organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Methyl-4-{[(3-{[(3-methyl-5-oxo-1-phenyl-4,5-di­hydro-1H-pyrazol-4-yl­­idene)(phen­yl)meth­yl]amino­meth­yl}benz­yl)amino](phen­yl)methyl­­idene}-1-phenyl-1H-pyrazol-5(4H)-one

aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China, and bInstitute of Functional Materials, Jiangxi University of Finance & Economics, Nanchang 330013, People's Republic of China
*Correspondence e-mail: wuwn08@hpu.edu.cn

(Received 1 July 2011; accepted 6 July 2011; online 13 July 2011)

The complete mol­ecule of the title compound, C42H36N6O2, is generated by a crystallographic twofold axis with two C atoms of the central phenyl group lying on the axis. In the independent part of the mol­ecule, one amino group is involved in an intra­molecular N—H⋯O hydrogen bond, and the two adjacent phenyl rings are twisted from the plane of the pyrazolone ring with dihedral angles of 6.82 (3) and 88.32 (6)°. The crystal packing exhibits no classical inter­molecular contacts.

Related literature

For the similar structure (E,E)-3,3′-dimethyl-1,1′-diphenyl-4,4′-{(3-aza­pentane-1,5-diyldiimino)­bis­[phenyl­methyl­idyne]}di-1H-pyrazol-5(4H)-one, see: Zhang et al. (2010[Zhang, Z.-P., Wang, Y., Li, X.-X. & Li, Y.-W. (2010). Acta Cryst. E66, o3326.]). For the DNA binding properties of transition metal complexes with the above Schiff base, see: Wang & Yang (2005[Wang, Y. & Yang, Z.-Y. (2005). Transition Met. Chem. 30, 902-906.]).

[Scheme 1]

Experimental

Crystal data
  • C42H36N6O2

  • Mr = 656.77

  • Monoclinic, C 2/c

  • a = 26.4648 (5) Å

  • b = 14.3131 (3) Å

  • c = 9.5492 (2) Å

  • β = 96.766 (1)°

  • V = 3591.98 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.26 × 0.21 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA .]) Tmin = 0.981, Tmax = 0.986

  • 26618 measured reflections

  • 4290 independent reflections

  • 2244 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.154

  • S = 1.01

  • 4290 reflections

  • 229 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1 0.86 2.04 2.7353 (17) 138

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA .]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA .]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

For our interest in coordination chemistry of the Schiff bases derived from 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (PMBP) (Wang et al., 2005; Zhang et al., 2010), the crystal structure of the title compound was determined by X-ray diffraction analysis.

As shown in Fig.1, the molecule is generated by a crystallographic two fold axis, with atoms C20 and C22 lying on the axis. In the independent part of the molecule, the two phenyl rings (C1—C6, r.m.s. deviation = 0.0023 Å and C12—C17, r.m.s. deviation = 0.0060 Å) are slightly twisted with respect to the central pyrazolone ring (r.m.s. deviation = 0.0040 Å) making dihedral angles of 6.82 (3)° and 88.32 (6)°, respectively. The non-hydrogen atoms of the phenylenedimethylene group are situated in a fair plane (r.m.s. deviation = 0.0013 Å). The dihedral angles between this plane and the two phenyls in the PMBP moiety are 36.27 (8)° and 82.61 (6)°, respectively. The conformation of the molecule is influenced by an intramolecular hydrogen bond N3—H3A···O1 (Table 1).

Related literature top

For the similar structure of (E,E)-3,3'-dimethyl-1,1'-diphenyl-4,4'-{(3-azapentane-1,5-diyldiimino)bis[phenylmethylidyne]}di-1H-pyrazol-5(4H)-one, see: Zhang et al. (2010). For the DNA binding properties of transition metal complexes with the above Schiff base, see: Wang & Yang (2005).

Experimental top

A quality of PMBP (1.1 g, 4 mmol) was dissolved in EtOH (50 ml), and an EtOH solution (10 ml) containing (3-(aminomethyl)phenyl)methanamine (0.3 g, 2 mmol) was added dropwise. The mixture was refluxed on a water bath for 3 h, then cooled to room temperature. Yellow block crystals were obtained by slow evaporation of the reaction mixture.

Refinement top

All H atoms were placed in calculated positions, with the carrier atom-H distances = 0.93 Å for aryl, 0.97 Å for methylene, 0.96 Å for the methyl and 0.86 Å for the secondary amine H atoms, and refined as riding, with the Uiso(H) = 1.5Ueq(C) for methyl groups and 1.2Ueq(C,N) for others.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure shown with 30% probability displacement ellipsoids. Unlabelled atoms are related with the labelled ones by symmetry operation -x, y, -z + 1/2.
3-Methyl-4-{[(3-{[(3-methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol- 4-ylidene)(phenyl)methyl]aminomethyl}benzyl)amino](phenyl)methylidene}- 1-phenyl-1H-pyrazol-5(4H)-one top
Crystal data top
C42H36N6O2F(000) = 1384
Mr = 656.77Dx = 1.214 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5169 reflections
a = 26.4648 (5) Åθ = 2.5–22.3°
b = 14.3131 (3) ŵ = 0.08 mm1
c = 9.5492 (2) ÅT = 296 K
β = 96.766 (1)°Block, yellow
V = 3591.98 (13) Å30.26 × 0.21 × 0.18 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4290 independent reflections
Radiation source: fine-focus sealed tube2244 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 27.9°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 3434
Tmin = 0.981, Tmax = 0.986k = 1818
26618 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.070P)2 + 0.8006P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
4290 reflectionsΔρmax = 0.14 e Å3
229 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0014 (3)
Crystal data top
C42H36N6O2V = 3591.98 (13) Å3
Mr = 656.77Z = 4
Monoclinic, C2/cMo Kα radiation
a = 26.4648 (5) ŵ = 0.08 mm1
b = 14.3131 (3) ÅT = 296 K
c = 9.5492 (2) Å0.26 × 0.21 × 0.18 mm
β = 96.766 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4290 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2244 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.986Rint = 0.034
26618 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.01Δρmax = 0.14 e Å3
4290 reflectionsΔρmin = 0.14 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.10591 (12)0.05358 (17)0.2444 (3)0.1384 (12)
H10.10080.01070.24290.166*
C20.06985 (11)0.11231 (16)0.1809 (3)0.1245 (10)
H20.03990.08730.13510.149*
C30.07646 (8)0.20769 (14)0.1825 (3)0.0910 (7)
H30.05130.24660.13860.109*
C40.12058 (7)0.24467 (12)0.2496 (2)0.0697 (5)
C50.15709 (9)0.18561 (15)0.3125 (3)0.1080 (9)
H50.18740.20980.35760.130*
C60.14915 (12)0.09075 (16)0.3094 (4)0.1417 (13)
H60.17420.05140.35310.170*
C70.10172 (6)0.41413 (11)0.18660 (19)0.0584 (4)
C80.12958 (6)0.49712 (11)0.23182 (18)0.0561 (4)
C90.17273 (6)0.46540 (13)0.32301 (18)0.0625 (5)
C100.21466 (8)0.51993 (14)0.4038 (2)0.0895 (7)
H10A0.23790.47780.45640.134*
H10B0.20060.56180.46750.134*
H10C0.23240.55520.33940.134*
C110.11435 (6)0.58586 (11)0.18703 (18)0.0551 (4)
C120.14287 (6)0.67116 (11)0.23827 (18)0.0569 (4)
C130.13372 (8)0.71405 (13)0.3608 (2)0.0756 (5)
H130.10880.69080.41240.091*
C140.16157 (9)0.79207 (16)0.4079 (2)0.0951 (7)
H140.15500.82160.49060.114*
C150.19853 (9)0.82590 (15)0.3338 (3)0.0962 (7)
H150.21780.87730.36740.115*
C160.20722 (9)0.78489 (16)0.2119 (3)0.1021 (8)
H160.23190.80900.16040.122*
C170.17952 (8)0.70699 (14)0.1631 (2)0.0858 (6)
H170.18580.67890.07900.103*
C180.05088 (7)0.68359 (12)0.0429 (2)0.0706 (5)
H18A0.02650.67150.03920.085*
H18B0.07730.72340.01330.085*
C190.02445 (6)0.73496 (11)0.1510 (2)0.0646 (5)
C200.00000.68840 (15)0.25000.0621 (7)
H200.00000.62340.25000.075*
C210.02423 (8)0.83127 (13)0.1519 (3)0.0908 (7)
H210.04050.86420.08610.109*
C220.00000.8787 (2)0.25000.1146 (13)
H220.00000.94360.25000.138*
N10.12954 (5)0.34190 (9)0.25329 (16)0.0644 (4)
N20.17324 (5)0.37498 (10)0.33522 (16)0.0694 (4)
N30.07349 (5)0.59561 (9)0.09345 (16)0.0668 (4)
H3A0.05910.54530.05970.100*
O10.06148 (4)0.40607 (8)0.10539 (14)0.0743 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.136 (2)0.0553 (14)0.208 (3)0.0138 (15)0.047 (2)0.0128 (17)
C20.1086 (19)0.0678 (14)0.184 (3)0.0293 (14)0.0386 (19)0.0169 (16)
C30.0764 (13)0.0606 (12)0.1302 (19)0.0125 (10)0.0116 (13)0.0129 (12)
C40.0711 (12)0.0493 (10)0.0868 (13)0.0025 (9)0.0016 (10)0.0035 (9)
C50.0992 (16)0.0550 (12)0.156 (2)0.0067 (11)0.0417 (16)0.0062 (13)
C60.136 (2)0.0555 (14)0.215 (3)0.0057 (14)0.062 (2)0.0043 (16)
C70.0522 (9)0.0513 (10)0.0712 (11)0.0004 (8)0.0047 (9)0.0067 (8)
C80.0486 (9)0.0505 (9)0.0688 (11)0.0022 (7)0.0048 (8)0.0063 (8)
C90.0545 (10)0.0552 (10)0.0758 (12)0.0009 (8)0.0003 (9)0.0053 (9)
C100.0726 (12)0.0717 (13)0.1153 (17)0.0063 (10)0.0257 (12)0.0031 (12)
C110.0451 (8)0.0531 (10)0.0672 (11)0.0003 (7)0.0075 (8)0.0058 (8)
C120.0517 (9)0.0484 (9)0.0690 (11)0.0031 (7)0.0004 (8)0.0032 (8)
C130.0790 (12)0.0730 (13)0.0753 (13)0.0160 (10)0.0109 (10)0.0137 (10)
C140.1101 (18)0.0861 (15)0.0869 (15)0.0199 (14)0.0023 (14)0.0292 (12)
C150.0974 (16)0.0703 (14)0.1161 (19)0.0291 (12)0.0069 (15)0.0165 (14)
C160.0932 (16)0.0910 (16)0.124 (2)0.0426 (13)0.0228 (15)0.0114 (15)
C170.0831 (13)0.0806 (14)0.0974 (15)0.0274 (11)0.0265 (12)0.0194 (12)
C180.0580 (10)0.0597 (11)0.0907 (14)0.0013 (8)0.0054 (10)0.0099 (10)
C190.0492 (9)0.0456 (9)0.0944 (14)0.0025 (7)0.0106 (9)0.0049 (9)
C200.0508 (13)0.0358 (11)0.0960 (19)0.0000.0072 (13)0.000
C210.0942 (15)0.0489 (11)0.130 (2)0.0071 (10)0.0134 (14)0.0107 (11)
C220.131 (3)0.0378 (14)0.179 (4)0.0000.037 (3)0.000
N10.0574 (8)0.0501 (8)0.0826 (10)0.0003 (7)0.0051 (8)0.0051 (7)
N20.0603 (9)0.0580 (9)0.0862 (11)0.0006 (7)0.0066 (8)0.0040 (8)
N30.0537 (8)0.0528 (8)0.0905 (11)0.0027 (6)0.0050 (8)0.0051 (7)
O10.0579 (7)0.0572 (7)0.1023 (10)0.0039 (6)0.0132 (7)0.0077 (6)
Geometric parameters (Å, º) top
C1—C61.346 (4)C12—C171.372 (2)
C1—C21.359 (3)C13—C141.384 (3)
C1—H10.9300C13—H130.9300
C2—C31.376 (3)C14—C151.362 (3)
C2—H20.9300C14—H140.9300
C3—C41.370 (3)C15—C161.347 (3)
C3—H30.9300C15—H150.9300
C4—C51.369 (3)C16—C171.385 (3)
C4—N11.412 (2)C16—H160.9300
C5—C61.374 (3)C17—H170.9300
C5—H50.9300C18—N31.452 (2)
C6—H60.9300C18—C191.506 (3)
C7—O11.2465 (19)C18—H18A0.9700
C7—N11.381 (2)C18—H18B0.9700
C7—C81.437 (2)C19—C201.378 (2)
C8—C111.385 (2)C19—C211.379 (2)
C8—C91.426 (2)C20—C19i1.378 (2)
C9—N21.299 (2)C20—H200.9300
C9—C101.495 (2)C21—C221.375 (2)
C10—H10A0.9600C21—H210.9300
C10—H10B0.9600C22—C21i1.375 (2)
C10—H10C0.9600C22—H220.9300
C11—N31.327 (2)N1—N21.4002 (19)
C11—C121.488 (2)N3—H3A0.8600
C12—C131.368 (2)
C6—C1—C2118.4 (2)C12—C13—H13120.0
C6—C1—H1120.8C14—C13—H13120.0
C2—C1—H1120.8C15—C14—C13120.4 (2)
C1—C2—C3121.8 (2)C15—C14—H14119.8
C1—C2—H2119.1C13—C14—H14119.8
C3—C2—H2119.1C16—C15—C14120.0 (2)
C4—C3—C2119.2 (2)C16—C15—H15120.0
C4—C3—H3120.4C14—C15—H15120.0
C2—C3—H3120.4C15—C16—C17120.3 (2)
C5—C4—C3119.04 (18)C15—C16—H16119.9
C5—C4—N1119.34 (17)C17—C16—H16119.9
C3—C4—N1121.61 (17)C12—C17—C16120.2 (2)
C4—C5—C6120.2 (2)C12—C17—H17119.9
C4—C5—H5119.9C16—C17—H17119.9
C6—C5—H5119.9N3—C18—C19113.69 (15)
C1—C6—C5121.4 (2)N3—C18—H18A108.8
C1—C6—H6119.3C19—C18—H18A108.8
C5—C6—H6119.3N3—C18—H18B108.8
O1—C7—N1126.00 (15)C19—C18—H18B108.8
O1—C7—C8129.32 (15)H18A—C18—H18B107.7
N1—C7—C8104.68 (14)C20—C19—C21118.47 (19)
C11—C8—C9131.56 (15)C20—C19—C18121.86 (15)
C11—C8—C7123.01 (15)C21—C19—C18119.68 (18)
C9—C8—C7105.42 (14)C19—C20—C19i122.2 (2)
N2—C9—C8111.78 (15)C19—C20—H20118.9
N2—C9—C10118.33 (16)C19i—C20—H20118.9
C8—C9—C10129.89 (16)C22—C21—C19120.0 (2)
C9—C10—H10A109.5C22—C21—H21120.0
C9—C10—H10B109.5C19—C21—H21120.0
H10A—C10—H10B109.5C21i—C22—C21120.9 (3)
C9—C10—H10C109.5C21i—C22—H22119.6
H10A—C10—H10C109.5C21—C22—H22119.6
H10B—C10—H10C109.5C7—N1—N2111.41 (13)
N3—C11—C8119.28 (14)C7—N1—C4130.37 (15)
N3—C11—C12118.49 (14)N2—N1—C4118.22 (14)
C8—C11—C12122.23 (15)C9—N2—N1106.70 (14)
C13—C12—C17119.14 (16)C11—N3—C18125.91 (14)
C13—C12—C11121.05 (15)C11—N3—H3A117.0
C17—C12—C11119.81 (16)C18—N3—H3A117.0
C12—C13—C14119.96 (19)
C6—C1—C2—C30.4 (5)C13—C14—C15—C161.8 (4)
C1—C2—C3—C40.1 (5)C14—C15—C16—C171.5 (4)
C2—C3—C4—C50.4 (4)C13—C12—C17—C160.8 (3)
C2—C3—C4—N1179.4 (2)C11—C12—C17—C16178.25 (19)
C3—C4—C5—C60.7 (4)C15—C16—C17—C120.2 (4)
N1—C4—C5—C6179.7 (3)N3—C18—C19—C2033.2 (2)
C2—C1—C6—C50.1 (6)N3—C18—C19—C21147.11 (18)
C4—C5—C6—C10.4 (5)C21—C19—C20—C19i0.01 (13)
O1—C7—C8—C110.4 (3)C18—C19—C20—C19i179.73 (17)
N1—C7—C8—C11179.42 (15)C20—C19—C21—C220.0 (3)
O1—C7—C8—C9179.44 (17)C18—C19—C21—C22179.75 (15)
N1—C7—C8—C90.36 (18)C19—C21—C22—C21i0.01 (13)
C11—C8—C9—N2178.64 (17)O1—C7—N1—N2178.94 (16)
C7—C8—C9—N20.3 (2)C8—C7—N1—N20.88 (18)
C11—C8—C9—C102.4 (3)O1—C7—N1—C40.6 (3)
C7—C8—C9—C10178.61 (19)C8—C7—N1—C4179.55 (18)
C9—C8—C11—N3175.76 (17)C5—C4—N1—C7172.5 (2)
C7—C8—C11—N33.0 (3)C3—C4—N1—C76.5 (3)
C9—C8—C11—C123.1 (3)C5—C4—N1—N27.1 (3)
C7—C8—C11—C12178.17 (15)C3—C4—N1—N2173.93 (18)
N3—C11—C12—C1395.4 (2)C8—C9—N2—N10.8 (2)
C8—C11—C12—C1385.8 (2)C10—C9—N2—N1178.22 (16)
N3—C11—C12—C1785.6 (2)C7—N1—N2—C91.09 (19)
C8—C11—C12—C1793.2 (2)C4—N1—N2—C9179.28 (16)
C17—C12—C13—C140.5 (3)C8—C11—N3—C18175.89 (16)
C11—C12—C13—C14178.51 (18)C12—C11—N3—C185.2 (3)
C12—C13—C14—C150.8 (3)C19—C18—N3—C1171.2 (2)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.862.042.7353 (17)138

Experimental details

Crystal data
Chemical formulaC42H36N6O2
Mr656.77
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)26.4648 (5), 14.3131 (3), 9.5492 (2)
β (°) 96.766 (1)
V3)3591.98 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.26 × 0.21 × 0.18
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.981, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
26618, 4290, 2244
Rint0.034
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.154, 1.01
No. of reflections4290
No. of parameters229
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.14

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.862.042.7353 (17)138
 

Acknowledgements

The authors are grateful to the Natural Science Foundation of Jiangxi Province for financial support (No. 2010GQS0064).

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA .  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y. & Yang, Z.-Y. (2005). Transition Met. Chem. 30, 902–906.  Web of Science CrossRef CAS Google Scholar
First citationZhang, Z.-P., Wang, Y., Li, X.-X. & Li, Y.-W. (2010). Acta Cryst. E66, o3326.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds