organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o1910-o1911

Ethyl 3-(4-chloro­phen­yl)-1-(2-oxo-2-phenyl­eth­yl)-1H-pyrazole-5-carboxyl­ate

aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: bxzhao@sdu.edu.cn

(Received 17 June 2011; accepted 30 June 2011; online 6 July 2011)

In the title compound, C20H17ClN2O3, the dihedral angles between the pyrazole ring and the substituted and unsubstituted benzene rings are 3.64 (13) and 81.15 (17)°, respectively. Mol­ecules are connected via three pairs of weak hydrogen bonds into a centrosymmetric dimer. The crystal structure is stabilized by inter­molecular C—H⋯O and C—H⋯π inter­actions.

Related literature

For applications of pyrazoles, see: Kosuge & Kamiya (1962[Kosuge, T. & Kamiya, H. (1962). Nature (London), 193, 776.]); Ganesan (1996[Ganesan, A. (1996). Angew. Chem. Int. Ed. 35, 611-615.]); Farag et al. (2010[Farag, A. M., Ali, K. A. K., Ei-Debss, T. M. A., Mayhoub, A. S., Amr, A. E., Abdel-Hafez, N. A. & Abdulla, M. M. (2010). Eur. J. Med. Chem. 45, 5887-5898.]); Boschi et al. (2011[Boschi, D., Guglielmo, S., Aiello, S., Morace, G., Borghi, E. & Fruttero, R. (2011). Bioorg. Med. Chem. Lett. 21, 3431-3434.]); Kasımoğullan et al. (2010[Kasımoğullan, R., Bülbül, M., Arslan, B. S. & Gökçe, B. (2010). Eur. J. Med. Chem. 45, 4769-4773.]); Christodoulou et al. (2010[Christodoulou, M. S., Liekens, S., Kasiotis, K. M. & Haroutounian, S. A. (2010). Bioorg. Med. Chem. 18, 4338-4350.]); Scanio et al. (2010[Scanio, M. J. C., Shi, L., Drizin, I., Gregg, R. J., Atkinson, R. N., Thomas, J. B., Johoson, M. S., Chapman, M. L., Liu, D., Krambis, M. J., Liu, Y., Shieh, C. C., Zhang, X. F., Simler, G. H., Joshi, S., Honore, P., Marsh, K. C., Knox, A., Werness, S., Antonio, B., Krafte, D. S., Jarvis, M. F., Faltynek, C. R., Marron, B. E. & Kort, M. E. (2010). Bioorg. Med. Chem. 18, 7816-7825.]); Da Sliva et al. (2010[Da Sliva, Y. K. C., Augusto, C. V., Barbosa, M. L. C., Melo, G. M. A., de Queiroz, A. C., Dias, T. L. M. F., Júnior, W. B., Barreiro, E. J., Lima, L. M. & Alexandre-Moreira, M. S. (2010). Bioorg. Med. Chem. 18, 5007-5015.]). For related structures, see: Xie et al. (2009[Xie, Y. S., Zhao, B. X., Lv, H. S., Li, J. K., Wang, B. S. & Shin, D. S. (2009). J. Mol. Struct. 930, 83-87.]); Arban et al. (2010[Arban, R., Bianchi, F., Buson, A., Cremonesi, S., Di Fbio, R., Gentile, G., Micheli, F., Pasquarello, A., Pozzan, A., Tarsi, L., Terreni, S. & Tonelli, F. (2010). Bioorg. Med. Chem. Lett. 20, 5044-5049.]). For the synthesis of ethyl 3-(4-chloro­phen­yl)-1-(2-oxo-2-phenyl­eth­yl)-1H-pyrazole-5-carboxyl­ate, see: Zheng et al. (2010[Zheng, L. W., Li, Y., Ge, D., Zhao, B. X., Liu, Y. R., Lv, H. S., Ding, J. & Miao, J. Y. (2010). Bioorg. Med. Chem. Lett. 20, 4766-4770.]).

[Scheme 1]

Experimental

Crystal data
  • C20H17ClN2O3

  • Mr = 368.81

  • Triclinic, [P \overline 1]

  • a = 7.7238 (10) Å

  • b = 8.382 (1) Å

  • c = 15.8143 (18) Å

  • α = 98.667 (2)°

  • β = 93.828 (2)°

  • γ = 113.849 (2)°

  • V = 916.44 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.12 × 0.10 × 0.06 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.986

  • 4894 measured reflections

  • 3216 independent reflections

  • 2079 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.123

  • S = 1.04

  • 3216 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.93 2.52 3.410 (3) 161
C8—H8⋯O1i 0.93 2.42 3.348 (4) 180
C9—H9⋯O3ii 0.93 2.56 3.434 (3) 157
C13—H13ACg1iii 0.97 2.80 3.605 (3) 140
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+1; (iii) -x+2, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Pyrazoles form an important class of analogues, which occupy a special role in natural and synthetic compounds (Kosuge et al., 1962; Ganesan et al., 1996). Pyrazole derivatives have been the subject of much research because of their importance in various applications and their widespread potential biological and pharmacological activities, such as antitumor (Farag et al., 2010), antimicrobial (Boschi et al., 2011), antiglaucoma (Kasımoğullan et al., 2010), anti-angiogenic (Christodoulou et al., 2010), antinociceptive (Scanio et al., 2010) and anti-inflammatory (Da Sliva et al., 2010).

One chlorine substituted benzene group, an ethyl carboxylate moiety and a 2-oxo-2-phenylethyl moiety are bonded to core pyrazole ring in the title molecule at C6, C4, N1 as showed in Fig. 1. Torsion angle N1—C4—C3—O1 of 175.6 (2)° illustrates that O1 in the ethyl carboxylate moiety adopts a antiperiplanar conformation with respect to the N1 atom of the pyrazole ring. The pyrazole core structure and the chlorine substituted benzene are approximately coplanar with a dihedral angle of 3.65 (7)°. A S(6) pseudo-ring closed by a C13—H13A···O2 intramolecular interaction is observed. The carbonyl O1 atom of the ethyl formate moiety interacts with the pyrazole H atom of the adjacent molecules through a pair of linear C5—H5···O1 hydrogen bonds to form a ten-membered ring motif. Moreover, some other C–H···O and C—H···π interactions (Table 1) may supply further coulombic stabilization and take part in formation of the three-dimensional structure.

Related literature top

For applications of pyrazoles, see: Kosuge & Kamiya (1962); Ganesan et al. (1996); Farag et al. (2010); Boschi et al. (2011); Kasımoğullan et al. (2010); Christodoulou et al. (2010); Scanio et al. (2010); Da Sliva et al. (2010). For related structures, see: Xie et al. (2009); Arban et al. (2010). For the synthesis of ethyl 3-(4-chlorophenyl)-1-(2-oxo-2-phenylethyl)-1H-pyrazole-5-carboxylate, see: Zheng et al. (2010).

Experimental top

To dried acetonitrile (50 ml), ethyl 3-(4-chlorophenyl)-1H-pyrazole-5-carboxylate (2.50 g, 10 mmol), 2-bromo-1-phenylethanone (2.00 g, 10 mmol) and potassium carbonate (2.76 g, 20 mmol) were added. The mixture was heated to reflux for 1 h, until TLC indicated the end of reaction. The reaction mixture was cooled to room temperature and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by column chromatography using ethyl acetate/petroleum ether (v/v = 1:4) as eluant to afford compound ethyl 3-(4-chlorophenyl)-1-(2-oxo-2-phenylethyl)-1H-pyrazole-5-carboxylate (I) in 70% yield. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a solution of the solid in ethyl acetate at room temperature for 7 days.

Refinement top

All H atoms attached to C atoms were placed in their calculated positions (methyl C–H = 0.96 Å, methylene C–H = 0.97 Å and aromatic C–H = 0.93 Å) and were refined using a riding model with Uiso(H) = 1.5Ueq for methyl groups and with Uiso(H) = 1.2Ueq for others.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of compound (I), showing 25% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of compound (I). Short contacts and C—H···π are shown as dashed lines.
Ethyl 3-(4-chlorophenyl)-1-(2-oxo-2-phenylethyl)-1H-pyrazole-5-carboxylate top
Crystal data top
C20H17ClN2O3Z = 2
Mr = 368.81F(000) = 384
Triclinic, P1Dx = 1.337 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7238 (10) ÅCell parameters from 1101 reflections
b = 8.382 (1) Åθ = 2.7–22.0°
c = 15.8143 (18) ŵ = 0.23 mm1
α = 98.667 (2)°T = 296 K
β = 93.828 (2)°Block, colorless
γ = 113.849 (2)°0.12 × 0.10 × 0.06 mm
V = 916.44 (19) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3216 independent reflections
Radiation source: fine-focus sealed tube2079 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
phi and ω scansθmax = 25.1°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 98
Tmin = 0.973, Tmax = 0.986k = 99
4894 measured reflectionsl = 1810
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0468P)2 + 0.1653P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3216 reflectionsΔρmax = 0.17 e Å3
237 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.008 (2)
Crystal data top
C20H17ClN2O3γ = 113.849 (2)°
Mr = 368.81V = 916.44 (19) Å3
Triclinic, P1Z = 2
a = 7.7238 (10) ÅMo Kα radiation
b = 8.382 (1) ŵ = 0.23 mm1
c = 15.8143 (18) ÅT = 296 K
α = 98.667 (2)°0.12 × 0.10 × 0.06 mm
β = 93.828 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3216 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2079 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.986Rint = 0.018
4894 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.04Δρmax = 0.17 e Å3
3216 reflectionsΔρmin = 0.18 e Å3
237 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.39705 (12)0.55340 (11)0.24320 (5)0.0857 (3)
O10.4703 (3)0.6797 (3)0.61211 (13)0.0882 (7)
O20.6629 (2)0.8989 (2)0.71892 (11)0.0689 (5)
O31.0787 (3)0.9089 (2)0.79687 (11)0.0765 (6)
N10.9783 (3)0.9370 (2)0.63117 (12)0.0502 (5)
N21.1032 (3)0.9166 (2)0.58057 (12)0.0516 (5)
C10.5722 (5)1.0065 (5)0.8478 (2)0.1137 (13)
H1A0.66250.97900.88020.171*
H1B0.46750.99570.87950.171*
H1C0.63371.12600.83820.171*
C20.4997 (4)0.8818 (4)0.7639 (2)0.0894 (10)
H2A0.43400.76090.77280.107*
H2B0.41030.91010.73000.107*
C30.6271 (4)0.7888 (3)0.64366 (16)0.0583 (7)
C40.7978 (3)0.8102 (3)0.60278 (14)0.0490 (6)
C50.8081 (3)0.7040 (3)0.53051 (15)0.0510 (6)
H50.70780.60560.49640.061*
C60.9993 (3)0.7733 (3)0.51840 (14)0.0470 (6)
C71.0940 (3)0.7141 (3)0.45134 (14)0.0474 (6)
C80.9962 (4)0.5635 (3)0.38749 (15)0.0532 (6)
H80.86670.49530.38750.064*
C91.0887 (4)0.5136 (3)0.32388 (15)0.0571 (7)
H91.02210.41190.28160.069*
C101.2795 (4)0.6148 (3)0.32337 (16)0.0591 (7)
C111.3793 (4)0.7624 (4)0.38583 (17)0.0725 (8)
H111.50900.82970.38560.087*
C121.2863 (4)0.8106 (4)0.44906 (17)0.0697 (8)
H121.35500.91130.49160.084*
C131.0477 (3)1.0912 (3)0.70068 (14)0.0530 (6)
H13A0.95351.14030.70300.064*
H13B1.16411.18080.68760.064*
C141.0880 (3)1.0536 (3)0.78837 (15)0.0530 (6)
C151.1408 (3)1.2016 (3)0.86377 (16)0.0556 (7)
C161.1626 (4)1.3698 (4)0.85486 (18)0.0757 (9)
H161.14641.39380.80010.091*
C171.2085 (5)1.5024 (4)0.9269 (2)0.1021 (12)
H171.22231.61530.92050.122*
C181.2337 (6)1.4687 (5)1.0071 (2)0.1132 (13)
H181.26451.55831.05550.136*
C191.2139 (6)1.3030 (5)1.0166 (2)0.1131 (13)
H191.23131.28011.07150.136*
C201.1684 (5)1.1703 (4)0.94532 (18)0.0823 (9)
H201.15611.05820.95230.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0942 (6)0.0923 (6)0.0644 (5)0.0382 (5)0.0278 (4)0.0068 (4)
O10.0441 (11)0.1021 (15)0.0846 (15)0.0121 (11)0.0016 (10)0.0234 (12)
O20.0548 (11)0.0744 (12)0.0650 (12)0.0223 (9)0.0134 (9)0.0112 (10)
O30.1026 (16)0.0619 (12)0.0619 (13)0.0395 (11)0.0061 (10)0.0036 (9)
N10.0477 (12)0.0485 (11)0.0419 (11)0.0137 (10)0.0032 (9)0.0072 (9)
N20.0477 (12)0.0529 (12)0.0432 (12)0.0146 (10)0.0045 (9)0.0031 (9)
C10.105 (3)0.139 (3)0.091 (3)0.057 (3)0.031 (2)0.017 (2)
C20.064 (2)0.111 (3)0.086 (2)0.0386 (18)0.0236 (17)0.0116 (19)
C30.0511 (17)0.0620 (16)0.0549 (17)0.0217 (14)0.0052 (13)0.0024 (13)
C40.0445 (14)0.0495 (14)0.0456 (14)0.0162 (11)0.0006 (11)0.0006 (11)
C50.0455 (14)0.0508 (14)0.0458 (14)0.0141 (11)0.0000 (11)0.0020 (11)
C60.0460 (14)0.0478 (13)0.0395 (13)0.0148 (11)0.0011 (11)0.0025 (11)
C70.0476 (14)0.0473 (13)0.0397 (13)0.0152 (11)0.0025 (10)0.0016 (10)
C80.0516 (15)0.0459 (13)0.0523 (15)0.0147 (12)0.0016 (12)0.0004 (11)
C90.0685 (18)0.0459 (14)0.0469 (15)0.0202 (13)0.0006 (12)0.0052 (11)
C100.0642 (18)0.0605 (16)0.0469 (15)0.0238 (14)0.0112 (12)0.0006 (12)
C110.0555 (17)0.0782 (19)0.0575 (17)0.0099 (14)0.0136 (13)0.0126 (14)
C120.0553 (17)0.0687 (17)0.0556 (17)0.0071 (14)0.0071 (13)0.0184 (13)
C130.0524 (15)0.0494 (14)0.0453 (15)0.0143 (12)0.0044 (11)0.0038 (11)
C140.0453 (15)0.0537 (15)0.0508 (16)0.0166 (12)0.0034 (11)0.0033 (12)
C150.0529 (16)0.0596 (16)0.0472 (16)0.0225 (13)0.0028 (12)0.0047 (12)
C160.096 (2)0.0646 (18)0.0563 (18)0.0314 (16)0.0044 (15)0.0087 (14)
C170.146 (3)0.069 (2)0.077 (3)0.042 (2)0.009 (2)0.0134 (18)
C180.161 (4)0.097 (3)0.065 (2)0.055 (3)0.002 (2)0.028 (2)
C190.167 (4)0.112 (3)0.052 (2)0.063 (3)0.005 (2)0.010 (2)
C200.111 (3)0.080 (2)0.0514 (18)0.0417 (19)0.0006 (16)0.0029 (15)
Geometric parameters (Å, º) top
Cl1—C101.741 (2)C8—H80.9300
O1—C31.199 (3)C9—C101.373 (3)
O2—C31.328 (3)C9—H90.9300
O2—C21.456 (3)C10—C111.363 (3)
O3—C141.214 (3)C11—C121.374 (3)
N1—N21.340 (2)C11—H110.9300
N1—C41.360 (3)C12—H120.9300
N1—C131.449 (3)C13—C141.508 (3)
N2—C61.346 (3)C13—H13A0.9700
C1—C21.475 (4)C13—H13B0.9700
C1—H1A0.9600C14—C151.486 (3)
C1—H1B0.9600C15—C201.374 (4)
C1—H1C0.9600C15—C161.381 (4)
C2—H2A0.9700C16—C171.380 (4)
C2—H2B0.9700C16—H160.9300
C3—C41.465 (3)C17—C181.358 (5)
C4—C51.367 (3)C17—H170.9300
C5—C61.390 (3)C18—C191.368 (5)
C5—H50.9300C18—H180.9300
C6—C71.464 (3)C19—C201.373 (4)
C7—C121.381 (3)C19—H190.9300
C7—C81.388 (3)C20—H200.9300
C8—C91.381 (3)
C3—O2—C2116.6 (2)C8—C9—H9120.2
N2—N1—C4111.60 (17)C11—C10—C9120.7 (2)
N2—N1—C13117.93 (18)C11—C10—Cl1119.4 (2)
C4—N1—C13130.3 (2)C9—C10—Cl1119.94 (19)
N1—N2—C6105.50 (18)C10—C11—C12119.3 (2)
C2—C1—H1A109.5C10—C11—H11120.4
C2—C1—H1B109.5C12—C11—H11120.4
H1A—C1—H1B109.5C11—C12—C7122.0 (2)
C2—C1—H1C109.5C11—C12—H12119.0
H1A—C1—H1C109.5C7—C12—H12119.0
H1B—C1—H1C109.5N1—C13—C14114.3 (2)
O2—C2—C1107.8 (2)N1—C13—H13A108.7
O2—C2—H2A110.2C14—C13—H13A108.7
C1—C2—H2A110.2N1—C13—H13B108.7
O2—C2—H2B110.2C14—C13—H13B108.7
C1—C2—H2B110.2H13A—C13—H13B107.6
H2A—C2—H2B108.5O3—C14—C15121.5 (2)
O1—C3—O2123.5 (2)O3—C14—C13121.4 (2)
O1—C3—C4122.6 (2)C15—C14—C13117.1 (2)
O2—C3—C4113.8 (2)C20—C15—C16118.7 (2)
N1—C4—C5106.7 (2)C20—C15—C14119.0 (2)
N1—C4—C3126.4 (2)C16—C15—C14122.3 (2)
C5—C4—C3126.8 (2)C17—C16—C15120.3 (3)
C4—C5—C6105.9 (2)C17—C16—H16119.9
C4—C5—H5127.1C15—C16—H16119.9
C6—C5—H5127.1C18—C17—C16120.2 (3)
N2—C6—C5110.3 (2)C18—C17—H17119.9
N2—C6—C7119.5 (2)C16—C17—H17119.9
C5—C6—C7130.1 (2)C17—C18—C19120.0 (3)
C12—C7—C8117.6 (2)C17—C18—H18120.0
C12—C7—C6120.2 (2)C19—C18—H18120.0
C8—C7—C6122.3 (2)C18—C19—C20120.2 (3)
C9—C8—C7120.8 (2)C18—C19—H19119.9
C9—C8—H8119.6C20—C19—H19119.9
C7—C8—H8119.6C19—C20—C15120.7 (3)
C10—C9—C8119.6 (2)C19—C20—H20119.7
C10—C9—H9120.2C15—C20—H20119.7
C4—N1—N2—C60.1 (3)C7—C8—C9—C100.5 (4)
C13—N1—N2—C6175.2 (2)C8—C9—C10—C111.1 (4)
C3—O2—C2—C1176.2 (3)C8—C9—C10—Cl1179.8 (2)
C2—O2—C3—O10.3 (4)C9—C10—C11—C120.9 (5)
C2—O2—C3—C4178.7 (2)Cl1—C10—C11—C12180.0 (2)
N2—N1—C4—C50.1 (3)C10—C11—C12—C70.1 (5)
C13—N1—C4—C5174.5 (2)C8—C7—C12—C110.7 (4)
N2—N1—C4—C3178.1 (2)C6—C7—C12—C11178.2 (3)
C13—N1—C4—C37.4 (4)N2—N1—C13—C14100.5 (2)
O1—C3—C4—N1175.6 (3)C4—N1—C13—C1485.2 (3)
O2—C3—C4—N15.4 (4)N1—C13—C14—O36.4 (3)
O1—C3—C4—C56.6 (4)N1—C13—C14—C15174.04 (19)
O2—C3—C4—C5172.4 (2)O3—C14—C15—C204.0 (4)
N1—C4—C5—C60.1 (3)C13—C14—C15—C20176.4 (2)
C3—C4—C5—C6178.1 (2)O3—C14—C15—C16176.2 (3)
N1—N2—C6—C50.0 (3)C13—C14—C15—C163.4 (4)
N1—N2—C6—C7179.9 (2)C20—C15—C16—C170.9 (5)
C4—C5—C6—N20.0 (3)C14—C15—C16—C17178.8 (3)
C4—C5—C6—C7179.9 (2)C15—C16—C17—C180.4 (5)
N2—C6—C7—C123.7 (4)C16—C17—C18—C190.1 (6)
C5—C6—C7—C12176.1 (3)C17—C18—C19—C200.0 (7)
N2—C6—C7—C8177.5 (2)C18—C19—C20—C150.5 (6)
C5—C6—C7—C82.7 (4)C16—C15—C20—C191.0 (5)
C12—C7—C8—C90.4 (4)C14—C15—C20—C19178.8 (3)
C6—C7—C8—C9178.4 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.523.410 (3)161
C8—H8···O1i0.932.423.348 (4)180
C9—H9···O3ii0.932.563.434 (3)157
C13—H13A···Cg1iii0.972.803.605 (3)140
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC20H17ClN2O3
Mr368.81
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.7238 (10), 8.382 (1), 15.8143 (18)
α, β, γ (°)98.667 (2), 93.828 (2), 113.849 (2)
V3)916.44 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.12 × 0.10 × 0.06
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.973, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
4894, 3216, 2079
Rint0.018
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.123, 1.04
No. of reflections3216
No. of parameters237
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.18

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.523.410 (3)161
C8—H8···O1i0.932.423.348 (4)180
C9—H9···O3ii0.932.563.434 (3)157
C13—H13A···Cg1iii0.972.803.605 (3)140
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x+2, y+2, z+1.
 

Acknowledgements

Thanks are due to the Science and Technology Developmental Project of Shandong Province (2008 GG10002034) and the National Natural Science Foundation of China (90813022) for financial support.

References

First citationArban, R., Bianchi, F., Buson, A., Cremonesi, S., Di Fbio, R., Gentile, G., Micheli, F., Pasquarello, A., Pozzan, A., Tarsi, L., Terreni, S. & Tonelli, F. (2010). Bioorg. Med. Chem. Lett. 20, 5044–5049.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBoschi, D., Guglielmo, S., Aiello, S., Morace, G., Borghi, E. & Fruttero, R. (2011). Bioorg. Med. Chem. Lett. 21, 3431–3434.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChristodoulou, M. S., Liekens, S., Kasiotis, K. M. & Haroutounian, S. A. (2010). Bioorg. Med. Chem. 18, 4338–4350.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDa Sliva, Y. K. C., Augusto, C. V., Barbosa, M. L. C., Melo, G. M. A., de Queiroz, A. C., Dias, T. L. M. F., Júnior, W. B., Barreiro, E. J., Lima, L. M. & Alexandre-Moreira, M. S. (2010). Bioorg. Med. Chem. 18, 5007–5015.  Web of Science PubMed Google Scholar
First citationFarag, A. M., Ali, K. A. K., Ei-Debss, T. M. A., Mayhoub, A. S., Amr, A. E., Abdel-Hafez, N. A. & Abdulla, M. M. (2010). Eur. J. Med. Chem. 45, 5887–5898.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGanesan, A. (1996). Angew. Chem. Int. Ed. 35, 611–615.  CrossRef CAS Google Scholar
First citationKasımoğullan, R., Bülbül, M., Arslan, B. S. & Gökçe, B. (2010). Eur. J. Med. Chem. 45, 4769–4773.  Web of Science PubMed Google Scholar
First citationKosuge, T. & Kamiya, H. (1962). Nature (London), 193, 776.  CrossRef PubMed Web of Science Google Scholar
First citationScanio, M. J. C., Shi, L., Drizin, I., Gregg, R. J., Atkinson, R. N., Thomas, J. B., Johoson, M. S., Chapman, M. L., Liu, D., Krambis, M. J., Liu, Y., Shieh, C. C., Zhang, X. F., Simler, G. H., Joshi, S., Honore, P., Marsh, K. C., Knox, A., Werness, S., Antonio, B., Krafte, D. S., Jarvis, M. F., Faltynek, C. R., Marron, B. E. & Kort, M. E. (2010). Bioorg. Med. Chem. 18, 7816–7825.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, Y. S., Zhao, B. X., Lv, H. S., Li, J. K., Wang, B. S. & Shin, D. S. (2009). J. Mol. Struct. 930, 83–87.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, L. W., Li, Y., Ge, D., Zhao, B. X., Liu, Y. R., Lv, H. S., Ding, J. & Miao, J. Y. (2010). Bioorg. Med. Chem. Lett. 20, 4766–4770.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o1910-o1911
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds