metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N-(Ferrocenyl­methyl­­idene)(pyridin-3-yl)methanamine

aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 21 June 2011; accepted 7 July 2011; online 13 July 2011)

In the title compound, [Fe(C5H5)(C12H11N2)], the cyclo­penta­dienyl rings are present in an eclipsed conformation. The imine is E-configured. In the crystal, C—H⋯N inter­actions involving both N atoms connect the mol­ecules into two undulating sheets perpendicular to the b axis. The centroid–centroid distance between the two aromatic systems in the ferrocenyl moiety is 3.2928 (18) Å. A C–H⋯π inter­action is also present.

Related literature

For general background to ferrocenyl compounds, see: Nolan et al. (2007[Nolan, K., Dallas, A., Kuhtz, H., Farrell, A. & Quilty, B. (2007). Tetrahedron Lett. 48, 1017-1021.]); Cheng et al. (2008[Cheng, J.-P., Niu, H.-T., Yin, Z., Su, D., Niu, D., Ao, Y. & He, J. (2008). Tetrahedron, 64, 6300-6306.]); Quing et al. (2009[Quing, C., Yang, X.-D., Zeng, X.-H., Zhang, Y.-L., Song, W.-J., Li, L. & Zhang, H.-B. (2009). Bioorg. Med. Chem. Lett. 19, 1892-1895.]); Bildstein et al. (1999[Bildstein, B., Maluan, M., Kopacka, H., Wurst, K., Mitterbock, M., Ongania, K.-H., Opromolla, G. & Zanello, P. (1999). Oganometallics 18, 4325-436.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C12H11N2)]

  • Mr = 304.17

  • Orthorhombic, P c a 21

  • a = 18.7988 (17) Å

  • b = 5.9314 (6) Å

  • c = 12.5083 (10) Å

  • V = 1394.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.07 mm−1

  • T = 200 K

  • 0.32 × 0.18 × 0.13 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 6850 measured reflections

  • 3226 independent reflections

  • 2664 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.073

  • S = 0.94

  • 3226 reflections

  • 181 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.34 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1437 Friedel pairs

  • Flack parameter: −0.010 (18)

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C21–C25 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯N2i 0.95 2.58 3.429 (4) 149
C34—H34⋯N1ii 0.95 2.59 3.482 (4) 156
C32—H32⋯Cgiii 0.95 2.92 3.775 (3) 150
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+2, z]; (ii) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chelate ligands are an important class of molecules for complexation reactions. Given a specific set of donor atoms, their chelation ability in terms of Lewis basicity as well as denticity can be fine-tuned. Endowing the "backbone" of a chelate ligand with various substituents, a seemingly endless variety of ligands featuring different steric pretenses, solubility properties and derivatization possibilities is available. Ferrocenyl-substituted chelate ligands seem to be promising candidates with respect to all of the aforementioned features. In a larger study aimed at elucidating the rules guiding the formation and properties of N,N-ligand-supported coordination compounds, we determined the structure of the title compound to enable comparative studies. General background on ferrocenyl compound is amply available in the literature (Nolan et al., 2007; Cheng et al., 2008; Quing et al., 2009; Bildstein et al., 1999).

The cyclopentadienyl rings (Cp) in the ferrocenyl moiety are present in an ecliptic conformation. Both cyclopentadienyl moieties are nearly parallel to each other, the least-squares planes defined by their respective atoms enclose an angle of only 2.20 (14) °. The iron atom is a bit closer to the substituted Cp ring than to the unsubstituted one with the vertical displacements found at 1.6414 (5) Å and 1.6516 (5) Å. The imine is E-configured. The pyridyl system is roughly orientated perpendicular to the aromatic systems of the ferrocenyl moiety, the least-squares plane defined by its atoms intersects with the planes defined by the five-membered carbocycles at an angle of 78.66 (12) ° and 80.31 (11) °, respectively (Fig. 1).

In the crystal structure, two sets of C–H···N contacts are present whose ranges fall by about 0.1 Å below the sum of van-der-Waals radii of the atoms participating. While the N-atom in the pyridine-system acts as acceptor for one of the H-atoms of the substituted cyclopentadienyl-moiety, the second C–H···N contact is evident between the imine-type N-atom and the H-atom in meta-position to the N-atom in the pyridyl-moiety (Fig. 2). In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the first set of contacts is C11(10) on the unitary level while the second set necessitates a C11(6) descriptor on the same level. Additionally, a C–H···π interaction stemming from the CH group in ortho position to the nitrogen atom of the pyridine system is present. In total, the molecules are connected to wavy sheets perpendicular to the crystallographic b-axis (Fig. 2). The intercentroid distance between the two aromatic systems in the ferrocenyl moiety was measured at 3.2928 (18) Å.

The packing of the title compound is shown in Figure 3.

Related literature top

For general background to ferrocenyl compounds, see: Nolan et al. (2007); Cheng et al. (2008); Quing et al. (2009); Bildstein et al. (1999). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

The title compound was prepared upon condensation of ferrocenyl aldehyde with (pyridin-3-yl)methanamine in an aprotic solvent. Crystals suitable for the X-ray diffraction study were obtained upon recrystallization from dichloromethane-n-hexane.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.99 Å for the methylene group and C—H 0.95 Å for aromatic carbon atoms) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Intermolecular C–H···N contacts (red dashed lines) as well as C–H···π contacts (green dashed lines), viewed along [0 1 0]. Symmetry operators: i x - 1/2, -y + 2, z; ii x + 1/2, -y + 2y, z; iii -x + 1/2, y, z - 1/2; iv -x + 1/2, y, z + 1/2.
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along [0 - 1 0] (anisotropic displacement ellipsoids drawn at 50% probability level).
(E)-N-(Ferrocenylmethylidene)(pyridin-3-yl)methanamine top
Crystal data top
[Fe(C5H5)(C12H11N2)]F(000) = 632
Mr = 304.17Dx = 1.449 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2c -2acCell parameters from 3041 reflections
a = 18.7988 (17) Åθ = 2.7–27.9°
b = 5.9314 (6) ŵ = 1.07 mm1
c = 12.5083 (10) ÅT = 200 K
V = 1394.7 (2) Å3Platelet, red
Z = 40.32 × 0.18 × 0.13 mm
Data collection top
Bruker APEXII CCD
diffractometer
2664 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.059
Graphite monochromatorθmax = 28.3°, θmin = 2.7°
ϕ and ω scansh = 2418
6850 measured reflectionsk = 74
3226 independent reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0358P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max < 0.001
3226 reflectionsΔρmax = 0.63 e Å3
181 parametersΔρmin = 0.34 e Å3
1 restraintAbsolute structure: Flack (1983), 1437 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.010 (18)
Crystal data top
[Fe(C5H5)(C12H11N2)]V = 1394.7 (2) Å3
Mr = 304.17Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 18.7988 (17) ŵ = 1.07 mm1
b = 5.9314 (6) ÅT = 200 K
c = 12.5083 (10) Å0.32 × 0.18 × 0.13 mm
Data collection top
Bruker APEXII CCD
diffractometer
2664 reflections with I > 2σ(I)
6850 measured reflectionsRint = 0.059
3226 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.073Δρmax = 0.63 e Å3
S = 0.94Δρmin = 0.34 e Å3
3226 reflectionsAbsolute structure: Flack (1983), 1437 Friedel pairs
181 parametersAbsolute structure parameter: 0.010 (18)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.429304 (15)0.27995 (5)0.40012 (4)0.02708 (9)
N10.29625 (12)0.6770 (4)0.24303 (18)0.0351 (5)
N20.14153 (15)1.2176 (4)0.3715 (2)0.0511 (8)
C10.31665 (13)0.4737 (4)0.24620 (19)0.0325 (6)
H10.28210.35790.23820.039*
C20.21981 (15)0.7154 (5)0.2288 (2)0.0404 (6)
H2A0.19450.56910.22900.048*
H2B0.21130.78890.15890.048*
C110.39040 (16)0.4099 (5)0.2615 (2)0.0304 (6)
C120.44733 (14)0.5451 (4)0.2990 (2)0.0316 (6)
H120.44450.70070.31650.038*
C130.50912 (14)0.4093 (5)0.3063 (2)0.0375 (6)
H130.55480.45780.32930.045*
C140.49069 (16)0.1873 (5)0.2728 (2)0.0372 (7)
H140.52230.06260.26940.045*
C150.41843 (16)0.1830 (5)0.2459 (2)0.0355 (6)
H150.39240.05540.22180.043*
C210.34823 (18)0.2684 (6)0.5077 (3)0.0535 (9)
H210.30090.31870.49560.064*
C220.4048 (2)0.3982 (7)0.5483 (3)0.0539 (10)
H220.40240.55240.56860.065*
C230.4649 (2)0.2613 (6)0.5535 (2)0.0529 (9)
H230.51070.30650.57740.064*
C240.44638 (19)0.0467 (6)0.5177 (2)0.0480 (8)
H240.47720.08000.51390.058*
C250.37477 (18)0.0497 (5)0.4883 (2)0.0478 (8)
H250.34850.07370.46020.057*
C310.19150 (14)0.8618 (5)0.3166 (2)0.0334 (7)
C320.16642 (16)1.0750 (6)0.2967 (2)0.0396 (7)
H320.16671.12560.22460.047*
C330.14093 (19)1.1409 (7)0.4710 (3)0.0488 (8)
H330.12381.23770.52580.059*
C340.16360 (18)0.9303 (7)0.4993 (2)0.0496 (8)
H340.16090.88180.57160.059*
C350.19013 (17)0.7907 (5)0.4224 (2)0.0440 (8)
H350.20760.64570.44110.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.03100 (16)0.02611 (15)0.02413 (13)0.00168 (13)0.0003 (2)0.0016 (3)
N10.0355 (12)0.0351 (12)0.0347 (12)0.0009 (10)0.0006 (9)0.0047 (10)
N20.0590 (16)0.0405 (15)0.054 (2)0.0138 (12)0.0009 (13)0.0023 (13)
C10.0359 (14)0.0358 (15)0.0258 (11)0.0040 (11)0.0021 (10)0.0001 (11)
C20.0382 (15)0.0449 (16)0.0380 (14)0.0041 (12)0.0071 (13)0.0035 (14)
C110.0406 (16)0.0282 (16)0.0223 (12)0.0003 (13)0.0008 (11)0.0004 (12)
C120.0378 (15)0.0287 (13)0.0284 (12)0.0030 (11)0.0035 (10)0.0039 (11)
C130.0308 (14)0.0460 (17)0.0356 (13)0.0053 (12)0.0037 (11)0.0020 (13)
C140.0393 (17)0.0414 (17)0.0310 (14)0.0112 (13)0.0063 (12)0.0008 (13)
C150.0461 (17)0.0328 (16)0.0277 (12)0.0025 (13)0.0001 (11)0.0029 (13)
C210.0463 (18)0.074 (2)0.0403 (15)0.0117 (17)0.0169 (15)0.0221 (17)
C220.091 (3)0.046 (2)0.0253 (14)0.001 (2)0.0214 (17)0.0033 (17)
C230.060 (2)0.070 (3)0.0289 (15)0.008 (2)0.0063 (16)0.0048 (16)
C240.065 (2)0.0457 (18)0.0332 (14)0.0068 (16)0.0004 (13)0.0162 (14)
C250.056 (2)0.0458 (17)0.0410 (15)0.0161 (15)0.0061 (14)0.0094 (15)
C310.0249 (14)0.0372 (16)0.0382 (15)0.0017 (12)0.0054 (11)0.0049 (13)
C320.0433 (16)0.0383 (17)0.0371 (15)0.0000 (14)0.0029 (13)0.0077 (16)
C330.050 (2)0.056 (2)0.0410 (16)0.0080 (19)0.0059 (14)0.0078 (18)
C340.055 (2)0.062 (2)0.0315 (15)0.0040 (19)0.0001 (14)0.0077 (18)
C350.0489 (16)0.0421 (14)0.041 (2)0.0101 (13)0.0006 (12)0.0110 (15)
Geometric parameters (Å, º) top
Fe1—C152.023 (3)C13—C141.424 (4)
Fe1—C252.033 (3)C13—H130.9500
Fe1—C112.034 (3)C14—C151.400 (4)
Fe1—C212.034 (3)C14—H140.9500
Fe1—C232.034 (3)C15—H150.9500
Fe1—C222.034 (3)C21—C221.408 (5)
Fe1—C142.042 (3)C21—C251.411 (5)
Fe1—C242.044 (3)C21—H210.9500
Fe1—C122.046 (2)C22—C231.393 (6)
Fe1—C132.054 (3)C22—H220.9500
N1—C11.266 (3)C23—C241.394 (4)
N1—C21.466 (3)C23—H230.9500
N2—C331.326 (5)C24—C251.396 (5)
N2—C321.346 (4)C24—H240.9500
C1—C111.450 (4)C25—H250.9500
C1—H10.9500C31—C321.373 (4)
C2—C311.498 (4)C31—C351.389 (4)
C2—H2A0.9900C32—H320.9500
C2—H2B0.9900C33—C341.366 (5)
C11—C121.417 (4)C33—H330.9500
C11—C151.458 (4)C34—C351.363 (4)
C12—C131.416 (4)C34—H340.9500
C12—H120.9500C35—H350.9500
C15—Fe1—C25105.98 (12)C11—C12—H12125.7
C15—Fe1—C1142.13 (12)Fe1—C12—H12126.6
C25—Fe1—C11122.39 (13)C12—C13—C14107.9 (2)
C15—Fe1—C21123.05 (14)C12—C13—Fe169.50 (15)
C25—Fe1—C2140.60 (13)C14—C13—Fe169.19 (16)
C11—Fe1—C21107.90 (13)C12—C13—H13126.0
C15—Fe1—C23156.44 (14)C14—C13—H13126.0
C25—Fe1—C2367.53 (14)Fe1—C13—H13126.8
C11—Fe1—C23160.53 (14)C15—C14—C13108.9 (3)
C21—Fe1—C2367.72 (16)C15—C14—Fe169.15 (15)
C15—Fe1—C22160.68 (14)C13—C14—Fe170.10 (15)
C25—Fe1—C2267.87 (16)C15—C14—H14125.6
C11—Fe1—C22124.38 (12)C13—C14—H14125.6
C21—Fe1—C2240.49 (15)Fe1—C14—H14126.8
C23—Fe1—C2240.03 (16)C14—C15—C11107.5 (3)
C15—Fe1—C1440.28 (11)C14—C15—Fe170.57 (15)
C25—Fe1—C14121.82 (13)C11—C15—Fe169.31 (14)
C11—Fe1—C1468.91 (12)C14—C15—H15126.2
C21—Fe1—C14158.47 (15)C11—C15—H15126.2
C23—Fe1—C14122.33 (18)Fe1—C15—H15125.5
C22—Fe1—C14158.61 (15)C22—C21—C25107.3 (3)
C15—Fe1—C24120.60 (14)C22—C21—Fe169.77 (18)
C25—Fe1—C2440.03 (13)C25—C21—Fe169.64 (17)
C11—Fe1—C24157.84 (13)C22—C21—H21126.3
C21—Fe1—C2467.61 (13)C25—C21—H21126.3
C23—Fe1—C2439.96 (12)Fe1—C21—H21125.8
C22—Fe1—C2467.29 (15)C23—C22—C21108.1 (3)
C14—Fe1—C24106.85 (13)C23—C22—Fe169.98 (18)
C15—Fe1—C1269.27 (11)C21—C22—Fe169.74 (19)
C25—Fe1—C12159.25 (13)C23—C22—H22126.0
C11—Fe1—C1240.66 (11)C21—C22—H22126.0
C21—Fe1—C12123.97 (12)Fe1—C22—H22125.9
C23—Fe1—C12124.75 (13)C22—C23—C24108.4 (4)
C22—Fe1—C12109.60 (14)C22—C23—Fe169.99 (19)
C14—Fe1—C1268.36 (12)C24—C23—Fe170.40 (18)
C24—Fe1—C12159.82 (12)C22—C23—H23125.8
C15—Fe1—C1368.60 (12)C24—C23—H23125.8
C25—Fe1—C13158.36 (13)Fe1—C23—H23125.4
C11—Fe1—C1368.51 (11)C23—C24—C25108.3 (3)
C21—Fe1—C13159.72 (15)C23—C24—Fe169.64 (17)
C23—Fe1—C13108.61 (14)C25—C24—Fe169.53 (17)
C22—Fe1—C13123.86 (15)C23—C24—H24125.9
C14—Fe1—C1340.70 (12)C25—C24—H24125.9
C24—Fe1—C13123.32 (13)Fe1—C24—H24126.5
C12—Fe1—C1340.41 (11)C24—C25—C21107.9 (3)
C1—N1—C2116.7 (2)C24—C25—Fe170.43 (17)
C33—N2—C32116.1 (3)C21—C25—Fe169.76 (17)
N1—C1—C11122.9 (3)C24—C25—H25126.0
N1—C1—H1118.6C21—C25—H25126.0
C11—C1—H1118.6Fe1—C25—H25125.4
N1—C2—C31110.4 (2)C32—C31—C35116.5 (3)
N1—C2—H2A109.6C32—C31—C2121.5 (3)
C31—C2—H2A109.6C35—C31—C2122.0 (3)
N1—C2—H2B109.6N2—C32—C31124.9 (3)
C31—C2—H2B109.6N2—C32—H32117.5
H2A—C2—H2B108.1C31—C32—H32117.5
C12—C11—C1128.2 (3)N2—C33—C34123.7 (3)
C12—C11—C15107.1 (2)N2—C33—H33118.2
C1—C11—C15124.7 (3)C34—C33—H33118.2
C12—C11—Fe170.14 (14)C35—C34—C33119.1 (3)
C1—C11—Fe1123.72 (18)C35—C34—H34120.4
C15—C11—Fe168.56 (16)C33—C34—H34120.4
C13—C12—C11108.6 (2)C34—C35—C31119.6 (3)
C13—C12—Fe170.09 (15)C34—C35—H35120.2
C11—C12—Fe169.20 (15)C31—C35—H35120.2
C13—C12—H12125.7
C2—N1—C1—C11179.0 (2)C14—Fe1—C15—C11118.4 (3)
C1—N1—C2—C31125.0 (3)C24—Fe1—C15—C11161.84 (18)
N1—C1—C11—C1215.9 (4)C12—Fe1—C15—C1137.75 (16)
N1—C1—C11—C15167.9 (3)C13—Fe1—C15—C1181.19 (18)
N1—C1—C11—Fe1106.2 (3)C15—Fe1—C21—C22166.4 (2)
C15—Fe1—C11—C12118.5 (2)C25—Fe1—C21—C22118.4 (3)
C25—Fe1—C11—C12163.94 (17)C11—Fe1—C21—C22122.4 (2)
C21—Fe1—C11—C12121.67 (19)C23—Fe1—C21—C2237.4 (2)
C23—Fe1—C11—C1248.0 (5)C14—Fe1—C21—C22159.8 (4)
C22—Fe1—C11—C1280.0 (2)C24—Fe1—C21—C2280.8 (2)
C14—Fe1—C11—C1280.94 (18)C12—Fe1—C21—C2280.4 (2)
C24—Fe1—C11—C12163.9 (3)C13—Fe1—C21—C2246.1 (5)
C13—Fe1—C11—C1237.11 (16)C15—Fe1—C21—C2575.2 (2)
C15—Fe1—C11—C1118.2 (3)C11—Fe1—C21—C25119.2 (2)
C25—Fe1—C11—C140.6 (3)C23—Fe1—C21—C2581.0 (2)
C21—Fe1—C11—C11.6 (3)C22—Fe1—C21—C25118.4 (3)
C23—Fe1—C11—C175.3 (5)C14—Fe1—C21—C2541.4 (5)
C22—Fe1—C11—C143.3 (3)C24—Fe1—C21—C2537.6 (2)
C14—Fe1—C11—C1155.8 (3)C12—Fe1—C21—C25161.19 (18)
C24—Fe1—C11—C172.8 (4)C13—Fe1—C21—C25164.4 (3)
C12—Fe1—C11—C1123.3 (3)C25—C21—C22—C230.1 (4)
C13—Fe1—C11—C1160.4 (3)Fe1—C21—C22—C2359.7 (2)
C25—Fe1—C11—C1577.6 (2)C25—C21—C22—Fe159.8 (2)
C21—Fe1—C11—C15119.8 (2)C15—Fe1—C22—C23155.8 (4)
C23—Fe1—C11—C15166.5 (4)C25—Fe1—C22—C2380.9 (2)
C22—Fe1—C11—C15161.4 (2)C11—Fe1—C22—C23164.1 (2)
C14—Fe1—C11—C1537.58 (17)C21—Fe1—C22—C23119.1 (3)
C24—Fe1—C11—C1545.4 (4)C14—Fe1—C22—C2340.6 (5)
C12—Fe1—C11—C15118.5 (2)C24—Fe1—C22—C2337.5 (2)
C13—Fe1—C11—C1581.41 (18)C12—Fe1—C22—C23121.1 (2)
C1—C11—C12—C13177.0 (2)C13—Fe1—C22—C2378.4 (3)
C15—C11—C12—C130.4 (3)C15—Fe1—C22—C2136.7 (6)
Fe1—C11—C12—C1359.20 (18)C25—Fe1—C22—C2138.2 (2)
C1—C11—C12—Fe1117.8 (3)C11—Fe1—C22—C2176.8 (2)
C15—C11—C12—Fe158.83 (18)C23—Fe1—C22—C21119.1 (3)
C15—Fe1—C12—C1380.94 (17)C14—Fe1—C22—C21159.7 (3)
C25—Fe1—C12—C13161.3 (3)C24—Fe1—C22—C2181.6 (2)
C11—Fe1—C12—C13120.0 (2)C12—Fe1—C22—C21119.8 (2)
C21—Fe1—C12—C13162.43 (19)C13—Fe1—C22—C21162.51 (19)
C23—Fe1—C12—C1377.5 (2)C21—C22—C23—C240.6 (4)
C22—Fe1—C12—C13119.62 (19)Fe1—C22—C23—C2460.2 (2)
C14—Fe1—C12—C1337.61 (16)C21—C22—C23—Fe159.6 (2)
C24—Fe1—C12—C1342.3 (4)C15—Fe1—C23—C22160.1 (3)
C15—Fe1—C12—C1139.07 (17)C25—Fe1—C23—C2281.9 (3)
C25—Fe1—C12—C1141.2 (4)C11—Fe1—C23—C2242.8 (6)
C21—Fe1—C12—C1177.6 (2)C21—Fe1—C23—C2237.8 (2)
C23—Fe1—C12—C11162.4 (2)C14—Fe1—C23—C22163.7 (2)
C22—Fe1—C12—C11120.37 (19)C24—Fe1—C23—C22119.1 (3)
C14—Fe1—C12—C1182.40 (19)C12—Fe1—C23—C2279.0 (3)
C24—Fe1—C12—C11162.3 (3)C13—Fe1—C23—C22120.9 (2)
C13—Fe1—C12—C11120.0 (2)C15—Fe1—C23—C2441.1 (5)
C11—C12—C13—C140.1 (3)C25—Fe1—C23—C2437.2 (2)
Fe1—C12—C13—C1458.71 (19)C11—Fe1—C23—C24161.9 (4)
C11—C12—C13—Fe158.65 (17)C21—Fe1—C23—C2481.3 (2)
C15—Fe1—C13—C1282.76 (17)C22—Fe1—C23—C24119.1 (3)
C25—Fe1—C13—C12162.0 (3)C14—Fe1—C23—C2477.2 (2)
C11—Fe1—C13—C1237.33 (16)C12—Fe1—C23—C24161.95 (19)
C21—Fe1—C13—C1246.2 (4)C13—Fe1—C23—C24120.0 (2)
C23—Fe1—C13—C12122.16 (18)C22—C23—C24—C250.9 (4)
C22—Fe1—C13—C1280.5 (2)Fe1—C23—C24—C2559.0 (2)
C14—Fe1—C13—C12119.6 (2)C22—C23—C24—Fe159.9 (2)
C24—Fe1—C13—C12163.87 (17)C15—Fe1—C24—C23162.2 (2)
C15—Fe1—C13—C1436.79 (17)C25—Fe1—C24—C23119.7 (3)
C25—Fe1—C13—C1442.5 (4)C11—Fe1—C24—C23164.1 (3)
C11—Fe1—C13—C1482.22 (19)C21—Fe1—C24—C2381.6 (3)
C21—Fe1—C13—C14165.8 (4)C22—Fe1—C24—C2337.5 (2)
C23—Fe1—C13—C14118.3 (2)C14—Fe1—C24—C23120.6 (2)
C22—Fe1—C13—C14160.0 (2)C12—Fe1—C24—C2347.6 (5)
C24—Fe1—C13—C1476.6 (2)C13—Fe1—C24—C2379.1 (3)
C12—Fe1—C13—C14119.6 (2)C15—Fe1—C24—C2578.1 (2)
C12—C13—C14—C150.5 (3)C11—Fe1—C24—C2544.4 (4)
Fe1—C13—C14—C1558.41 (19)C21—Fe1—C24—C2538.2 (2)
C12—C13—C14—Fe158.90 (18)C23—Fe1—C24—C25119.7 (3)
C25—Fe1—C14—C1576.6 (2)C22—Fe1—C24—C2582.2 (2)
C11—Fe1—C14—C1539.25 (19)C14—Fe1—C24—C25119.7 (2)
C21—Fe1—C14—C1546.2 (4)C12—Fe1—C24—C25167.3 (3)
C23—Fe1—C14—C15158.6 (2)C13—Fe1—C24—C25161.25 (18)
C22—Fe1—C14—C15171.7 (4)C23—C24—C25—C210.9 (3)
C24—Fe1—C14—C15117.7 (2)Fe1—C24—C25—C2159.9 (2)
C12—Fe1—C14—C1583.06 (19)C23—C24—C25—Fe159.0 (2)
C13—Fe1—C14—C15120.4 (3)C22—C21—C25—C240.5 (4)
C15—Fe1—C14—C13120.4 (3)Fe1—C21—C25—C2460.4 (2)
C25—Fe1—C14—C13162.96 (18)C22—C21—C25—Fe159.9 (2)
C11—Fe1—C14—C1381.16 (18)C15—Fe1—C25—C24118.8 (2)
C21—Fe1—C14—C13166.6 (3)C11—Fe1—C25—C24161.80 (19)
C23—Fe1—C14—C1381.0 (2)C21—Fe1—C25—C24118.6 (3)
C22—Fe1—C14—C1351.3 (5)C23—Fe1—C25—C2437.1 (2)
C24—Fe1—C14—C13121.87 (18)C22—Fe1—C25—C2480.6 (2)
C12—Fe1—C14—C1337.35 (16)C14—Fe1—C25—C2478.0 (2)
C13—C14—C15—C110.7 (3)C12—Fe1—C25—C24167.6 (3)
Fe1—C14—C15—C1159.71 (18)C13—Fe1—C25—C2446.8 (4)
C13—C14—C15—Fe158.99 (19)C15—Fe1—C25—C21122.5 (2)
C12—C11—C15—C140.7 (3)C11—Fe1—C25—C2179.6 (2)
C1—C11—C15—C14177.5 (2)C23—Fe1—C25—C2181.5 (2)
Fe1—C11—C15—C1460.50 (19)C22—Fe1—C25—C2138.1 (2)
C12—C11—C15—Fe159.83 (17)C14—Fe1—C25—C21163.4 (2)
C1—C11—C15—Fe1117.0 (2)C24—Fe1—C25—C21118.6 (3)
C25—Fe1—C15—C14120.7 (2)C12—Fe1—C25—C2149.0 (4)
C11—Fe1—C15—C14118.4 (3)C13—Fe1—C25—C21165.4 (3)
C21—Fe1—C15—C14161.6 (2)N1—C2—C31—C32113.6 (3)
C23—Fe1—C15—C1450.5 (5)N1—C2—C31—C3565.5 (4)
C22—Fe1—C15—C14170.9 (4)C33—N2—C32—C310.9 (5)
C24—Fe1—C15—C1479.8 (2)C35—C31—C32—N20.5 (5)
C12—Fe1—C15—C1480.61 (19)C2—C31—C32—N2178.6 (3)
C13—Fe1—C15—C1437.16 (19)C32—N2—C33—C340.2 (5)
C25—Fe1—C15—C11120.95 (18)N2—C33—C34—C351.7 (6)
C21—Fe1—C15—C1180.1 (2)C33—C34—C35—C312.1 (5)
C23—Fe1—C15—C11168.8 (3)C32—C31—C35—C341.1 (4)
C22—Fe1—C15—C1152.5 (5)C2—C31—C35—C34179.8 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C21–C25 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···N2i0.952.583.429 (4)149
C34—H34···N1ii0.952.593.482 (4)156
C32—H32···Cgiii0.952.923.775 (3)150
Symmetry codes: (i) x+1/2, y+2, z; (ii) x+1/2, y, z+1/2; (iii) x+1/2, y+1, z1/2.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C12H11N2)]
Mr304.17
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)200
a, b, c (Å)18.7988 (17), 5.9314 (6), 12.5083 (10)
V3)1394.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.32 × 0.18 × 0.13
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6850, 3226, 2664
Rint0.059
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.073, 0.94
No. of reflections3226
No. of parameters181
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.34
Absolute structureFlack (1983), 1437 Friedel pairs
Absolute structure parameter0.010 (18)

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SIR97 (Altomare et al., 1999), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C21–C25 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···N2i0.952.583.429 (4)149
C34—H34···N1ii0.952.593.482 (4)156
C32—H32···Cgiii0.952.923.775 (3)150
Symmetry codes: (i) x+1/2, y+2, z; (ii) x+1/2, y, z+1/2; (iii) x+1/2, y+1, z1/2.
 

Acknowledgements

The authors thank Mrs Sue Mackay for helpful discussions.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBildstein, B., Maluan, M., Kopacka, H., Wurst, K., Mitterbock, M., Ongania, K.-H., Opromolla, G. & Zanello, P. (1999). Oganometallics 18, 4325–436.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.  Google Scholar
First citationCheng, J.-P., Niu, H.-T., Yin, Z., Su, D., Niu, D., Ao, Y. & He, J. (2008). Tetrahedron, 64, 6300–6306.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNolan, K., Dallas, A., Kuhtz, H., Farrell, A. & Quilty, B. (2007). Tetrahedron Lett. 48, 1017–1021.  Google Scholar
First citationQuing, C., Yang, X.-D., Zeng, X.-H., Zhang, Y.-L., Song, W.-J., Li, L. & Zhang, H.-B. (2009). Bioorg. Med. Chem. Lett. 19, 1892–1895.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds