001 (6)0.0032 (7)
N110.0565 (10)0.0552 (11)0.0274 (7)0.0124 (10)0.0083 (7)0.0032 (8)
N120.0316 (7)0.0454 (9)0.0339 (7)0.0014 (7)0.0054 (6)0.0026 (8)
N200.0489 (9)0.0438 (10)0.0264 (7)0.0011 (8)0.0033 (6)0.0014 (7)
N210.0385 (9)0.0599 (11)0.0410 (8)0.0143 (9)0.0017 (7)0.0011 (9)
N220.0335 (7)0.0454 (9)0.0350 (7)0.0040 (7)0.0070 (6)0.0002 (7)
O110.0392 (7)0.0551 (9)0.0365 (7)0.0099 (7)0.0085 (5)0.0170 (7)
O120.0528 (9)0.0925 (16)0.0643 (10)0.0183 (10)0.0158 (8)0.0133 (11)
O130.0474 (9)0.1032 (18)0.0660 (11)0.0102 (11)0.0155 (8)0.0227 (12)
O140.0711 (11)0.1173 (18)0.0343 (7)0.0125 (13)0.0102 (7)0.0148 (11)
O210.0456 (8)0.0651 (11)0.0592 (9)0.0130 (8)0.0075 (7)0.0283 (9)
O220.0600 (9)0.0874 (13)0.0262 (6)0.0125 (10)0.0070 (6)0.0042 (8)
O230.0948 (13)0.0859 (14)0.0326 (7)0.0271 (12)0.0053 (8)0.0093 (9)
O240.0681 (10)0.1011 (16)0.0439 (8)0.0377 (12)0.0012 (7)0.0013 (10)
Geometric parameters (Å, º) top
C100—H1000.9300C203—N111.486 (2)
C100—C1011.365 (3)C203—C2021.372 (3)
C101—H1010.9300C204—C2071.502 (3)
C101—C1021.390 (3)C204—C2031.397 (2)
C102—H1020.9300C204—C2051.394 (2)
C103—N211.488 (2)C205—N101.410 (2)
C103—C1021.369 (3)C205—C2001.402 (3)
C104—C1071.499 (2)C206—N101.352 (3)
C104—C1051.407 (2)C206—O221.222 (2)
C104—C1031.397 (2)C207—O211.222 (3)
C105—N201.403 (2)C209—H20B0.9700
C105—C1001.397 (3)C209—H20A0.9700
C106—N201.366 (3)C209—C2101.519 (4)
C106—O121.211 (3)C210—H21D0.9700
C107—N221.321 (2)C210—H21C0.9700
C107—O111.234 (2)C211—H21B0.9700
C109—H10B0.9700C211—H21A0.9700
C109—H10A0.9700C211—C2101.516 (5)
C109—C1101.512 (4)C212—H2120.9800
C110—H11D0.9700C212—C2111.525 (3)
C110—H11C0.9700C212—C2061.525 (3)
C111—H11B0.9700N10—H10N0.85 (3)
C111—H11A0.9700N11—O241.218 (3)
C111—C1101.508 (5)N11—O231.207 (2)
C112—H1120.9800N12—C2091.470 (2)
C112—C1061.537 (3)N12—C2121.462 (3)
C112—C1111.524 (3)N12—C2071.329 (3)
C200—H2000.9300N20—H20N0.84 (3)
C200—C2011.378 (3)N21—O131.208 (3)
C201—H2010.9300N21—O141.206 (3)
C202—H2020.9300N22—C1091.477 (3)
C202—C2011.383 (3)N22—C1121.461 (3)
C105—C100—H100119.4C204—C203—N11118.34 (17)
C101—C100—H100119.4C202—C203—N11117.53 (17)
C101—C100—C105121.28 (18)C202—C203—C204124.06 (18)
C102—C101—H101119.8C203—C204—C207119.82 (16)
C100—C101—H101119.8C205—C204—C207122.44 (15)
C100—C101—C102120.41 (17)C205—C204—C203116.44 (16)
C101—C102—H102121.0C200—C205—N10116.68 (16)
C103—C102—H102121.0C204—C205—N10123.03 (15)
C103—C102—C101117.92 (18)C204—C205—C200120.24 (16)
C104—C103—N21119.29 (16)N10—C206—C212116.22 (15)
C102—C103—N21116.65 (17)O22—C206—C212122.90 (18)
C102—C103—C104123.93 (17)O22—C206—N10120.88 (18)
C105—C104—C107120.83 (16)N12—C207—C204116.80 (17)
C103—C104—C107121.21 (15)O21—C207—C204119.76 (17)
C103—C104—C105116.48 (16)O21—C207—N12123.36 (18)
N20—C105—C104122.95 (17)H20A—C209—H20B109.1
C100—C105—C104119.53 (18)C210—C209—H20B111.1
C100—C105—N20117.48 (16)N12—C209—H20B111.1
N20—C106—C112115.31 (17)C210—C209—H20A111.1
O12—C106—C112123.4 (2)N12—C209—H20A111.1
O12—C106—N20121.2 (2)N12—C209—C210103.11 (19)
N22—C107—C104116.70 (17)H21C—C210—H21D108.9
O11—C107—C104120.41 (16)C209—C210—H21D110.9
O11—C107—N22122.60 (18)C211—C210—H21D110.9
H10A—C109—H10B109.1C209—C210—H21C110.9
C110—C109—H10B111.2C211—C210—H21C110.9
N22—C109—H10B111.2C211—C210—C209104.39 (19)
C110—C109—H10A111.2H21A—C211—H21B109.0
N22—C109—H10A111.2C212—C211—H21B111.0
N22—C109—C110102.7 (2)C210—C211—H21B111.0
H11C—C110—H11D108.6C212—C211—H21A111.0
C109—C110—H11D110.4C210—C211—H21A111.0
C111—C110—H11D110.4C210—C211—C212103.9 (2)
C109—C110—H11C110.4C211—C212—H212110.6
C111—C110—H11C110.4C206—C212—H212110.6
C111—C110—C109106.8 (2)N12—C212—H212110.6
H11A—C111—H11B109.0C206—C212—C211113.29 (16)
C112—C111—H11B110.9N12—C212—C211102.79 (17)
C110—C111—H11B110.9N12—C212—C206108.64 (17)
C112—C111—H11A110.9C205—N10—H10N113.2 (18)
C110—C111—H11A110.9C206—N10—H10N117.2 (18)
C110—C111—C112104.1 (2)C206—N10—C205128.68 (16)
C106—C112—H112110.5O24—N11—C203116.55 (17)
C111—C112—H112110.5O23—N11—C203117.90 (18)
N22—C112—H112110.5O23—N11—O24125.44 (18)
C111—C112—C106115.0 (2)C212—N12—C209112.85 (16)
N22—C112—C106107.16 (18)C207—N12—C209122.05 (19)
N22—C112—C111102.8 (2)C207—N12—C212125.10 (16)
C205—C200—H200119.8C105—N20—H20N112.6 (18)
C201—C200—H200119.8C106—N20—H20N117.8 (19)
C201—C200—C205120.49 (18)C106—N20—C105127.69 (17)
C202—C201—H201119.8O13—N21—C103117.34 (19)
C200—C201—H201119.8O14—N21—C103116.24 (18)
C200—C201—C202120.46 (18)O14—N21—O13126.3 (2)
C201—C202—H202121.0C112—N22—C109113.29 (17)
C203—C202—H202121.0C107—N22—C109122.77 (19)
C203—C202—C201118.00 (18)C107—N22—C112123.91 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10N···O11i0.85 (3)1.98 (3)2.821 (2)169 (3)
N20—H20N···O22ii0.84 (3)2.15 (3)2.980 (2)169 (2)
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC12H11N3O4
Mr261.24
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)10.7364 (2), 6.8925 (1), 16.3901 (3)
β (°) 101.870 (1)
V3)1186.94 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.23 × 0.20 × 0.15
Data collection
DiffractometerBruker APEXII CCD detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14768, 2543, 2452
Rint0.021
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.080, 1.04
No. of reflections2543
No. of parameters351
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.16

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10N···O11i0.85 (3)1.98 (3)2.821 (2)169 (3)
N20—H20N···O22ii0.84 (3)2.15 (3)2.980 (2)169 (2)
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y, z+1.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scienti&filig;c Research (UATRS, CNRST) for the X-ray measurements.

References

First citationArima, K., Kohsaka, M., Tamura, J., Imanaka, H. & Sakai, H. (1983). J. Antibiot. 25, 437–444.  CrossRef Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDa Settimo, F., Taliani, S., Trincavelli, M. L., Montali, M. & Martini, C. (2007). Curr. Med. Chem. 14, 2680–???.  Google Scholar
First citationDervan, P. B. (1986). Science 232, 464–471.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHerpin, T. F., Van Kirk, K. G., Salvino, J. M., Yu, S. T. & Labaudiniere, R. F. (2000). J. Comb. Chem. 2, 513–521.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLeimgruber, W., Stefanovic, V., Schenker, F., Karr, A. & Berger, J. (1975). J. Am. Chem. Soc. 87, 5791–5793.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds