metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1119-m1120

Tri­aqua­(7-oxabi­cyclo­[2.2.1]heptane-2,3-di­carboxyl­ato-κ3O2,O3,O7)cobalt(II) monohydrate

aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China, and bCollege of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China
*Correspondence e-mail: sky51@zjnu.cn

(Received 3 July 2011; accepted 15 July 2011; online 23 July 2011)

The title complex, [Co(C8H8O5)(H2O)3]·H2O, was synthesized by reaction of cobalt acetate with 7-oxabicyclo­[2.2.1]heptane-2,3-dicarb­oxy­lic anhydride (norcantharidin) in aqueous solution. In the mol­ecule, the CoII atom is six-coordinated in a distorted octa­hedral environment, binding to the bridging O atom of the bicyclo­heptane unit, to two O atoms from monodentate carboxyl­ate groups and to three water O atoms. The crystal structure is stabilized by several O—H⋯O hydrogen-bonding inter­actions involving both the coordinated and uncoordinated water mol­ecules as donors and the carboxyl­ate O atoms of neighbouring mol­ecules as acceptors.

Related literature

For background to the applications of norcantharidin, see: Jiao et al. (2005[Jiao, K., Wang, Q.-X., Sun, W. & Jian, F.-F. (2005). J. Inorg. Biochem. 99, 1369-1375.]); Wang (1989[Wang, G.-S. (1989). J. Ethnopharmacol. 26, 147-162.]). For related structures, see: Wang et al. (2010[Wang, Y.-Y., Hu, R.-D., Lin, Q.-Y., Zhao, Y.-L. & Wang, N. (2010). Asian J. Chem. E22, 5993-5999.]); Kaplonek et al. (1994[Kaplonek, R., Baumeister, U. & Hartung, H. (1994). Z. Anorg. Allg. Chem. 620, 574-580.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C8H8O5)(H2O)3]·H2O

  • Mr = 315.14

  • Monoclinic, P 21 /c

  • a = 10.0965 (3) Å

  • b = 10.0208 (3) Å

  • c = 14.5893 (3) Å

  • β = 129.177 (1)°

  • V = 1144.25 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.54 mm−1

  • T = 296 K

  • 0.24 × 0.17 × 0.13 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.745, Tmax = 0.824

  • 14892 measured reflections

  • 2004 independent reflections

  • 1861 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.063

  • S = 1.08

  • 2004 reflections

  • 163 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O3 2.0631 (14)
Co1—O1W 2.0691 (15)
Co1—O2W 2.0728 (15)
Co1—O1 2.0849 (13)
Co1—O3W 2.0948 (13)
Co1—O5 2.1510 (13)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2W—H2WB⋯O4W 0.85 2.06 2.872 (2) 160
O4W—H4WB⋯O5 0.85 2.60 3.0316 (19) 113
O1W—H1WA⋯O4i 0.85 1.88 2.716 (2) 169
O1W—H1WB⋯O4Wii 0.85 2.00 2.789 (2) 153
O2W—H2WA⋯O1iii 0.85 1.87 2.7168 (19) 171
O3W—H3WB⋯O2iv 0.85 1.84 2.688 (2) 173
O4W—H4WB⋯O2iv 0.85 2.09 2.916 (2) 164
O3W—H3WA⋯O3v 0.85 1.85 2.6969 (19) 178
O4W—H4WA⋯O3Wvi 0.85 2.35 3.112 (2) 149
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+2, -y+2, -z+1; (iv) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) -x+1, -y+2, -z+1; (vi) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2004[Bruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylic anhydride (norcantharidin), derived from cantharidin, is a variety of pharmacologically important compounds such as protein kinase inhibitors and antitumor properties (Wang, 1989). Cobalt is recognized as an essential metal element widely distributed in biological systems in cells and the body (Jiao et al., 2005). A manganese complex of dimethylcantharate was reported recently (Wang et al., 2010) and a similar cobalt complex of dimethylcantharate (Kaplonek et al., 1994) has also been reported.

The molecular structure of the title complex is shown in Fig. 1. The cobalt(II) atom is six-coordinated in a distorted octahedral coordination mode, binding to the bridging O atom of the bicycloheptane unit, to two O atoms from corresponding carboxylate groups and to three O atoms from water. The crystal structure is stabilized by several O—H···O hydrogen-bonding interactions involving both the coordinated and uncoordinated water molecules as donors and the carboxylate O atoms of neighbouring molecules as acceptors.

Related literature top

For background to the applications of norcantharidin, see: Jiao et al. (2005); Wang et al. (1989). For related structures, see: Wang et al. (2010); Kaplonek et al. (1994).

Experimental top

An ethanol solution containing 0.5 mmol salicylic acid was dropwisely added into 0.5 mmol aqueous cobalt acetate solution. After stirring for one hour, an aqueous solution containing 0.5 mmol norcantharidin was dropwisely added into the mixture. Two hours later, the solution was filtered and after 2 weeks, crystals with suitable size for single-crystal X-ray diffraction were obtained.

Refinement top

H atoms bonded to C atoms were positioned geometrically and refined using a riding model [aliphatic of tertiary carbon C—H = 0.98 Å, aliphatic of secondary carbon C—H = 0.97 Å, both with Uiso(H) = 1.2Ueq(C)]. The H atoms bonded to O atoms were located in a difference Fourier maps and refined with O—H distance restraints of 0.85 (1) Å and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I) showing the atom-labelling scheme with displacement ellipsoids drawn at the 30% probability level.
Triaqua(7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylato- κ3O2,O3,O7)cobalt(II) monohydrate top
Crystal data top
[Co(C8H8O5)(H2O)3]·H2OF(000) = 652
Mr = 315.14Dx = 1.829 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8994 reflections
a = 10.0965 (3) Åθ = 2.6–25.0°
b = 10.0208 (3) ŵ = 1.54 mm1
c = 14.5893 (3) ÅT = 296 K
β = 129.177 (1)°Block, red
V = 1144.25 (5) Å30.24 × 0.17 × 0.13 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2004 independent reflections
Radiation source: fine-focus sealed tube1861 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1211
Tmin = 0.745, Tmax = 0.824k = 1111
14892 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0277P)2 + 1.0316P]
where P = (Fo2 + 2Fc2)/3
2004 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.28 e Å3
4 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Co(C8H8O5)(H2O)3]·H2OV = 1144.25 (5) Å3
Mr = 315.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.0965 (3) ŵ = 1.54 mm1
b = 10.0208 (3) ÅT = 296 K
c = 14.5893 (3) Å0.24 × 0.17 × 0.13 mm
β = 129.177 (1)°
Data collection top
Bruker SMART CCD
diffractometer
2004 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1861 reflections with I > 2σ(I)
Tmin = 0.745, Tmax = 0.824Rint = 0.021
14892 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0234 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.08Δρmax = 0.28 e Å3
2004 reflectionsΔρmin = 0.30 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.75127 (3)0.93105 (2)0.50125 (2)0.01957 (10)
O10.78435 (19)0.89643 (14)0.37592 (12)0.0290 (3)
O1W0.7237 (2)1.13465 (15)0.47074 (14)0.0427 (4)
H1WA0.70161.17810.41250.064*
H1WB0.75861.18690.52790.064*
O20.7679 (2)0.77531 (16)0.24295 (14)0.0442 (4)
O2W1.01188 (18)0.94437 (15)0.63877 (13)0.0348 (4)
H2WA1.08470.98860.63990.052*
H2WB1.06120.88110.68870.052*
O30.49581 (17)0.89349 (14)0.36612 (12)0.0281 (3)
O3W0.71943 (19)0.95345 (14)0.62906 (13)0.0301 (3)
H3WA0.64991.00120.62910.045*
H3WB0.72910.88400.66640.045*
O40.3105 (2)0.79264 (17)0.19436 (13)0.0465 (4)
O4W1.1014 (2)0.73049 (16)0.79981 (13)0.0387 (4)
H4WA1.13280.65640.79070.058*
H4WB0.99870.71840.77180.058*
O50.78301 (16)0.72157 (12)0.54243 (11)0.0191 (3)
C10.8565 (2)0.64609 (19)0.49869 (16)0.0215 (4)
H1A0.97020.67720.53000.026*
C20.7198 (2)0.66254 (18)0.36363 (16)0.0206 (4)
H2A0.71970.58360.32390.025*
C30.5510 (2)0.66506 (18)0.34899 (16)0.0199 (4)
H3A0.47940.58840.30140.024*
C40.6238 (2)0.64553 (19)0.47793 (16)0.0209 (4)
H4A0.54680.67570.49300.025*
C50.6883 (3)0.5032 (2)0.51937 (18)0.0277 (4)
H5A0.60750.43840.46030.033*
H5B0.71050.48420.59320.033*
C60.8554 (3)0.5040 (2)0.53581 (18)0.0276 (4)
H6A0.95430.48710.61740.033*
H6B0.85190.43860.48530.033*
C70.7572 (2)0.7867 (2)0.32282 (17)0.0242 (4)
C80.4448 (2)0.79295 (19)0.29760 (16)0.0233 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02472 (16)0.01767 (16)0.01900 (16)0.00126 (9)0.01509 (13)0.00144 (9)
O10.0461 (9)0.0229 (7)0.0333 (8)0.0087 (6)0.0323 (7)0.0060 (6)
O1W0.0740 (12)0.0193 (8)0.0271 (8)0.0025 (7)0.0282 (8)0.0008 (6)
O20.0791 (12)0.0378 (9)0.0462 (10)0.0240 (8)0.0541 (10)0.0165 (7)
O2W0.0263 (8)0.0363 (8)0.0347 (8)0.0067 (6)0.0159 (7)0.0062 (7)
O30.0255 (7)0.0237 (7)0.0278 (7)0.0043 (6)0.0133 (6)0.0037 (6)
O3W0.0423 (9)0.0299 (8)0.0340 (8)0.0112 (6)0.0316 (7)0.0079 (6)
O40.0431 (9)0.0399 (9)0.0229 (8)0.0156 (8)0.0050 (7)0.0029 (7)
O4W0.0385 (9)0.0376 (9)0.0319 (8)0.0052 (7)0.0184 (7)0.0049 (7)
O50.0211 (6)0.0202 (7)0.0193 (6)0.0001 (5)0.0143 (5)0.0006 (5)
C10.0207 (9)0.0226 (10)0.0260 (10)0.0009 (8)0.0171 (8)0.0017 (8)
C20.0252 (10)0.0199 (9)0.0236 (9)0.0014 (7)0.0187 (8)0.0033 (7)
C30.0211 (9)0.0180 (9)0.0221 (9)0.0022 (7)0.0143 (8)0.0024 (7)
C40.0207 (9)0.0222 (9)0.0246 (9)0.0016 (8)0.0166 (8)0.0004 (8)
C50.0328 (11)0.0224 (10)0.0317 (11)0.0002 (8)0.0221 (10)0.0059 (8)
C60.0273 (10)0.0221 (10)0.0304 (10)0.0055 (8)0.0168 (9)0.0031 (8)
C70.0283 (10)0.0266 (10)0.0245 (10)0.0051 (8)0.0200 (9)0.0036 (8)
C80.0235 (10)0.0246 (10)0.0220 (10)0.0015 (8)0.0144 (9)0.0010 (8)
Geometric parameters (Å, º) top
Co1—O32.0631 (14)O5—C11.459 (2)
Co1—O1W2.0691 (15)O5—C41.462 (2)
Co1—O2W2.0728 (15)C1—C61.526 (3)
Co1—O12.0849 (13)C1—C21.542 (3)
Co1—O3W2.0948 (13)C1—H1A0.9800
Co1—O52.1510 (13)C2—C71.526 (3)
O1—C71.271 (2)C2—C31.578 (2)
O1W—H1WA0.8500C2—H2A0.9800
O1W—H1WB0.8500C3—C81.529 (3)
O2—C71.241 (2)C3—C41.540 (3)
O2W—H2WA0.8499C3—H3A0.9800
O2W—H2WB0.8500C4—C51.526 (3)
O3—C81.276 (2)C4—H4A0.9800
O3W—H3WA0.8501C5—C61.547 (3)
O3W—H3WB0.8499C5—H5A0.9700
O4—C81.236 (2)C5—H5B0.9700
O4W—H4WA0.8500C6—H6A0.9700
O4W—H4WB0.8499C6—H6B0.9700
O3—Co1—O1W93.29 (6)C7—C2—C1110.07 (15)
O3—Co1—O2W173.18 (6)C7—C2—C3116.49 (15)
O1W—Co1—O2W93.48 (6)C1—C2—C3101.13 (14)
O3—Co1—O185.86 (6)C7—C2—H2A109.6
O1W—Co1—O192.85 (6)C1—C2—H2A109.6
O2W—Co1—O192.92 (6)C3—C2—H2A109.6
O3—Co1—O3W93.90 (6)C8—C3—C4110.57 (15)
O1W—Co1—O3W90.60 (6)C8—C3—C2116.27 (15)
O2W—Co1—O3W86.92 (6)C4—C3—C2101.03 (14)
O1—Co1—O3W176.55 (5)C8—C3—H3A109.5
O3—Co1—O587.97 (5)C4—C3—H3A109.5
O1W—Co1—O5176.73 (5)C2—C3—H3A109.5
O2W—Co1—O585.32 (5)O5—C4—C5102.24 (14)
O1—Co1—O590.25 (5)O5—C4—C3101.68 (13)
O3W—Co1—O586.30 (5)C5—C4—C3110.98 (15)
C7—O1—Co1125.88 (12)O5—C4—H4A113.6
Co1—O1W—H1WA129.4C5—C4—H4A113.6
Co1—O1W—H1WB118.7C3—C4—H4A113.6
H1WA—O1W—H1WB110.5C4—C5—C6101.94 (15)
Co1—O2W—H2WA127.3C4—C5—H5A111.4
Co1—O2W—H2WB118.7C6—C5—H5A111.4
H2WA—O2W—H2WB109.9C4—C5—H5B111.4
C8—O3—Co1122.32 (12)C6—C5—H5B111.4
Co1—O3W—H3WA130.7H5A—C5—H5B109.2
Co1—O3W—H3WB117.5C1—C6—C5101.65 (15)
H3WA—O3W—H3WB102.8C1—C6—H6A111.4
H4WA—O4W—H4WB105.2C5—C6—H6A111.4
C1—O5—C495.99 (13)C1—C6—H6B111.4
C1—O5—Co1114.26 (10)C5—C6—H6B111.4
C4—O5—Co1114.80 (10)H6A—C6—H6B109.3
O5—C1—C6102.04 (14)O2—C7—O1122.60 (18)
O5—C1—C2102.20 (14)O2—C7—C2118.71 (17)
C6—C1—C2110.60 (16)O1—C7—C2118.60 (15)
O5—C1—H1A113.6O4—C8—O3123.07 (18)
C6—C1—H1A113.6O4—C8—C3119.02 (17)
C2—C1—H1A113.6O3—C8—C3117.81 (16)
O3—Co1—O1—C763.86 (16)C1—C2—C3—C41.55 (16)
O1W—Co1—O1—C7156.95 (17)C1—O5—C4—C556.17 (15)
O2W—Co1—O1—C7109.42 (16)Co1—O5—C4—C5176.41 (10)
O5—Co1—O1—C724.09 (16)C1—O5—C4—C358.60 (15)
O1W—Co1—O3—C8140.00 (15)Co1—O5—C4—C361.65 (14)
O1—Co1—O3—C847.38 (15)C8—C3—C4—O587.05 (16)
O3W—Co1—O3—C8129.17 (15)C2—C3—C4—O536.63 (16)
O5—Co1—O3—C843.02 (15)C8—C3—C4—C5164.82 (15)
O3—Co1—O5—C1101.16 (11)C2—C3—C4—C571.49 (17)
O2W—Co1—O5—C177.59 (12)O5—C4—C5—C633.84 (17)
O1—Co1—O5—C115.31 (12)C3—C4—C5—C673.92 (18)
O3W—Co1—O5—C1164.80 (12)O5—C1—C6—C535.70 (17)
O3—Co1—O5—C48.38 (11)C2—C1—C6—C572.42 (18)
O2W—Co1—O5—C4172.87 (11)C4—C5—C6—C11.04 (18)
O1—Co1—O5—C494.23 (11)Co1—O1—C7—O2174.77 (16)
O3W—Co1—O5—C485.66 (11)Co1—O1—C7—C28.7 (3)
C4—O5—C1—C656.90 (15)C1—C2—C7—O2126.16 (19)
Co1—O5—C1—C6177.57 (11)C3—C2—C7—O2119.5 (2)
C4—O5—C1—C257.57 (15)C1—C2—C7—O150.5 (2)
Co1—O5—C1—C263.10 (14)C3—C2—C7—O163.9 (2)
O5—C1—C2—C789.68 (16)Co1—O3—C8—O4151.18 (17)
C6—C1—C2—C7162.30 (15)Co1—O3—C8—C332.4 (2)
O5—C1—C2—C334.10 (16)C4—C3—C8—O4140.06 (19)
C6—C1—C2—C373.92 (17)C2—C3—C8—O4105.6 (2)
C7—C2—C3—C81.1 (2)C4—C3—C8—O336.5 (2)
C1—C2—C3—C8118.14 (16)C2—C3—C8—O377.9 (2)
C7—C2—C3—C4120.82 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2WB···O4W0.852.062.872 (2)160
O4W—H4WB···O50.852.603.0316 (19)113
O1W—H1WA···O4i0.851.882.716 (2)169
O1W—H1WB···O4Wii0.852.002.789 (2)153
O2W—H2WA···O1iii0.851.872.7168 (19)171
O3W—H3WB···O2iv0.851.842.688 (2)173
O4W—H4WB···O2iv0.852.092.916 (2)164
O3W—H3WA···O3v0.851.852.6969 (19)178
O4W—H4WA···O3Wvi0.852.353.112 (2)149
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y+1/2, z+3/2; (iii) x+2, y+2, z+1; (iv) x, y+3/2, z+1/2; (v) x+1, y+2, z+1; (vi) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Co(C8H8O5)(H2O)3]·H2O
Mr315.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.0965 (3), 10.0208 (3), 14.5893 (3)
β (°) 129.177 (1)
V3)1144.25 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.54
Crystal size (mm)0.24 × 0.17 × 0.13
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.745, 0.824
No. of measured, independent and
observed [I > 2σ(I)] reflections
14892, 2004, 1861
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.063, 1.08
No. of reflections2004
No. of parameters163
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.30

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Co1—O32.0631 (14)Co1—O12.0849 (13)
Co1—O1W2.0691 (15)Co1—O3W2.0948 (13)
Co1—O2W2.0728 (15)Co1—O52.1510 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2WB···O4W0.852.062.872 (2)159.9
O4W—H4WB···O50.852.603.0316 (19)113.2
O1W—H1WA···O4i0.851.882.716 (2)169.2
O1W—H1WB···O4Wii0.852.002.789 (2)153.0
O2W—H2WA···O1iii0.851.872.7168 (19)170.8
O3W—H3WB···O2iv0.851.842.688 (2)172.5
O4W—H4WB···O2iv0.852.092.916 (2)163.5
O3W—H3WA···O3v0.851.852.6969 (19)178.2
O4W—H4WA···O3Wvi0.852.353.112 (2)149.3
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y+1/2, z+3/2; (iii) x+2, y+2, z+1; (iv) x, y+3/2, z+1/2; (v) x+1, y+2, z+1; (vi) x+2, y1/2, z+3/2.
 

Acknowledgements

The authors thank the Natural Science Foundation of Zhejiang Province, China, (grant No. Y407301) for financial support.

References

First citationBruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJiao, K., Wang, Q.-X., Sun, W. & Jian, F.-F. (2005). J. Inorg. Biochem. 99, 1369–1375.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKaplonek, R., Baumeister, U. & Hartung, H. (1994). Z. Anorg. Allg. Chem. 620, 574–580.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, G.-S. (1989). J. Ethnopharmacol. 26, 147–162.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWang, Y.-Y., Hu, R.-D., Lin, Q.-Y., Zhao, Y.-L. & Wang, N. (2010). Asian J. Chem. E22, 5993–5999.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1119-m1120
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds