organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Resorcinol–tri­ethyl­enedi­amine (1/1)

aCollege of Chemistry & Chemical Engineering, Xianyang Nomal University, Xianyang 712000, People's Republic of China
*Correspondence e-mail: shanxiab@163.com

(Received 8 July 2011; accepted 20 July 2011; online 30 July 2011)

The title co-crystal, C6H12N2·C6H6O2, is composed of neutral resorcinol and triethyl­enediamine mol­ecules in which the resorcinol mol­ecules came from the in situ deca­rboxylation of 2,4-dihy­droxy­benzoic acid. In the crystal, the components are connected by O—H⋯N hydrogen bonds, forming a chain in the b-axis direction.

Related literature

For background to alkali metal bis­(salicylato)borates, see: Barthel et al. (2000[Barthel, J., Schmid, A. & Gores, H. J. (2000). J. Electrochem. Soc. 147, 21-24.]) and to organic base bis­(salicylato)borates, see: Han et al. (2007[Han, W.-H., Li, P. & Liu, Z.-H. (2007). Acta Cryst. E63, o3946.]); Li & Liu (2006[Li, P. & Liu, Z.-H. (2006). Z. Kristallogr. New Cryst. Struct. 221, 179-180.]).

[Scheme 1]

Experimental

Crystal data
  • C6H12N2·C6H6O2

  • Mr = 222.29

  • Monoclinic, P 21 /c

  • a = 9.4882 (5) Å

  • b = 23.7390 (11) Å

  • c = 11.2532 (6) Å

  • β = 113.335 (6)°

  • V = 2327.3 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.45 × 0.43 × 0.02 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.789, Tmax = 1.000

  • 8717 measured reflections

  • 4091 independent reflections

  • 3270 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.121

  • S = 1.03

  • 4091 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.98 2.7577 (18) 158
O2—H2⋯N2i 0.82 1.93 2.7279 (17) 164
O3—H3⋯N4ii 0.82 1.89 2.6816 (19) 162
O4—H4⋯N3 0.82 1.88 2.6525 (19) 156
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Alkali metal bis(salicylato)borates have received much attention, since lithium organoborates have been considered as the lithium battery electrolytes (Barthel et al., 2000). In contrast, studies of organic base bis(salicylato)borates have been less extensive (Li and Liu, 2006; Han et al., 2007). In the process of the synthesis of such compounds, a new crystal with supramolecular structure of [(C6H6O2)2 (C6H12N2)2] has been obtained.

Single crystal diffraction has revealed that the title compound crystallizes in the monoclinic space group P21/c. It is composed of neutral resorcinol and triethylenediamine molecules (Fig.1), in which the resorcinol molecules came from the in situ decarboxylation of 2, 4-dihydroxy benzoic acid. These two kinds of molecules are connected by O—H···N hydrogen bonds to form one-dimensional supramolecular structure (Fig.2), with O···N distances in the range 2.6525 (19) – 2.7577 (18) Å and O—H···N angles in the range 156–164° (Table 1).

In order to evaluate the thermal stability of the synthesized compounds, TG experiments were employed under N2 atmosphere (Fig. 3). The crystal is stable before 150 °C, and quickly completes the decomposition process from 150 °C to 250 °C. The total weight loss of 99.02% corresponds to the self-decomposition of all organic matter (calculated value of 100%). The luminescent properties of this compound in the solid state at room temperature were investigated. As shown in Fig. 4, upon excitation of the solid sample at 300 nm, it exhibited strong fluorescent emission bands at 420 nm.

Related literature top

For background to alkali metal bis(salicylato)borates , see: Barthel et al. (2000) and to organic base bis(salicylato)borates, see: Han et al. (2007); Li & Liu (2006).

Experimental top

All reagents used in the synthesis were analytic grade and were used without further purification. A solution of boric acid (0.1684 g) in 2.5 ml distilled water was added to a stirred solution of 2, 4-dihydroxybenzoic acid (0.7706 g) in 10 ml of a mixed ethanol/water (1:1) solvent. The reaction mixture was stirred at 80 °C for 20 minutes, then 0.5507 g of triethylenediamine hexahydrate was added slowly. After 4 h continued heating and stirring, the obtained clear solution was then allowed to stand in an open beaker for several days at room temperature. The resulting colorless crystals were collected and dried in air at ambient temperature. IR (KBr pellets, cm-1): 458, 541, 686, 778, 837, 956, 1058, 1147, 1347, 1450, 1609, 1789, 2354, 2875, 2945 and 3054.

Refinement top

H atoms were placed in calculated positions and refined in riding mode with O—H = 0.820 Å and Uiso(H) = 1.5Ueq(O), C—H = 0.930–0.970 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Asymmetric unit structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level
[Figure 2] Fig. 2. One-dimensional chain formation of the title compound constructed by hydrogen bonding (dashed lines).
[Figure 3] Fig. 3. TG curve of the thermal decomposition of the title compound.
[Figure 4] Fig. 4. Solid state fluorescent excitation (a) and emission (b) of the title compound at room temperature.
Resorcinol–triethylenediamine (1/1) top
Crystal data top
C6H12N2·C6H6O2F(000) = 960
Mr = 222.29Dx = 1.269 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.4882 (5) ÅCell parameters from 4982 reflections
b = 23.7390 (11) Åθ = 2.5–28.7°
c = 11.2532 (6) ŵ = 0.09 mm1
β = 113.335 (6)°T = 293 K
V = 2327.3 (2) Å3Block, colorless
Z = 80.45 × 0.43 × 0.02 mm
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
4091 independent reflections
Radiation source: fine-focus sealed tube3270 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 16.0356 pixels mm-1θmax = 25.0°, θmin = 2.5°
ϕ and ω scansh = 117
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 2528
Tmin = 0.789, Tmax = 1.000l = 1313
8717 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0581P)2 + 0.6593P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4091 reflectionsΔρmax = 0.19 e Å3
290 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0037 (5)
Crystal data top
C6H12N2·C6H6O2V = 2327.3 (2) Å3
Mr = 222.29Z = 8
Monoclinic, P21/cMo Kα radiation
a = 9.4882 (5) ŵ = 0.09 mm1
b = 23.7390 (11) ÅT = 293 K
c = 11.2532 (6) Å0.45 × 0.43 × 0.02 mm
β = 113.335 (6)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
4091 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
3270 reflections with I > 2σ(I)
Tmin = 0.789, Tmax = 1.000Rint = 0.017
8717 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.03Δρmax = 0.19 e Å3
4091 reflectionsΔρmin = 0.16 e Å3
290 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.57689 (16)0.11324 (6)0.29731 (13)0.0351 (3)
N20.50838 (16)0.01065 (5)0.22286 (13)0.0339 (3)
N30.08210 (16)0.23305 (6)0.76867 (13)0.0370 (3)
N40.01256 (16)0.12882 (6)0.72564 (13)0.0382 (4)
O10.66383 (16)0.21624 (5)0.41752 (11)0.0498 (4)
H10.64990.18880.36980.075*
O20.57485 (17)0.41139 (5)0.40869 (12)0.0513 (4)
H20.53750.43760.35850.077*
O30.10750 (18)0.52913 (5)0.87710 (13)0.0639 (5)
H30.06960.55640.83080.096*
O40.16822 (17)0.33461 (5)0.86965 (13)0.0623 (4)
H40.14660.30720.82140.093*
C10.60465 (18)0.26301 (7)0.34498 (15)0.0329 (4)
C20.61811 (19)0.31376 (7)0.40953 (15)0.0351 (4)
H2A0.66590.31490.49940.042*
C30.56053 (19)0.36304 (7)0.34055 (15)0.0334 (4)
C40.4897 (2)0.36123 (7)0.20618 (16)0.0383 (4)
H4A0.45020.39390.15930.046*
C50.4784 (2)0.31060 (7)0.14309 (16)0.0429 (4)
H50.43200.30950.05320.051*
C60.5348 (2)0.26146 (7)0.21091 (16)0.0406 (4)
H60.52610.22760.16700.049*
C70.10691 (19)0.38158 (7)0.80009 (17)0.0381 (4)
C80.13280 (19)0.43163 (7)0.86713 (17)0.0389 (4)
H80.18900.43170.95620.047*
C90.07617 (19)0.48179 (7)0.80370 (17)0.0378 (4)
C100.0087 (2)0.48160 (7)0.67068 (17)0.0412 (4)
H100.04670.51510.62680.049*
C110.0358 (2)0.43120 (8)0.60472 (17)0.0449 (5)
H110.09360.43100.51590.054*
C120.0208 (2)0.38112 (8)0.66717 (17)0.0429 (4)
H120.00170.34750.62120.051*
C130.5384 (2)0.08133 (7)0.39281 (16)0.0415 (4)
H13A0.44840.09770.40000.050*
H13B0.62290.08370.47690.050*
C140.5066 (2)0.01928 (7)0.35205 (17)0.0422 (4)
H14A0.58410.00430.41470.051*
H14B0.40730.00840.35040.051*
C150.4430 (2)0.11111 (7)0.17216 (17)0.0445 (5)
H15A0.46810.12960.10610.053*
H15B0.35750.13110.17940.053*
C160.3966 (2)0.04980 (7)0.13256 (17)0.0444 (5)
H16A0.29570.04270.13210.053*
H16B0.39130.04350.04570.053*
C170.7064 (2)0.08497 (8)0.2814 (2)0.0471 (5)
H17A0.79350.08350.36420.056*
H17B0.73650.10630.22180.056*
C180.6620 (2)0.02515 (8)0.2297 (2)0.0458 (5)
H18A0.66320.02230.14410.055*
H18B0.73640.00130.28590.055*
C190.0785 (3)0.21639 (8)0.64220 (19)0.0555 (5)
H19A0.17710.22440.63870.067*
H19B0.00090.23810.57480.067*
C200.0428 (3)0.15370 (8)0.61859 (19)0.0543 (5)
H20A0.04620.14860.53820.065*
H20B0.12910.13460.61060.065*
C210.0700 (2)0.22206 (8)0.7684 (2)0.0494 (5)
H21A0.14560.24540.70350.059*
H21B0.06990.23190.85210.059*
C220.1134 (2)0.16008 (8)0.7396 (2)0.0514 (5)
H22A0.13560.14400.80950.062*
H22B0.20500.15700.66050.062*
C230.1955 (2)0.19796 (8)0.86864 (19)0.0491 (5)
H23A0.20090.20910.95330.059*
H23B0.29600.20360.86700.059*
C240.1510 (2)0.13541 (8)0.84538 (19)0.0491 (5)
H24A0.23490.11420.83860.059*
H24B0.13190.12070.91800.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0378 (8)0.0284 (7)0.0371 (7)0.0008 (6)0.0126 (6)0.0023 (6)
N20.0394 (8)0.0272 (7)0.0350 (7)0.0009 (6)0.0148 (6)0.0003 (6)
N30.0382 (8)0.0283 (7)0.0412 (8)0.0004 (6)0.0124 (6)0.0014 (6)
N40.0408 (8)0.0281 (7)0.0431 (8)0.0031 (6)0.0138 (6)0.0005 (6)
O10.0681 (9)0.0267 (6)0.0416 (7)0.0065 (6)0.0080 (6)0.0021 (5)
O20.0786 (10)0.0290 (7)0.0418 (7)0.0095 (6)0.0192 (7)0.0008 (5)
O30.0823 (11)0.0259 (7)0.0576 (9)0.0054 (7)0.0000 (7)0.0026 (6)
O40.0767 (10)0.0246 (7)0.0555 (8)0.0021 (6)0.0060 (7)0.0006 (6)
C10.0328 (9)0.0274 (8)0.0368 (9)0.0013 (7)0.0121 (7)0.0033 (7)
C20.0390 (9)0.0338 (9)0.0303 (8)0.0019 (7)0.0113 (7)0.0023 (7)
C30.0353 (9)0.0282 (8)0.0385 (9)0.0001 (7)0.0164 (7)0.0002 (7)
C40.0398 (10)0.0328 (9)0.0388 (9)0.0035 (8)0.0118 (7)0.0084 (7)
C50.0495 (11)0.0419 (10)0.0300 (9)0.0025 (8)0.0081 (7)0.0003 (7)
C60.0460 (10)0.0330 (9)0.0378 (9)0.0034 (8)0.0115 (8)0.0049 (7)
C70.0325 (9)0.0282 (9)0.0466 (10)0.0003 (7)0.0082 (7)0.0034 (7)
C80.0371 (9)0.0299 (9)0.0394 (9)0.0019 (7)0.0043 (7)0.0022 (7)
C90.0343 (9)0.0275 (9)0.0474 (10)0.0009 (7)0.0119 (7)0.0007 (7)
C100.0426 (10)0.0352 (10)0.0456 (10)0.0087 (8)0.0171 (8)0.0102 (8)
C110.0466 (11)0.0503 (11)0.0350 (9)0.0052 (9)0.0131 (8)0.0034 (8)
C120.0445 (10)0.0359 (10)0.0460 (10)0.0003 (8)0.0156 (8)0.0063 (8)
C130.0528 (11)0.0383 (10)0.0364 (9)0.0007 (8)0.0208 (8)0.0038 (7)
C140.0551 (11)0.0350 (10)0.0411 (10)0.0009 (8)0.0241 (8)0.0031 (7)
C150.0492 (11)0.0317 (9)0.0422 (10)0.0027 (8)0.0071 (8)0.0033 (8)
C160.0444 (10)0.0371 (10)0.0388 (10)0.0023 (8)0.0029 (8)0.0010 (8)
C170.0399 (10)0.0425 (11)0.0629 (12)0.0079 (8)0.0246 (9)0.0122 (9)
C180.0452 (11)0.0411 (11)0.0574 (11)0.0012 (9)0.0271 (9)0.0091 (9)
C190.0784 (15)0.0443 (11)0.0535 (12)0.0100 (11)0.0365 (11)0.0010 (9)
C200.0795 (15)0.0443 (11)0.0462 (11)0.0066 (10)0.0326 (10)0.0112 (9)
C210.0422 (10)0.0457 (11)0.0599 (12)0.0057 (9)0.0198 (9)0.0080 (9)
C220.0396 (10)0.0475 (11)0.0700 (13)0.0047 (9)0.0247 (10)0.0018 (10)
C230.0402 (10)0.0382 (10)0.0533 (11)0.0008 (8)0.0020 (8)0.0026 (8)
C240.0467 (11)0.0348 (10)0.0535 (11)0.0047 (8)0.0067 (9)0.0050 (8)
Geometric parameters (Å, º) top
N1—C171.472 (2)C10—C111.377 (3)
N1—C131.474 (2)C10—H100.9300
N1—C151.478 (2)C11—C121.377 (2)
N2—C181.469 (2)C11—H110.9300
N2—C161.472 (2)C12—H120.9300
N2—C141.475 (2)C13—C141.537 (2)
N3—C211.465 (2)C13—H13A0.9700
N3—C191.464 (2)C13—H13B0.9700
N3—C231.469 (2)C14—H14A0.9700
N4—C241.471 (2)C14—H14B0.9700
N4—C221.467 (2)C15—C161.535 (2)
N4—C201.468 (2)C15—H15A0.9700
O1—C11.3605 (19)C15—H15B0.9700
O1—H10.8200C16—H16A0.9700
O2—C31.3569 (19)C16—H16B0.9700
O2—H20.8200C17—C181.529 (2)
O3—C91.356 (2)C17—H17A0.9700
O3—H30.8200C17—H17B0.9700
O4—C71.354 (2)C18—H18A0.9700
O4—H40.8200C18—H18B0.9700
C1—C61.387 (2)C19—C201.526 (3)
C1—C21.386 (2)C19—H19A0.9700
C2—C31.391 (2)C19—H19B0.9700
C2—H2A0.9300C20—H20A0.9700
C3—C41.391 (2)C20—H20B0.9700
C4—C51.378 (2)C21—C221.528 (3)
C4—H4A0.9300C21—H21A0.9700
C5—C61.381 (2)C21—H21B0.9700
C5—H50.9300C22—H22A0.9700
C6—H60.9300C22—H22B0.9700
C7—C81.376 (2)C23—C241.538 (2)
C7—C121.392 (2)C23—H23A0.9700
C8—C91.383 (2)C23—H23B0.9700
C8—H80.9300C24—H24A0.9700
C9—C101.391 (2)C24—H24B0.9700
C17—N1—C13108.30 (14)C13—C14—H14B109.6
C17—N1—C15108.24 (14)H14A—C14—H14B108.1
C13—N1—C15108.02 (14)N1—C15—C16110.39 (13)
C18—N2—C16108.44 (14)N1—C15—H15A109.6
C18—N2—C14108.32 (14)C16—C15—H15A109.6
C16—N2—C14107.85 (14)N1—C15—H15B109.6
C21—N3—C19107.84 (15)C16—C15—H15B109.6
C21—N3—C23108.82 (15)H15A—C15—H15B108.1
C19—N3—C23108.61 (15)N2—C16—C15110.69 (13)
C24—N4—C22108.51 (15)N2—C16—H16A109.5
C24—N4—C20108.35 (15)C15—C16—H16A109.5
C22—N4—C20108.48 (15)N2—C16—H16B109.5
C1—O1—H1109.5C15—C16—H16B109.5
C3—O2—H2109.5H16A—C16—H16B108.1
C9—O3—H3109.5N1—C17—C18110.62 (14)
C7—O4—H4109.5N1—C17—H17A109.5
O1—C1—C6122.46 (15)C18—C17—H17A109.5
O1—C1—C2117.66 (14)N1—C17—H17B109.5
C6—C1—C2119.87 (15)C18—C17—H17B109.5
C1—C2—C3120.29 (14)H17A—C17—H17B108.1
C1—C2—H2A119.9N2—C18—C17110.82 (14)
C3—C2—H2A119.9N2—C18—H18A109.5
O2—C3—C2117.83 (14)C17—C18—H18A109.5
O2—C3—C4122.52 (15)N2—C18—H18B109.5
C2—C3—C4119.64 (15)C17—C18—H18B109.5
C5—C4—C3119.50 (15)H18A—C18—H18B108.1
C5—C4—H4A120.2N3—C19—C20110.52 (15)
C3—C4—H4A120.2N3—C19—H19A109.5
C6—C5—C4121.20 (15)C20—C19—H19A109.5
C6—C5—H5119.4N3—C19—H19B109.5
C4—C5—H5119.4C20—C19—H19B109.5
C5—C6—C1119.50 (16)H19A—C19—H19B108.1
C5—C6—H6120.3N4—C20—C19110.57 (14)
C1—C6—H6120.3N4—C20—H20A109.5
O4—C7—C8116.83 (15)C19—C20—H20A109.5
O4—C7—C12123.35 (15)N4—C20—H20B109.5
C8—C7—C12119.82 (15)C19—C20—H20B109.5
C7—C8—C9120.79 (15)H20A—C20—H20B108.1
C7—C8—H8119.6N3—C21—C22110.75 (15)
C9—C8—H8119.6N3—C21—H21A109.5
O3—C9—C8116.91 (15)C22—C21—H21A109.5
O3—C9—C10123.51 (15)N3—C21—H21B109.5
C8—C9—C10119.58 (16)C22—C21—H21B109.5
C11—C10—C9119.20 (16)H21A—C21—H21B108.1
C11—C10—H10120.4N4—C22—C21110.34 (15)
C9—C10—H10120.4N4—C22—H22A109.6
C10—C11—C12121.54 (16)C21—C22—H22A109.6
C10—C11—H11119.2N4—C22—H22B109.6
C12—C11—H11119.2C21—C22—H22B109.6
C11—C12—C7119.07 (16)H22A—C22—H22B108.1
C11—C12—H12120.5N3—C23—C24110.40 (14)
C7—C12—H12120.5N3—C23—H23A109.6
N1—C13—C14110.55 (13)C24—C23—H23A109.6
N1—C13—H13A109.5N3—C23—H23B109.6
C14—C13—H13A109.5C24—C23—H23B109.6
N1—C13—H13B109.5H23A—C23—H23B108.1
C14—C13—H13B109.5N4—C24—C23110.13 (14)
H13A—C13—H13B108.1N4—C24—H24A109.6
N2—C14—C13110.48 (14)C23—C24—H24A109.6
N2—C14—H14A109.6N4—C24—H24B109.6
C13—C14—H14A109.6C23—C24—H24B109.6
N2—C14—H14B109.6H24A—C24—H24B108.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.982.7577 (18)158
O2—H2···N2i0.821.932.7279 (17)164
O3—H3···N4ii0.821.892.6816 (19)162
O4—H4···N30.821.882.6525 (19)156
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC6H12N2·C6H6O2
Mr222.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.4882 (5), 23.7390 (11), 11.2532 (6)
β (°) 113.335 (6)
V3)2327.3 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.45 × 0.43 × 0.02
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.789, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8717, 4091, 3270
Rint0.017
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.121, 1.03
No. of reflections4091
No. of parameters290
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.16

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.982.7577 (18)158
O2—H2···N2i0.821.932.7279 (17)164
O3—H3···N4ii0.821.892.6816 (19)162
O4—H4···N30.821.882.6525 (19)156
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+3/2.
 

Acknowledgements

The author thanks Xiangyang Normal University for supporting this study.

References

First citationBarthel, J., Schmid, A. & Gores, H. J. (2000). J. Electrochem. Soc. 147, 21–24.  Web of Science CrossRef CAS Google Scholar
First citationHan, W.-H., Li, P. & Liu, Z.-H. (2007). Acta Cryst. E63, o3946.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, P. & Liu, Z.-H. (2006). Z. Kristallogr. New Cryst. Struct. 221, 179–180.  CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds