organic compounds
Ethyl 3-(4-chlorophenyl)-1-(2-oxo-2-phenylethyl)-1H-pyrazole-5-carboxylate
aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: bxzhao@sdu.edu.cn
In the title compound, C20H17ClN2O3, the dihedral angles between the pyrazole ring and the substituted and unsubstituted benzene rings are 3.64 (13) and 81.15 (17)°, respectively. Molecules are connected via three pairs of weak hydrogen bonds into a centrosymmetric dimer. The is stabilized by intermolecular C—H⋯O and C—H⋯π interactions.
Related literature
For applications of pyrazoles, see: Kosuge & Kamiya (1962); Ganesan (1996); Farag et al. (2010); Boschi et al. (2011); Kasımoğullan et al. (2010); Christodoulou et al. (2010); Scanio et al. (2010); Da Sliva et al. (2010). For related structures, see: Xie et al. (2009); Arban et al. (2010). For the synthesis of ethyl 3-(4-chlorophenyl)-1-(2-oxo-2-phenylethyl)-1H-pyrazole-5-carboxylate, see: Zheng et al. (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S1600536811025918/vm2105sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811025918/vm2105Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811025918/vm2105Isup3.cml
To dried acetonitrile (50 ml), ethyl 3-(4-chlorophenyl)-1H-pyrazole-5-carboxylate (2.50 g, 10 mmol), 2-bromo-1-phenylethanone (2.00 g, 10 mmol) and potassium carbonate (2.76 g, 20 mmol) were added. The mixture was heated to reflux for 1 h, until TLC indicated the end of reaction. The reaction mixture was cooled to room temperature and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by
using ethyl acetate/petroleum ether (v/v = 1:4) as eluant to afford compound ethyl 3-(4-chlorophenyl)-1-(2-oxo-2-phenylethyl)-1H-pyrazole-5-carboxylate (I) in 70% yield. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a solution of the solid in ethyl acetate at room temperature for 7 days.All H atoms attached to C atoms were placed in their calculated positions (methyl C–H = 0.96 Å, methylene C–H = 0.97 Å and aromatic C–H = 0.93 Å) and were refined using a riding model with Uiso(H) = 1.5Ueq for methyl groups and with Uiso(H) = 1.2Ueq for others.
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. ORTEP view of compound (I), showing 25% probability displacement ellipsoids. | |
Fig. 2. Packing diagram of compound (I). Short contacts and C—H···π are shown as dashed lines. |
C20H17ClN2O3 | Z = 2 |
Mr = 368.81 | F(000) = 384 |
Triclinic, P1 | Dx = 1.337 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.7238 (10) Å | Cell parameters from 1101 reflections |
b = 8.382 (1) Å | θ = 2.7–22.0° |
c = 15.8143 (18) Å | µ = 0.23 mm−1 |
α = 98.667 (2)° | T = 296 K |
β = 93.828 (2)° | Block, colorless |
γ = 113.849 (2)° | 0.12 × 0.10 × 0.06 mm |
V = 916.44 (19) Å3 |
Bruker APEXII CCD area-detector diffractometer | 3216 independent reflections |
Radiation source: fine-focus sealed tube | 2079 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
phi and ω scans | θmax = 25.1°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −9→8 |
Tmin = 0.973, Tmax = 0.986 | k = −9→9 |
4894 measured reflections | l = −18→10 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.048 | H-atom parameters constrained |
wR(F2) = 0.123 | w = 1/[σ2(Fo2) + (0.0468P)2 + 0.1653P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
3216 reflections | Δρmax = 0.17 e Å−3 |
237 parameters | Δρmin = −0.18 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.008 (2) |
C20H17ClN2O3 | γ = 113.849 (2)° |
Mr = 368.81 | V = 916.44 (19) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.7238 (10) Å | Mo Kα radiation |
b = 8.382 (1) Å | µ = 0.23 mm−1 |
c = 15.8143 (18) Å | T = 296 K |
α = 98.667 (2)° | 0.12 × 0.10 × 0.06 mm |
β = 93.828 (2)° |
Bruker APEXII CCD area-detector diffractometer | 3216 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 2079 reflections with I > 2σ(I) |
Tmin = 0.973, Tmax = 0.986 | Rint = 0.018 |
4894 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.123 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.17 e Å−3 |
3216 reflections | Δρmin = −0.18 e Å−3 |
237 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 1.39705 (12) | 0.55340 (11) | 0.24320 (5) | 0.0857 (3) | |
O1 | 0.4703 (3) | 0.6797 (3) | 0.61211 (13) | 0.0882 (7) | |
O2 | 0.6629 (2) | 0.8989 (2) | 0.71892 (11) | 0.0689 (5) | |
O3 | 1.0787 (3) | 0.9089 (2) | 0.79687 (11) | 0.0765 (6) | |
N1 | 0.9783 (3) | 0.9370 (2) | 0.63117 (12) | 0.0502 (5) | |
N2 | 1.1032 (3) | 0.9166 (2) | 0.58057 (12) | 0.0516 (5) | |
C1 | 0.5722 (5) | 1.0065 (5) | 0.8478 (2) | 0.1137 (13) | |
H1A | 0.6625 | 0.9790 | 0.8802 | 0.171* | |
H1B | 0.4675 | 0.9957 | 0.8795 | 0.171* | |
H1C | 0.6337 | 1.1260 | 0.8382 | 0.171* | |
C2 | 0.4997 (4) | 0.8818 (4) | 0.7639 (2) | 0.0894 (10) | |
H2A | 0.4340 | 0.7609 | 0.7728 | 0.107* | |
H2B | 0.4103 | 0.9101 | 0.7300 | 0.107* | |
C3 | 0.6271 (4) | 0.7888 (3) | 0.64366 (16) | 0.0583 (7) | |
C4 | 0.7978 (3) | 0.8102 (3) | 0.60278 (14) | 0.0490 (6) | |
C5 | 0.8081 (3) | 0.7040 (3) | 0.53051 (15) | 0.0510 (6) | |
H5 | 0.7078 | 0.6056 | 0.4964 | 0.061* | |
C6 | 0.9993 (3) | 0.7733 (3) | 0.51840 (14) | 0.0470 (6) | |
C7 | 1.0940 (3) | 0.7141 (3) | 0.45134 (14) | 0.0474 (6) | |
C8 | 0.9962 (4) | 0.5635 (3) | 0.38749 (15) | 0.0532 (6) | |
H8 | 0.8667 | 0.4953 | 0.3875 | 0.064* | |
C9 | 1.0887 (4) | 0.5136 (3) | 0.32388 (15) | 0.0571 (7) | |
H9 | 1.0221 | 0.4119 | 0.2816 | 0.069* | |
C10 | 1.2795 (4) | 0.6148 (3) | 0.32337 (16) | 0.0591 (7) | |
C11 | 1.3793 (4) | 0.7624 (4) | 0.38583 (17) | 0.0725 (8) | |
H11 | 1.5090 | 0.8297 | 0.3856 | 0.087* | |
C12 | 1.2863 (4) | 0.8106 (4) | 0.44906 (17) | 0.0697 (8) | |
H12 | 1.3550 | 0.9113 | 0.4916 | 0.084* | |
C13 | 1.0477 (3) | 1.0912 (3) | 0.70068 (14) | 0.0530 (6) | |
H13A | 0.9535 | 1.1403 | 0.7030 | 0.064* | |
H13B | 1.1641 | 1.1808 | 0.6876 | 0.064* | |
C14 | 1.0880 (3) | 1.0536 (3) | 0.78837 (15) | 0.0530 (6) | |
C15 | 1.1408 (3) | 1.2016 (3) | 0.86377 (16) | 0.0556 (7) | |
C16 | 1.1626 (4) | 1.3698 (4) | 0.85486 (18) | 0.0757 (9) | |
H16 | 1.1464 | 1.3938 | 0.8001 | 0.091* | |
C17 | 1.2085 (5) | 1.5024 (4) | 0.9269 (2) | 0.1021 (12) | |
H17 | 1.2223 | 1.6153 | 0.9205 | 0.122* | |
C18 | 1.2337 (6) | 1.4687 (5) | 1.0071 (2) | 0.1132 (13) | |
H18 | 1.2645 | 1.5583 | 1.0555 | 0.136* | |
C19 | 1.2139 (6) | 1.3030 (5) | 1.0166 (2) | 0.1131 (13) | |
H19 | 1.2313 | 1.2801 | 1.0715 | 0.136* | |
C20 | 1.1684 (5) | 1.1703 (4) | 0.94532 (18) | 0.0823 (9) | |
H20 | 1.1561 | 1.0582 | 0.9523 | 0.099* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0942 (6) | 0.0923 (6) | 0.0644 (5) | 0.0382 (5) | 0.0278 (4) | −0.0068 (4) |
O1 | 0.0441 (11) | 0.1021 (15) | 0.0846 (15) | 0.0121 (11) | 0.0016 (10) | −0.0234 (12) |
O2 | 0.0548 (11) | 0.0744 (12) | 0.0650 (12) | 0.0223 (9) | 0.0134 (9) | −0.0112 (10) |
O3 | 0.1026 (16) | 0.0619 (12) | 0.0619 (13) | 0.0395 (11) | −0.0061 (10) | −0.0036 (9) |
N1 | 0.0477 (12) | 0.0485 (11) | 0.0419 (11) | 0.0137 (10) | 0.0032 (9) | −0.0072 (9) |
N2 | 0.0477 (12) | 0.0529 (12) | 0.0432 (12) | 0.0146 (10) | 0.0045 (9) | −0.0031 (9) |
C1 | 0.105 (3) | 0.139 (3) | 0.091 (3) | 0.057 (3) | 0.031 (2) | −0.017 (2) |
C2 | 0.064 (2) | 0.111 (3) | 0.086 (2) | 0.0386 (18) | 0.0236 (17) | −0.0116 (19) |
C3 | 0.0511 (17) | 0.0620 (16) | 0.0549 (17) | 0.0217 (14) | 0.0052 (13) | −0.0024 (13) |
C4 | 0.0445 (14) | 0.0495 (14) | 0.0456 (14) | 0.0162 (11) | 0.0006 (11) | 0.0006 (11) |
C5 | 0.0455 (14) | 0.0508 (14) | 0.0458 (14) | 0.0141 (11) | 0.0000 (11) | −0.0020 (11) |
C6 | 0.0460 (14) | 0.0478 (13) | 0.0395 (13) | 0.0148 (11) | 0.0011 (11) | 0.0025 (11) |
C7 | 0.0476 (14) | 0.0473 (13) | 0.0397 (13) | 0.0152 (11) | 0.0025 (10) | 0.0016 (10) |
C8 | 0.0516 (15) | 0.0459 (13) | 0.0523 (15) | 0.0147 (12) | 0.0016 (12) | 0.0004 (11) |
C9 | 0.0685 (18) | 0.0459 (14) | 0.0469 (15) | 0.0202 (13) | −0.0006 (12) | −0.0052 (11) |
C10 | 0.0642 (18) | 0.0605 (16) | 0.0469 (15) | 0.0238 (14) | 0.0112 (12) | −0.0006 (12) |
C11 | 0.0555 (17) | 0.0782 (19) | 0.0575 (17) | 0.0099 (14) | 0.0136 (13) | −0.0126 (14) |
C12 | 0.0553 (17) | 0.0687 (17) | 0.0556 (17) | 0.0071 (14) | 0.0071 (13) | −0.0184 (13) |
C13 | 0.0524 (15) | 0.0494 (14) | 0.0453 (15) | 0.0143 (12) | 0.0044 (11) | −0.0038 (11) |
C14 | 0.0453 (15) | 0.0537 (15) | 0.0508 (16) | 0.0166 (12) | 0.0034 (11) | −0.0033 (12) |
C15 | 0.0529 (16) | 0.0596 (16) | 0.0472 (16) | 0.0225 (13) | 0.0028 (12) | −0.0047 (12) |
C16 | 0.096 (2) | 0.0646 (18) | 0.0563 (18) | 0.0314 (16) | 0.0044 (15) | −0.0087 (14) |
C17 | 0.146 (3) | 0.069 (2) | 0.077 (3) | 0.042 (2) | 0.009 (2) | −0.0134 (18) |
C18 | 0.161 (4) | 0.097 (3) | 0.065 (2) | 0.055 (3) | 0.002 (2) | −0.028 (2) |
C19 | 0.167 (4) | 0.112 (3) | 0.052 (2) | 0.063 (3) | −0.005 (2) | −0.010 (2) |
C20 | 0.111 (3) | 0.080 (2) | 0.0514 (18) | 0.0417 (19) | 0.0006 (16) | −0.0029 (15) |
Cl1—C10 | 1.741 (2) | C8—H8 | 0.9300 |
O1—C3 | 1.199 (3) | C9—C10 | 1.373 (3) |
O2—C3 | 1.328 (3) | C9—H9 | 0.9300 |
O2—C2 | 1.456 (3) | C10—C11 | 1.363 (3) |
O3—C14 | 1.214 (3) | C11—C12 | 1.374 (3) |
N1—N2 | 1.340 (2) | C11—H11 | 0.9300 |
N1—C4 | 1.360 (3) | C12—H12 | 0.9300 |
N1—C13 | 1.449 (3) | C13—C14 | 1.508 (3) |
N2—C6 | 1.346 (3) | C13—H13A | 0.9700 |
C1—C2 | 1.475 (4) | C13—H13B | 0.9700 |
C1—H1A | 0.9600 | C14—C15 | 1.486 (3) |
C1—H1B | 0.9600 | C15—C20 | 1.374 (4) |
C1—H1C | 0.9600 | C15—C16 | 1.381 (4) |
C2—H2A | 0.9700 | C16—C17 | 1.380 (4) |
C2—H2B | 0.9700 | C16—H16 | 0.9300 |
C3—C4 | 1.465 (3) | C17—C18 | 1.358 (5) |
C4—C5 | 1.367 (3) | C17—H17 | 0.9300 |
C5—C6 | 1.390 (3) | C18—C19 | 1.368 (5) |
C5—H5 | 0.9300 | C18—H18 | 0.9300 |
C6—C7 | 1.464 (3) | C19—C20 | 1.373 (4) |
C7—C12 | 1.381 (3) | C19—H19 | 0.9300 |
C7—C8 | 1.388 (3) | C20—H20 | 0.9300 |
C8—C9 | 1.381 (3) | ||
C3—O2—C2 | 116.6 (2) | C8—C9—H9 | 120.2 |
N2—N1—C4 | 111.60 (17) | C11—C10—C9 | 120.7 (2) |
N2—N1—C13 | 117.93 (18) | C11—C10—Cl1 | 119.4 (2) |
C4—N1—C13 | 130.3 (2) | C9—C10—Cl1 | 119.94 (19) |
N1—N2—C6 | 105.50 (18) | C10—C11—C12 | 119.3 (2) |
C2—C1—H1A | 109.5 | C10—C11—H11 | 120.4 |
C2—C1—H1B | 109.5 | C12—C11—H11 | 120.4 |
H1A—C1—H1B | 109.5 | C11—C12—C7 | 122.0 (2) |
C2—C1—H1C | 109.5 | C11—C12—H12 | 119.0 |
H1A—C1—H1C | 109.5 | C7—C12—H12 | 119.0 |
H1B—C1—H1C | 109.5 | N1—C13—C14 | 114.3 (2) |
O2—C2—C1 | 107.8 (2) | N1—C13—H13A | 108.7 |
O2—C2—H2A | 110.2 | C14—C13—H13A | 108.7 |
C1—C2—H2A | 110.2 | N1—C13—H13B | 108.7 |
O2—C2—H2B | 110.2 | C14—C13—H13B | 108.7 |
C1—C2—H2B | 110.2 | H13A—C13—H13B | 107.6 |
H2A—C2—H2B | 108.5 | O3—C14—C15 | 121.5 (2) |
O1—C3—O2 | 123.5 (2) | O3—C14—C13 | 121.4 (2) |
O1—C3—C4 | 122.6 (2) | C15—C14—C13 | 117.1 (2) |
O2—C3—C4 | 113.8 (2) | C20—C15—C16 | 118.7 (2) |
N1—C4—C5 | 106.7 (2) | C20—C15—C14 | 119.0 (2) |
N1—C4—C3 | 126.4 (2) | C16—C15—C14 | 122.3 (2) |
C5—C4—C3 | 126.8 (2) | C17—C16—C15 | 120.3 (3) |
C4—C5—C6 | 105.9 (2) | C17—C16—H16 | 119.9 |
C4—C5—H5 | 127.1 | C15—C16—H16 | 119.9 |
C6—C5—H5 | 127.1 | C18—C17—C16 | 120.2 (3) |
N2—C6—C5 | 110.3 (2) | C18—C17—H17 | 119.9 |
N2—C6—C7 | 119.5 (2) | C16—C17—H17 | 119.9 |
C5—C6—C7 | 130.1 (2) | C17—C18—C19 | 120.0 (3) |
C12—C7—C8 | 117.6 (2) | C17—C18—H18 | 120.0 |
C12—C7—C6 | 120.2 (2) | C19—C18—H18 | 120.0 |
C8—C7—C6 | 122.3 (2) | C18—C19—C20 | 120.2 (3) |
C9—C8—C7 | 120.8 (2) | C18—C19—H19 | 119.9 |
C9—C8—H8 | 119.6 | C20—C19—H19 | 119.9 |
C7—C8—H8 | 119.6 | C19—C20—C15 | 120.7 (3) |
C10—C9—C8 | 119.6 (2) | C19—C20—H20 | 119.7 |
C10—C9—H9 | 120.2 | C15—C20—H20 | 119.7 |
C4—N1—N2—C6 | 0.1 (3) | C7—C8—C9—C10 | −0.5 (4) |
C13—N1—N2—C6 | −175.2 (2) | C8—C9—C10—C11 | 1.1 (4) |
C3—O2—C2—C1 | 176.2 (3) | C8—C9—C10—Cl1 | −179.8 (2) |
C2—O2—C3—O1 | 0.3 (4) | C9—C10—C11—C12 | −0.9 (5) |
C2—O2—C3—C4 | −178.7 (2) | Cl1—C10—C11—C12 | −180.0 (2) |
N2—N1—C4—C5 | −0.1 (3) | C10—C11—C12—C7 | −0.1 (5) |
C13—N1—C4—C5 | 174.5 (2) | C8—C7—C12—C11 | 0.7 (4) |
N2—N1—C4—C3 | 178.1 (2) | C6—C7—C12—C11 | −178.2 (3) |
C13—N1—C4—C3 | −7.4 (4) | N2—N1—C13—C14 | −100.5 (2) |
O1—C3—C4—N1 | 175.6 (3) | C4—N1—C13—C14 | 85.2 (3) |
O2—C3—C4—N1 | −5.4 (4) | N1—C13—C14—O3 | 6.4 (3) |
O1—C3—C4—C5 | −6.6 (4) | N1—C13—C14—C15 | −174.04 (19) |
O2—C3—C4—C5 | 172.4 (2) | O3—C14—C15—C20 | −4.0 (4) |
N1—C4—C5—C6 | 0.1 (3) | C13—C14—C15—C20 | 176.4 (2) |
C3—C4—C5—C6 | −178.1 (2) | O3—C14—C15—C16 | 176.2 (3) |
N1—N2—C6—C5 | 0.0 (3) | C13—C14—C15—C16 | −3.4 (4) |
N1—N2—C6—C7 | 179.9 (2) | C20—C15—C16—C17 | −0.9 (5) |
C4—C5—C6—N2 | 0.0 (3) | C14—C15—C16—C17 | 178.8 (3) |
C4—C5—C6—C7 | −179.9 (2) | C15—C16—C17—C18 | 0.4 (5) |
N2—C6—C7—C12 | −3.7 (4) | C16—C17—C18—C19 | 0.1 (6) |
C5—C6—C7—C12 | 176.1 (3) | C17—C18—C19—C20 | 0.0 (7) |
N2—C6—C7—C8 | 177.5 (2) | C18—C19—C20—C15 | −0.5 (6) |
C5—C6—C7—C8 | −2.7 (4) | C16—C15—C20—C19 | 1.0 (5) |
C12—C7—C8—C9 | −0.4 (4) | C14—C15—C20—C19 | −178.8 (3) |
C6—C7—C8—C9 | 178.4 (2) |
Cg1 is the centroid of the C7–C12 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O1i | 0.93 | 2.52 | 3.410 (3) | 161 |
C8—H8···O1i | 0.93 | 2.42 | 3.348 (4) | 180 |
C9—H9···O3ii | 0.93 | 2.56 | 3.434 (3) | 157 |
C13—H13A···Cg1iii | 0.97 | 2.80 | 3.605 (3) | 140 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1; (iii) −x+2, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C20H17ClN2O3 |
Mr | 368.81 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 7.7238 (10), 8.382 (1), 15.8143 (18) |
α, β, γ (°) | 98.667 (2), 93.828 (2), 113.849 (2) |
V (Å3) | 916.44 (19) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.23 |
Crystal size (mm) | 0.12 × 0.10 × 0.06 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2007) |
Tmin, Tmax | 0.973, 0.986 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4894, 3216, 2079 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.123, 1.04 |
No. of reflections | 3216 |
No. of parameters | 237 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.17, −0.18 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008).
Cg1 is the centroid of the C7–C12 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O1i | 0.93 | 2.52 | 3.410 (3) | 161 |
C8—H8···O1i | 0.93 | 2.42 | 3.348 (4) | 180 |
C9—H9···O3ii | 0.93 | 2.56 | 3.434 (3) | 157 |
C13—H13A···Cg1iii | 0.97 | 2.80 | 3.605 (3) | 140 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1; (iii) −x+2, −y+2, −z+1. |
Acknowledgements
Thanks are due to the Science and Technology Developmental Project of Shandong Province (2008 GG10002034) and the National Natural Science Foundation of China (90813022) for financial support.
References
Arban, R., Bianchi, F., Buson, A., Cremonesi, S., Di Fbio, R., Gentile, G., Micheli, F., Pasquarello, A., Pozzan, A., Tarsi, L., Terreni, S. & Tonelli, F. (2010). Bioorg. Med. Chem. Lett. 20, 5044–5049. Web of Science CrossRef CAS PubMed Google Scholar
Boschi, D., Guglielmo, S., Aiello, S., Morace, G., Borghi, E. & Fruttero, R. (2011). Bioorg. Med. Chem. Lett. 21, 3431–3434. Web of Science CrossRef CAS PubMed Google Scholar
Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Christodoulou, M. S., Liekens, S., Kasiotis, K. M. & Haroutounian, S. A. (2010). Bioorg. Med. Chem. 18, 4338–4350. Web of Science CrossRef CAS PubMed Google Scholar
Da Sliva, Y. K. C., Augusto, C. V., Barbosa, M. L. C., Melo, G. M. A., de Queiroz, A. C., Dias, T. L. M. F., Júnior, W. B., Barreiro, E. J., Lima, L. M. & Alexandre-Moreira, M. S. (2010). Bioorg. Med. Chem. 18, 5007–5015. Web of Science PubMed Google Scholar
Farag, A. M., Ali, K. A. K., Ei-Debss, T. M. A., Mayhoub, A. S., Amr, A. E., Abdel-Hafez, N. A. & Abdulla, M. M. (2010). Eur. J. Med. Chem. 45, 5887–5898. Web of Science CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Ganesan, A. (1996). Angew. Chem. Int. Ed. 35, 611–615. CrossRef CAS Google Scholar
Kasımoğullan, R., Bülbül, M., Arslan, B. S. & Gökçe, B. (2010). Eur. J. Med. Chem. 45, 4769–4773. Web of Science PubMed Google Scholar
Kosuge, T. & Kamiya, H. (1962). Nature (London), 193, 776. CrossRef PubMed Web of Science Google Scholar
Scanio, M. J. C., Shi, L., Drizin, I., Gregg, R. J., Atkinson, R. N., Thomas, J. B., Johoson, M. S., Chapman, M. L., Liu, D., Krambis, M. J., Liu, Y., Shieh, C. C., Zhang, X. F., Simler, G. H., Joshi, S., Honore, P., Marsh, K. C., Knox, A., Werness, S., Antonio, B., Krafte, D. S., Jarvis, M. F., Faltynek, C. R., Marron, B. E. & Kort, M. E. (2010). Bioorg. Med. Chem. 18, 7816–7825. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xie, Y. S., Zhao, B. X., Lv, H. S., Li, J. K., Wang, B. S. & Shin, D. S. (2009). J. Mol. Struct. 930, 83–87. Web of Science CSD CrossRef CAS Google Scholar
Zheng, L. W., Li, Y., Ge, D., Zhao, B. X., Liu, Y. R., Lv, H. S., Ding, J. & Miao, J. Y. (2010). Bioorg. Med. Chem. Lett. 20, 4766–4770. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyrazoles form an important class of analogues, which occupy a special role in natural and synthetic compounds (Kosuge et al., 1962; Ganesan et al., 1996). Pyrazole derivatives have been the subject of much research because of their importance in various applications and their widespread potential biological and pharmacological activities, such as antitumor (Farag et al., 2010), antimicrobial (Boschi et al., 2011), antiglaucoma (Kasımoğullan et al., 2010), anti-angiogenic (Christodoulou et al., 2010), antinociceptive (Scanio et al., 2010) and anti-inflammatory (Da Sliva et al., 2010).
One chlorine substituted benzene group, an ethyl carboxylate moiety and a 2-oxo-2-phenylethyl moiety are bonded to core pyrazole ring in the title molecule at C6, C4, N1 as showed in Fig. 1. Torsion angle N1—C4—C3—O1 of 175.6 (2)° illustrates that O1 in the ethyl carboxylate moiety adopts a antiperiplanar conformation with respect to the N1 atom of the pyrazole ring. The pyrazole core structure and the chlorine substituted benzene are approximately coplanar with a dihedral angle of 3.65 (7)°. A S(6) pseudo-ring closed by a C13—H13A···O2 intramolecular interaction is observed. The carbonyl O1 atom of the ethyl formate moiety interacts with the pyrazole H atom of the adjacent molecules through a pair of linear C5—H5···O1 hydrogen bonds to form a ten-membered ring motif. Moreover, some other C–H···O and C—H···π interactions (Table 1) may supply further coulombic stabilization and take part in formation of the three-dimensional structure.