organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,5-Di­chloro­phen­yl)succinamic acid

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 5 July 2011; accepted 14 July 2011; online 23 July 2011)

In the title compound, C10H9Cl2NO3, the conformation of the N—H bond in the amide segment is syn with respect to the ortho-Cl atom and anti to the meta-Cl atom of the benzene ring. In the crystal, inter­molecular O—H⋯O and N—H⋯O hydrogen bonds pack the mol­ecules into two types of chains along the a and b axes, respectively, leading to an overall sheet structure. The acid group in the side chain is disordered and was refined using a split model with site-occupation factors of 0.60:0.40.

Related literature

For our studies of the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Bhat & Gowda (2000[Bhat, D. K. & Gowda, B. T. (2000). J. Indian Chem. Soc. 77, 279-284.]); Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o1975-o1976.]); Saraswathi et al. (2011a[Saraswathi, B. S., Foro, S. & Gowda, B. T. (2011a). Acta Cryst. E67, o1879.],b[Saraswathi, B. S., Foro, S. & Gowda, B. T. (2011b). Acta Cryst. E67, o1880.]), on N-(ar­yl)-methane­sulfonamides, see: Jayalakshmi & Gowda (2004[Jayalakshmi, K. L. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 491-500.]) and on N-chloro-aryl­sulfonamides, see: Gowda et al. (2003[Gowda, B. T., D'Souza, J. D. & Kumar, B. H. A. (2003). Z. Naturforsch. Teil A, 58, 51-56.]). For the modes of inter­linking carb­oxy­lic acids by hydrogen bonds, see: Leiserowitz (1976[Leiserowitz, L. (1976). Acta Cryst. B32, 775-802.]). For the packing of mol­ecules involving dimeric hydrogen-bonding associations of each carboxyl group with a centrosymmetrically related neighbor, see: Jagannathan et al. (1994[Jagannathan, N. R., Rajan, S. S. & Subramanian, E. (1994). J. Chem. Crystallogr. 24, 75-78.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9Cl2NO3

  • Mr = 262.08

  • Monoclinic, P 21 /c

  • a = 5.726 (1) Å

  • b = 4.787 (1) Å

  • c = 41.583 (6) Å

  • β = 91.93 (2)°

  • V = 1139.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.56 mm−1

  • T = 293 K

  • 0.44 × 0.16 × 0.09 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.791, Tmax = 0.951

  • 3375 measured reflections

  • 2046 independent reflections

  • 1552 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.077

  • wR(F2) = 0.171

  • S = 1.14

  • 2046 reflections

  • 185 parameters

  • 54 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2A—H2A⋯O3Ai 0.82 1.90 2.687 (15) 162
O2B—H2B⋯O3Bi 0.82 1.90 2.64 (2) 150
N1—H1N⋯O1ii 0.85 (2) 2.07 (2) 2.901 (6) 167 (5)
Symmetry codes: (i) -x+3, -y, -z; (ii) x, y-1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The amide and sulfonamide moieties are important constituents of many biologically important compounds. As a part of our studies on the effects of substituents on the structures and other aspects of this class of compounds (Bhat & Gowda, 2000; Gowda et al., 2003, 2007; Jayalakshmi & Gowda, 2004; Saraswathi et al., 2011a,b), in the present work, the crystal structure of N-(2,5-dichlorophenyl)-succinamic acid (I) has been determined (Fig. 1). The conformation of the N—H bond in the amide segment is syn to the ortho–chloro atom and anti to the meta–chloro atom of the benzene ring, similar to the syn conformation observed between the amide hydrogen and the ortho- methyl group and anti conformation between the amide hydrogen and the meta-methyl group in the benzene ring of N-(2,5-dimethylphenyl)-succinamic acid monohydrate (II) (Saraswathi et al., 2011a).

Further, the conformations of the amide oxygen and the carboxyl oxygen of the acid segment are syn to each other. But the conformation of the amide CO is anti to the H atoms on the adjacent –CH2 group, while the carboxyl CO is syn to the H atoms on the adjacent –CH2 group.

The CO and O—H bonds of the acid group are in syn position to each other, similar to that observed in (II) and in N-(2,6-dichlorophenyl)-succinamic acid (Saraswathi et al., 2011b).

The intermolecular O—H···O and N—H···O hydrogen bonds, along a- and b-axes, respectively, pack the molecules into infinite chains in the structure (Table 1, Fig.2).

The modes of interlinking carboxylic acids by hydrogen bonds is described elsewhere (Leiserowitz, 1976). The packing of molecules involving dimeric hydrogen bonded association of each carboxyl group with a centrosymmetrically related neighbor has also been observed (Jagannathan et al., 1994).

Related literature top

For our studies of the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Bhat & Gowda (2000); Gowda et al. (2007); Saraswathi et al. (2011a,b), on N-(aryl)-methanesulfonamides, see: Jayalakshmi & Gowda (2004) and on N-chloro-arylsulfonamides, see: Gowda et al. (2003). For the modes of interlinking carboxylic acids by hydrogen bonds, see: Leiserowitz (1976). For the packing of molecules involving dimeric hydrogen-bonding associations of each carboxyl group with a centrosymmetrically related neighbor, see: Jagannathan et al. (1994).

Experimental top

The solution of succinic anhydride (0.01 mole) in toluene (25 ml) was treated dropwise with the solution of 2,5-dichloroaniline (0.01 mole) also in toluene (20 ml) with constant stirring. The resulting mixture was stirred for about one hour and set aside for an additional hour at room temperature for completion of the reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 2,5-dichloroaniline. The resultant title compound was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked and characterized by its infrared and NMR spectra.

Needle like colorless single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and its position refined with N—H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å, methylene C—H = 0.97 Å and O—H = 0.82 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

The atoms C9, C10, O2 and O3 are disordered and were refind using a split model. The corresponding site-occupation factors were fixed to 0.60:0.40 and their corresponding bond distances in the disordered groups were restrained to be equal. The Ueq of these atoms were restrained to approximate isotropic behavoir.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme and with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
N-(2,5-Dichlorophenyl)succinamic acid top
Crystal data top
C10H9Cl2NO3F(000) = 536
Mr = 262.08Dx = 1.528 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 987 reflections
a = 5.726 (1) Åθ = 2.9–27.7°
b = 4.787 (1) ŵ = 0.56 mm1
c = 41.583 (6) ÅT = 293 K
β = 91.93 (2)°Needle, colourless
V = 1139.2 (4) Å30.44 × 0.16 × 0.09 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2046 independent reflections
Radiation source: fine-focus sealed tube1552 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Rotation method data acquisition using ω scansθmax = 25.3°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 56
Tmin = 0.791, Tmax = 0.951k = 52
3375 measured reflectionsl = 5037
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0436P)2 + 4.544P]
where P = (Fo2 + 2Fc2)/3
2046 reflections(Δ/σ)max = 0.048
185 parametersΔρmax = 0.75 e Å3
54 restraintsΔρmin = 0.41 e Å3
Crystal data top
C10H9Cl2NO3V = 1139.2 (4) Å3
Mr = 262.08Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.726 (1) ŵ = 0.56 mm1
b = 4.787 (1) ÅT = 293 K
c = 41.583 (6) Å0.44 × 0.16 × 0.09 mm
β = 91.93 (2)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2046 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1552 reflections with I > 2σ(I)
Tmin = 0.791, Tmax = 0.951Rint = 0.022
3375 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07754 restraints
wR(F2) = 0.171H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.75 e Å3
2046 reflectionsΔρmin = 0.41 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.3416 (2)0.1995 (3)0.13931 (4)0.0513 (4)
Cl20.8927 (3)0.6671 (3)0.22318 (3)0.0460 (4)
O10.8848 (9)0.5091 (8)0.10285 (10)0.0599 (13)
O2A1.4182 (19)0.004 (3)0.0382 (2)0.088 (4)0.60
H2A1.49400.07470.02390.106*0.60
O2B1.325 (3)0.072 (3)0.0293 (4)0.061 (4)0.40
H2B1.39720.11710.01340.074*0.40
O3A1.259 (2)0.248 (3)0.0021 (3)0.082 (4)0.60
O3B1.357 (4)0.322 (4)0.0053 (5)0.096 (7)0.40
N10.7824 (8)0.0816 (9)0.12040 (10)0.0342 (10)
H1N0.791 (9)0.091 (5)0.1164 (13)0.041*
C10.6994 (8)0.1621 (10)0.15067 (11)0.0296 (11)
C20.4967 (9)0.0438 (11)0.16233 (12)0.0342 (12)
C30.4144 (9)0.1202 (12)0.19205 (13)0.0402 (13)
H30.27800.04020.19940.048*
C40.5332 (9)0.3132 (12)0.21069 (13)0.0412 (13)
H40.47770.36620.23050.049*
C50.7367 (9)0.4276 (11)0.19951 (12)0.0334 (12)
C60.8201 (8)0.3543 (11)0.17001 (11)0.0321 (12)
H60.95760.43370.16300.039*
C70.8798 (10)0.2569 (11)0.09932 (13)0.0369 (13)
C80.9872 (12)0.1158 (13)0.07101 (14)0.0516 (16)
H8A1.11200.00470.07910.062*
H8B0.86950.00310.06080.062*
C9A1.082 (2)0.297 (3)0.0464 (2)0.044 (3)0.60
H9A1.16010.45410.05680.053*0.60
H9B0.95450.36880.03290.053*0.60
C9B1.172 (3)0.293 (5)0.0582 (5)0.058 (5)0.40
H9C1.28590.32770.07560.069*0.40
H9D1.10280.47090.05230.069*0.40
C10A1.253 (3)0.145 (3)0.0256 (4)0.057 (4)0.60
C10B1.302 (4)0.187 (4)0.0298 (5)0.043 (6)0.40
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0426 (8)0.0500 (9)0.0613 (9)0.0162 (7)0.0020 (7)0.0020 (8)
Cl20.0553 (9)0.0455 (8)0.0376 (7)0.0051 (7)0.0053 (6)0.0069 (7)
O10.106 (4)0.026 (2)0.050 (3)0.007 (2)0.040 (2)0.0065 (19)
O2A0.092 (7)0.118 (8)0.055 (5)0.027 (6)0.018 (5)0.009 (5)
O2B0.068 (6)0.056 (5)0.062 (6)0.002 (4)0.031 (4)0.004 (4)
O3A0.075 (6)0.109 (8)0.065 (6)0.019 (6)0.017 (5)0.005 (6)
O3B0.110 (10)0.081 (9)0.099 (10)0.001 (8)0.038 (8)0.009 (8)
N10.044 (2)0.024 (2)0.037 (2)0.004 (2)0.0166 (19)0.004 (2)
C10.029 (2)0.025 (3)0.035 (3)0.003 (2)0.011 (2)0.001 (2)
C20.031 (3)0.030 (3)0.042 (3)0.003 (2)0.005 (2)0.001 (2)
C30.032 (3)0.045 (3)0.044 (3)0.003 (3)0.016 (2)0.008 (3)
C40.042 (3)0.046 (3)0.037 (3)0.004 (3)0.020 (2)0.005 (3)
C50.037 (3)0.031 (3)0.032 (3)0.004 (2)0.007 (2)0.002 (2)
C60.028 (3)0.033 (3)0.037 (3)0.001 (2)0.013 (2)0.005 (2)
C70.050 (3)0.026 (3)0.035 (3)0.002 (2)0.012 (2)0.006 (2)
C80.069 (4)0.043 (3)0.045 (3)0.007 (3)0.027 (3)0.012 (3)
C9A0.062 (6)0.039 (5)0.032 (5)0.007 (5)0.013 (4)0.002 (5)
C9B0.064 (9)0.050 (8)0.061 (9)0.001 (8)0.018 (7)0.011 (8)
C10A0.061 (7)0.041 (7)0.073 (8)0.009 (5)0.043 (6)0.002 (6)
C10B0.048 (8)0.037 (8)0.045 (7)0.001 (5)0.009 (4)0.004 (5)
Geometric parameters (Å, º) top
Cl1—C21.733 (5)C3—H30.9300
Cl2—C51.739 (5)C4—C51.382 (7)
O1—C71.217 (6)C4—H40.9300
O2A—C10A1.282 (15)C5—C61.377 (7)
O2A—H2A0.8200C6—H60.9300
O2B—C10B1.246 (17)C7—C81.507 (7)
O2B—H2B0.8200C8—C9A1.458 (12)
O3A—C10A1.254 (12)C8—C9B1.47 (2)
O3B—C10B1.256 (15)C8—H8A0.9700
N1—C71.348 (7)C8—H8B0.9700
N1—C11.414 (6)C9A—C10A1.516 (12)
N1—H1N0.85 (2)C9A—H9A0.9700
C1—C61.391 (7)C9A—H9B0.9700
C1—C21.393 (7)C9B—C10B1.505 (16)
C2—C31.386 (7)C9B—H9C0.9700
C3—C41.372 (8)C9B—H9D0.9700
C10A—O2A—H2A109.5C9A—C8—C7117.0 (6)
C10B—O2B—H2B109.5C9B—C8—C7110.1 (8)
C7—N1—C1124.6 (4)C9A—C8—H8A108.1
C7—N1—H1N117 (4)C9B—C8—H8A86.4
C1—N1—H1N118 (4)C7—C8—H8A108.1
C6—C1—C2118.1 (4)C9A—C8—H8B108.1
C6—C1—N1121.3 (4)C9B—C8—H8B132.7
C2—C1—N1120.5 (4)C7—C8—H8B108.1
C3—C2—C1121.0 (5)H8A—C8—H8B107.3
C3—C2—Cl1119.1 (4)C8—C9A—C10A112.3 (10)
C1—C2—Cl1119.9 (4)C8—C9A—H9A109.1
C4—C3—C2120.3 (5)C10A—C9A—H9A109.1
C4—C3—H3119.8C8—C9A—H9B109.1
C2—C3—H3119.8C10A—C9A—H9B109.1
C3—C4—C5119.0 (5)H9A—C9A—H9B107.9
C3—C4—H4120.5C8—C9B—C10B118.2 (17)
C5—C4—H4120.5C8—C9B—H9C107.8
C6—C5—C4121.4 (5)C10B—C9B—H9C107.7
C6—C5—Cl2119.1 (4)C8—C9B—H9D107.8
C4—C5—Cl2119.6 (4)C10B—C9B—H9D107.8
C5—C6—C1120.2 (4)H9C—C9B—H9D107.1
C5—C6—H6119.9O3A—C10A—O2A123.5 (12)
C1—C6—H6119.9O3A—C10A—C9A112.0 (11)
O1—C7—N1123.3 (5)O2A—C10A—C9A121.0 (14)
O1—C7—C8122.0 (5)O2B—C10B—O3B117.8 (19)
N1—C7—C8114.7 (5)O2B—C10B—C9B113.7 (18)
C9A—C8—C9B27.7 (8)O3B—C10B—C9B127.6 (18)
C7—N1—C1—C639.9 (8)C1—N1—C7—O17.7 (9)
C7—N1—C1—C2142.0 (5)C1—N1—C7—C8171.2 (5)
C6—C1—C2—C31.5 (8)O1—C7—C8—C9A4.8 (11)
N1—C1—C2—C3179.7 (5)N1—C7—C8—C9A176.2 (7)
C6—C1—C2—Cl1179.4 (4)O1—C7—C8—C9B24.5 (13)
N1—C1—C2—Cl11.2 (7)N1—C7—C8—C9B154.4 (10)
C1—C2—C3—C40.6 (8)C9B—C8—C9A—C10A79 (2)
Cl1—C2—C3—C4179.7 (4)C7—C8—C9A—C10A160.8 (11)
C2—C3—C4—C50.6 (8)C9A—C8—C9B—C10B70 (2)
C3—C4—C5—C60.8 (8)C7—C8—C9B—C10B179.8 (15)
C3—C4—C5—Cl2178.7 (4)C8—C9A—C10A—O3A152.1 (15)
C4—C5—C6—C10.1 (8)C8—C9A—C10A—O2A48 (2)
Cl2—C5—C6—C1179.7 (4)C8—C9B—C10B—O2B33 (3)
C2—C1—C6—C51.3 (7)C8—C9B—C10B—O3B136 (3)
N1—C1—C6—C5179.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2A—H2A···O3Ai0.821.902.687 (15)162
O2B—H2B···O3Bi0.821.902.64 (2)150
N1—H1N···O1ii0.85 (2)2.07 (2)2.901 (6)167 (5)
Symmetry codes: (i) x+3, y, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC10H9Cl2NO3
Mr262.08
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)5.726 (1), 4.787 (1), 41.583 (6)
β (°) 91.93 (2)
V3)1139.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.56
Crystal size (mm)0.44 × 0.16 × 0.09
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.791, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
3375, 2046, 1552
Rint0.022
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.171, 1.14
No. of reflections2046
No. of parameters185
No. of restraints54
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.75, 0.41

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2A—H2A···O3Ai0.821.902.687 (15)161.5
O2B—H2B···O3Bi0.821.902.64 (2)149.9
N1—H1N···O1ii0.85 (2)2.07 (2)2.901 (6)167 (5)
Symmetry codes: (i) x+3, y, z; (ii) x, y1, z.
 

Acknowledgements

BSS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

References

First citationBhat, D. K. & Gowda, B. T. (2000). J. Indian Chem. Soc. 77, 279–284.  CAS Google Scholar
First citationGowda, B. T., D'Souza, J. D. & Kumar, B. H. A. (2003). Z. Naturforsch. Teil A, 58, 51–56.  CAS Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o1975–o1976.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJagannathan, N. R., Rajan, S. S. & Subramanian, E. (1994). J. Chem. Crystallogr. 24, 75–78.  CSD CrossRef CAS Web of Science Google Scholar
First citationJayalakshmi, K. L. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 491–500.  CAS Google Scholar
First citationLeiserowitz, L. (1976). Acta Cryst. B32, 775–802.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSaraswathi, B. S., Foro, S. & Gowda, B. T. (2011a). Acta Cryst. E67, o1879.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaraswathi, B. S., Foro, S. & Gowda, B. T. (2011b). Acta Cryst. E67, o1880.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds