organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(benzimidazol-1-yl)methane dihydrate

aTianmu College of ZheJiang A&F University, Lin'An 311300, People's Republic of China
*Correspondence e-mail: jingaoyf@yahoo.cn

(Received 16 June 2011; accepted 12 July 2011; online 23 July 2011)

The bis­(benzimidazol-1-yl)methane mol­ecule of the title compound, C15H12N4·2H2O, displays a trans conformation with a twofold axis running through the methylene C atom. Two adjacent water mol­ecules are bonded to this mol­ecule through O—H⋯N hydrogen bonds, forming a trimer. Adjacent trimers are connected together via C—H⋯O inter­actions, forming a chain running along the b-axis direction. Two such chains are joined together via ππ inter­actions [centroid–centroid distance = 3.556 (2) Å], forming double chains, which are connected via the water mol­ecules through C—H⋯O associations, forming a sheet structure. The sheets are stacked on top of each other along the a-axis direction and connected through O—H⋯O and C—H⋯O inter­actions, forming a three-dimensional ABAB layer network structure.

Related literature

For the use of bridged imidazole derivatives as multidentate N-donor ligands in the construction of functional coordination polymers, see: Chang et al. (2005[Chang, Q., Meng, X. R., Song, Y. L. & Hou, H. W. (2005). Inorg. Chim. Acta, 358, 2117-2124.]); Wen et al. (2006[Wen, L. L., Li, Y. Z., Lu, Z. D., Lin, J. G., Duan, C. Y. & Meng, Q. J. (2006). Cryst. Growth Des. 6, 530-537.]); Fan et al. (2004[Fan, J., Sun, W. Y., Okamura, T., Zheng, Y. Q., Sui, B., Tang, W. X. & Ueyama, N. (2004). Cryst. Growth Des. 4, 579-584.]); Abrahams et al. (2002[Abrahams, B. F., Hoskins, B. F., Robson, R. & Slizys, D. A. (2002). CrystEngComm, 4, 478-482.]); Jin et al. (2007[Jin, S. W. & Chen, W. Z. (2007). Inorg. Chim. Acta, 12, 3756-3764.]); Ma et al. (2003[Ma, J. F., Yang, J., Zheng, G. L., Li, L. & Liu, J. F. (2003). Inorg. Chem. 42, 7531-7534.]). For the synthesis, see: Lavandera et al. (1988[Lavandera, J. L., Cabildo, P. & Claramunt, R. M. (1988). J. Heterocycl. Chem. 25, 771-778.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12N4·2H2O

  • Mr = 284.32

  • Triclinic, [P \overline 1]

  • a = 8.3752 (9) Å

  • b = 9.2079 (8) Å

  • c = 10.7199 (10) Å

  • α = 100.288 (1)°

  • β = 101.495 (1)°

  • γ = 116.108 (2)°

  • V = 693.35 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.44 × 0.40 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.959, Tmax = 0.983

  • 3617 measured reflections

  • 2411 independent reflections

  • 1327 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.148

  • S = 1.01

  • 2411 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1E⋯N2i 0.85 1.99 2.841 (3) 178
O1—H1F⋯O1ii 0.85 2.41 2.911 (5) 118
O2—H2C⋯N4iii 0.85 2.23 3.083 (3) 176
O2—H2D⋯N4iv 0.85 2.12 2.968 (3) 177
C2—H2⋯O1ii 0.93 2.39 3.299 (4) 167
C9—H9⋯O2i 0.93 2.56 3.363 (4) 145
C12—H12⋯O1ii 0.93 2.57 3.495 (4) 173
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y, -z+1; (iii) x+1, y+1, z+1; (iv) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Bridged imidazole derivatives can be used as multidentate N-donor ligands in constructing functioned coordination polymers, such as nonlinear optical materials (Chang et al., 2005), novel hybrid inorganic organic photoactive materials (Wen et al., 2006) and novel metal-organic frameworks (Fan et al., 2004; Abrahams et al., 2002). The ligands bearing alkyl spacers are a good choice of a N-donor ligand, and the flexible nature of the spacers allows the ligands to bend and rotate when coordinating to metal centers so as to conform to the coordination geometries of the metal ions. Significant progress has been achieved by us (Jin et al., 2007) and others (Ma et al., 2003) in this area.

However, the archived data on bridged benzimidazole derivatives bearing the methylene spacer have been rare. As an extension of our study in bridged imidazole derivatives, here in this paper, we report the structure of bis(benzimidazol-1-yl)methane dihydrate.

X-ray diffraction analysis indicated that in the title compound there are one bis(benzimidazol-1-yl)methane and two lattice water molecules (Fig. 1). All bond distances and angles are in the normal range. The r.m.s. deviation of the benzimidazole ring bearing the N1 and N2 atoms is 0.0056 Å. The r.m.s. deviation of the benzimidazole ring bearing the N3 and N4 atoms is 0.00123 Å. Both benzimidazole rings make a dihedral angle of 106.9 (3)° with each other. The bis(benzimidazol-1-yl)methane displays trans conformation with a twofold axis running through atom C1. Two water molecules are bonded to the bis(benzimidazol-1-yl)methane molecule through O—H···N hydrogen bonds (Table 1) to form an adduct. These adjacent adducts are connected together via C—H···O interactions to form a one-dimensional chain running along the b axis direction. There are two kinds of C—H···O associations (Table 1), one is arising from the N—CH—N of the benzimidazole moiety, another from the benzene C12—H12. In this chain the bis(benzimidazol-1-yl)methane molecules are parallelly arranged. Two such chains were joined together via the π-π interactions to form a double chain structure (Cg(1)···Cg(2)i distance = 3.556 (2) Å, Cg(1) is the centroid of ring N1,N2, C9-C11, Cg(2) is the centroid of ring C10-C15, symmetry operation: (i) 1 - x, 1 - y, 1 - z). The bis(benzimidazol-1-yl)methane molecules at these two chains are arranged antiparallel. The double chains were connected together via the water molecules through the C—H···O associations to form a two-dimensional sheet extending along the direction forming a dihedral angle of ca 60 ° with the bc plane (Fig. 2). Such sheets were further stacked along the a axis direction via the O—H···O (between two water molecules with O···O separations of 2.911 Å) and C—H···O interactions to form a three-dimensional ABAB layer network structure.

Related literature top

For the use of bridged imidazole derivatives as multidentate N-donor ligands in

the construction of functional coordination polymers, see: Chang et al. (2005); Wen et al. (2006); Fan et al. (2004); Abrahams et al. (2002); Jin et al. (2007); Ma et al. (2003). For the synthesis, see: Lavandera et al. (1988).

Experimental top

The starting material bis(benzimidazol-1-yl)methane was prepared according to the published procedure (Lavandera et al., 1988). A solid of bis(benzimidazol-1-yl)methane (24.8 mg, 0.10 mmol) in 10 ml of 95 percent EtOH was stirred at room temperature to dissolve it, then the solution was filtered into a test tube. The solution was left standing at room temperature for several days, colorless block crystals were isolated after slow evaporation of the solution in air at ambient temperature. The crystals were collected and dried in air to give the title compound.

Refinement top

H atoms bonded to the O atoms were located in a difference Fourier map, the O—H distance was kept 0.85 Å and refined isotropically. Other H atoms were positioned geometrically with C—H = 0.93–0.97 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Two-dimensional sheet structure formed through hydrogen bonds (blue dashed lines) viewed along the a axis direction.
Bis(benzimidazol-1-yl)methane dihydrate top
Crystal data top
C15H12N4·2H2OV = 693.35 (12) Å3
Mr = 284.32Z = 2
Triclinic, P1F(000) = 300
Hall symbol: -P 1Dx = 1.362 Mg m3
a = 8.3752 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.2079 (8) ŵ = 0.09 mm1
c = 10.7199 (10) ÅT = 298 K
α = 100.288 (1)°Block, colorless
β = 101.495 (1)°0.44 × 0.40 × 0.18 mm
γ = 116.108 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2411 independent reflections
Radiation source: fine-focus sealed tube1327 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
phi and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 99
Tmin = 0.959, Tmax = 0.983k = 1010
3617 measured reflectionsl = 1012
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.148 w = 1/[σ2(Fo2) + (0.0658P)2 + 0.0465P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2411 reflectionsΔρmax = 0.18 e Å3
191 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.005 (4)
Crystal data top
C15H12N4·2H2Oγ = 116.108 (2)°
Mr = 284.32V = 693.35 (12) Å3
Triclinic, P1Z = 2
a = 8.3752 (9) ÅMo Kα radiation
b = 9.2079 (8) ŵ = 0.09 mm1
c = 10.7199 (10) ÅT = 298 K
α = 100.288 (1)°0.44 × 0.40 × 0.18 mm
β = 101.495 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2411 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1327 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.983Rint = 0.021
3617 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.01Δρmax = 0.18 e Å3
2411 reflectionsΔρmin = 0.18 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4209 (3)0.3324 (3)0.2893 (2)0.0459 (6)
N20.7039 (3)0.5622 (3)0.3488 (3)0.0575 (7)
N30.2169 (3)0.0593 (3)0.1258 (2)0.0451 (6)
N40.1831 (3)0.2003 (3)0.0636 (2)0.0573 (7)
O10.0360 (3)0.1203 (3)0.5805 (2)0.0937 (8)
H1E0.06160.21670.60240.112*
H1F0.00500.04760.59690.112*
O20.7756 (3)0.5078 (3)0.9768 (2)0.0843 (8)
H2C0.88610.59151.00090.101*
H2D0.78220.41710.96440.101*
C10.2299 (4)0.2083 (3)0.2103 (3)0.0511 (8)
H1A0.17800.25950.15490.061*
H1B0.15570.17450.26940.061*
C20.1760 (4)0.0886 (4)0.1540 (3)0.0556 (8)
H20.14580.10890.23030.067*
C30.2331 (4)0.1197 (3)0.0318 (3)0.0454 (7)
C40.2538 (3)0.0428 (3)0.0055 (3)0.0409 (7)
C50.2971 (4)0.1488 (4)0.0736 (3)0.0531 (8)
H50.31090.25680.04810.064*
C60.3189 (4)0.0870 (4)0.1916 (3)0.0630 (9)
H60.34560.15360.24850.076*
C70.3019 (4)0.0730 (4)0.2280 (3)0.0610 (9)
H70.32040.10960.30780.073*
C80.2590 (4)0.1780 (4)0.1502 (3)0.0547 (8)
H80.24750.28500.17590.066*
C90.5360 (4)0.4721 (3)0.2616 (3)0.0553 (8)
H90.49890.50150.18680.066*
C100.6988 (4)0.4744 (3)0.4420 (3)0.0457 (7)
C110.5243 (4)0.3304 (3)0.4066 (3)0.0431 (7)
C120.4831 (4)0.2208 (4)0.4834 (3)0.0533 (8)
H120.36580.12500.45950.064*
C130.6236 (5)0.2602 (4)0.5962 (3)0.0643 (9)
H130.60160.18830.64930.077*
C140.7974 (4)0.4042 (4)0.6334 (3)0.0658 (9)
H140.88870.42720.71120.079*
C150.8376 (4)0.5132 (4)0.5586 (3)0.0571 (8)
H150.95420.61040.58480.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0420 (13)0.0347 (13)0.0527 (15)0.0176 (11)0.0083 (12)0.0057 (11)
N20.0515 (16)0.0387 (14)0.0686 (17)0.0166 (12)0.0115 (14)0.0092 (13)
N30.0420 (13)0.0337 (13)0.0507 (14)0.0156 (10)0.0099 (11)0.0066 (11)
N40.0621 (16)0.0388 (14)0.0582 (16)0.0194 (12)0.0095 (13)0.0112 (13)
O10.0680 (15)0.0786 (17)0.1061 (19)0.0124 (12)0.0326 (14)0.0224 (15)
O20.0832 (17)0.0511 (14)0.112 (2)0.0364 (12)0.0122 (15)0.0216 (13)
C10.0415 (16)0.0475 (17)0.0584 (19)0.0239 (14)0.0094 (14)0.0044 (15)
C20.0492 (18)0.0466 (18)0.0557 (19)0.0133 (14)0.0107 (15)0.0159 (16)
C30.0386 (15)0.0358 (15)0.0510 (18)0.0164 (12)0.0035 (13)0.0060 (14)
C40.0328 (14)0.0348 (15)0.0471 (17)0.0155 (12)0.0047 (13)0.0068 (13)
C50.0533 (18)0.0411 (17)0.066 (2)0.0240 (14)0.0182 (16)0.0187 (16)
C60.064 (2)0.061 (2)0.065 (2)0.0281 (17)0.0258 (17)0.0230 (17)
C70.060 (2)0.062 (2)0.057 (2)0.0295 (17)0.0209 (16)0.0093 (17)
C80.0478 (17)0.0402 (17)0.063 (2)0.0208 (14)0.0067 (15)0.0011 (15)
C90.062 (2)0.0343 (16)0.064 (2)0.0220 (15)0.0160 (17)0.0118 (15)
C100.0442 (16)0.0380 (16)0.0522 (18)0.0220 (14)0.0138 (14)0.0040 (14)
C110.0411 (16)0.0410 (16)0.0460 (17)0.0220 (13)0.0142 (13)0.0049 (13)
C120.0458 (18)0.0543 (19)0.058 (2)0.0212 (15)0.0230 (16)0.0138 (16)
C130.066 (2)0.077 (2)0.056 (2)0.0363 (19)0.0247 (18)0.0244 (18)
C140.056 (2)0.084 (3)0.055 (2)0.037 (2)0.0141 (17)0.0121 (19)
C150.0462 (18)0.056 (2)0.057 (2)0.0235 (15)0.0120 (16)0.0021 (16)
Geometric parameters (Å, º) top
N1—C91.353 (3)C4—C51.382 (4)
N1—C111.385 (3)C5—C61.373 (4)
N1—C11.445 (3)C5—H50.9300
N2—C91.308 (3)C6—C71.389 (4)
N2—C101.389 (3)C6—H60.9300
N3—C21.356 (3)C7—C81.364 (4)
N3—C41.383 (3)C7—H70.9300
N3—C11.450 (3)C8—H80.9300
N4—C21.312 (4)C9—H90.9300
N4—C31.393 (3)C10—C111.390 (4)
O1—H1E0.8499C10—C151.392 (4)
O1—H1F0.8500C11—C121.386 (4)
O2—H2C0.8500C12—C131.371 (4)
O2—H2D0.8500C12—H120.9300
C1—H1A0.9700C13—C141.384 (4)
C1—H1B0.9700C13—H130.9300
C2—H20.9300C14—C151.364 (4)
C3—C81.384 (4)C14—H140.9300
C3—C41.400 (3)C15—H150.9300
C9—N1—C11106.2 (2)C5—C6—H6119.3
C9—N1—C1126.7 (2)C7—C6—H6119.3
C11—N1—C1127.1 (2)C8—C7—C6122.0 (3)
C9—N2—C10103.8 (2)C8—C7—H7119.0
C2—N3—C4106.7 (2)C6—C7—H7119.0
C2—N3—C1126.1 (2)C7—C8—C3117.7 (3)
C4—N3—C1127.1 (2)C7—C8—H8121.2
C2—N4—C3104.4 (2)C3—C8—H8121.2
H1E—O1—H1F109.6N2—C9—N1114.4 (3)
H2C—O2—H2D108.3N2—C9—H9122.8
N1—C1—N3112.1 (2)N1—C9—H9122.8
N1—C1—H1A109.2N2—C10—C11110.6 (2)
N3—C1—H1A109.2N2—C10—C15129.4 (3)
N1—C1—H1B109.2C11—C10—C15120.0 (3)
N3—C1—H1B109.2N1—C11—C12133.1 (2)
H1A—C1—H1B107.9N1—C11—C10105.0 (2)
N4—C2—N3113.8 (3)C12—C11—C10122.0 (3)
N4—C2—H2123.1C13—C12—C11116.8 (3)
N3—C2—H2123.1C13—C12—H12121.6
C8—C3—N4130.0 (3)C11—C12—H12121.6
C8—C3—C4120.0 (3)C12—C13—C14121.8 (3)
N4—C3—C4109.9 (2)C12—C13—H13119.1
C5—C4—N3132.7 (2)C14—C13—H13119.1
C5—C4—C3122.1 (3)C15—C14—C13121.5 (3)
N3—C4—C3105.1 (2)C15—C14—H14119.3
C6—C5—C4116.7 (3)C13—C14—H14119.3
C6—C5—H5121.7C14—C15—C10117.9 (3)
C4—C5—H5121.7C14—C15—H15121.0
C5—C6—C7121.4 (3)C10—C15—H15121.0
C9—N1—C1—N398.4 (3)N4—C3—C8—C7177.7 (3)
C11—N1—C1—N380.0 (3)C4—C3—C8—C70.9 (4)
C2—N3—C1—N196.9 (3)C10—N2—C9—N10.0 (3)
C4—N3—C1—N179.1 (3)C11—N1—C9—N20.2 (3)
C3—N4—C2—N30.1 (3)C1—N1—C9—N2178.9 (2)
C4—N3—C2—N40.2 (3)C9—N2—C10—C110.3 (3)
C1—N3—C2—N4176.5 (2)C9—N2—C10—C15178.7 (3)
C2—N4—C3—C8179.1 (3)C9—N1—C11—C12179.9 (3)
C2—N4—C3—C40.4 (3)C1—N1—C11—C121.5 (4)
C2—N3—C4—C5177.7 (3)C9—N1—C11—C100.4 (3)
C1—N3—C4—C55.6 (4)C1—N1—C11—C10179.1 (2)
C2—N3—C4—C30.4 (3)N2—C10—C11—N10.5 (3)
C1—N3—C4—C3176.2 (2)C15—C10—C11—N1178.6 (2)
C8—C3—C4—C51.0 (4)N2—C10—C11—C12180.0 (2)
N4—C3—C4—C5177.9 (2)C15—C10—C11—C120.9 (4)
C8—C3—C4—N3179.4 (2)N1—C11—C12—C13179.8 (3)
N4—C3—C4—N30.5 (3)C10—C11—C12—C130.4 (4)
N3—C4—C5—C6177.8 (3)C11—C12—C13—C141.2 (4)
C3—C4—C5—C60.1 (4)C12—C13—C14—C150.6 (5)
C4—C5—C6—C71.3 (4)C13—C14—C15—C100.8 (4)
C5—C6—C7—C81.4 (5)N2—C10—C15—C14179.6 (3)
C6—C7—C8—C30.3 (4)C11—C10—C15—C141.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1E···N2i0.851.992.841 (3)178
O1—H1F···O1ii0.852.412.911 (5)118
O2—H2C···N4iii0.852.233.083 (3)176
O2—H2D···N4iv0.852.122.968 (3)177
C2—H2···O1ii0.932.393.299 (4)167
C9—H9···O2i0.932.563.363 (4)145
C12—H12···O1ii0.932.573.495 (4)173
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H12N4·2H2O
Mr284.32
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.3752 (9), 9.2079 (8), 10.7199 (10)
α, β, γ (°)100.288 (1), 101.495 (1), 116.108 (2)
V3)693.35 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.44 × 0.40 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.959, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
3617, 2411, 1327
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.148, 1.01
No. of reflections2411
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.18

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1E···N2i0.851.992.841 (3)177.5
O1—H1F···O1ii0.852.412.911 (5)118.4
O2—H2C···N4iii0.852.233.083 (3)176.4
O2—H2D···N4iv0.852.122.968 (3)176.5
C2—H2···O1ii0.932.393.299 (4)167
C9—H9···O2i0.932.563.363 (4)145
C12—H12···O1ii0.932.573.495 (4)173
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1.
 

Acknowledgements

We gratefully acknowledge financial support by the Education Office Foundation of Zhejiang Province (project No. Y201017321) and the innovation project of Zhejiang A & F University.

References

First citationAbrahams, B. F., Hoskins, B. F., Robson, R. & Slizys, D. A. (2002). CrystEngComm, 4, 478–482.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChang, Q., Meng, X. R., Song, Y. L. & Hou, H. W. (2005). Inorg. Chim. Acta, 358, 2117–2124.  Web of Science CSD CrossRef CAS Google Scholar
First citationFan, J., Sun, W. Y., Okamura, T., Zheng, Y. Q., Sui, B., Tang, W. X. & Ueyama, N. (2004). Cryst. Growth Des. 4, 579–584.  Web of Science CSD CrossRef CAS Google Scholar
First citationJin, S. W. & Chen, W. Z. (2007). Inorg. Chim. Acta, 12, 3756–3764.  Web of Science CSD CrossRef Google Scholar
First citationLavandera, J. L., Cabildo, P. & Claramunt, R. M. (1988). J. Heterocycl. Chem. 25, 771–778.  Google Scholar
First citationMa, J. F., Yang, J., Zheng, G. L., Li, L. & Liu, J. F. (2003). Inorg. Chem. 42, 7531–7534.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWen, L. L., Li, Y. Z., Lu, Z. D., Lin, J. G., Duan, C. Y. & Meng, Q. J. (2006). Cryst. Growth Des. 6, 530–537.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds