organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 1-benzyl-3-(4-bromo­phen­yl)-1H-pyrazole-5-carboxyl­ate

aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: yqge@yahoo.cn

(Received 17 June 2011; accepted 25 June 2011; online 6 July 2011)

In the title compound, C19H17BrN2O2, the pyrazole ring makes dihedral angles of 88.00 (16) and 5.78 (13)° with the phenyl and bromo­phenyl rings, respectively. In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the pharmacological activity of pyrazole compounds and applications of nitro­gen-containing heterocyclic compounds, see: Ge et al. (2009[Ge, Y. Q., Jia, J., Li, Y., Yin, L. & Wang, J. W. (2009). Heterocycles, 42, 197-206.], 2011[Ge, Y. Q., Jia, J., Yang, H., Tao, X. T. & Wang, J. W. (2011). Dyes Pigments, 88, 344-349.]). For the related structures, see: Han et al. (2011[Han, Z., Zheng, H.-L. & Tian, X.-L. (2011). Acta Cryst. E67, o511.]); Ge et al. (2007[Ge, Y.-Q., Dong, W.-L., Xia, Y., Wei, F. & Zhao, B.-X. (2007). Acta Cryst. E63, o1313-o1314.]); Li et al. (2011[Li, Y.-Q., Jia, B.-X., Xiao, Y.-L. & Guo, F.-G. (2011). Acta Cryst. E67, o468.]).

[Scheme 1]

Experimental

Crystal data
  • C19H17BrN2O2

  • Mr = 385.26

  • Monoclinic, P 21 /n

  • a = 10.5656 (13) Å

  • b = 15.3433 (19) Å

  • c = 11.5706 (14) Å

  • β = 111.506 (2)°

  • V = 1745.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.37 mm−1

  • T = 298 K

  • 0.22 × 0.16 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996)[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.] Tmin = 0.624, Tmax = 0.764

  • 8955 measured reflections

  • 3089 independent reflections

  • 2332 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.088

  • S = 1.02

  • 3089 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.70 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O1i 0.93 2.50 3.369 (4) 155
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Synthesis of nitrogen-containing heterocyclic compounds has been a subject of great interest due to their wide application in agrochemical and pharmaceutical fields (Ge et al., 2009, 2011). Some pyrazole derivatives which belong to this category have been of interest for their biological activities. Considerable efforts have been devoted to the development of novel pyrazole compounds.

We report here the crystal structure of the title compound (Fig. 1). The pyrazole ring makes dihedral angles of 88.00 (16)° and 5.78 (13)° with the phenyl and bromophenyl rings, respectively. In the fluorophenyl analogue (Han et al., 2011) the corresponding angles are 81.19 (18) and 4.57 (16)°. In the tolyl analogue (Li et al., 2011) the corresponding angles are 83.40 (4) and 15.68 (4)°. The crystal structure of another related compound has been reported (Ge et al., 2007). In the crystal structure, molecules are linked by weak intermolecular C—H···O hydrogen bonds.

Related literature top

For the pharmacological activity of pyrazole compounds and applications of nitrogen-containing heterocyclic compounds, see: Ge et al. (2009, 2011). For the related structures, see: Han et al. (2011); Ge et al. (2007); Li et al. (2011).

Experimental top

A mixture of ethyl 3-(4-bromophenyl)-1H-pyrazole-5-carboxylate (0.02 mol), (chloromethyl)benzene (0.0024 mol) and potassium carbonate (0.02 mol) in acetonitrile (100 ml) was heated to reflux for 5 h. The solvent was removed under reduced pressure and a product was isolated by column chromatography on silica gel (yield 81%). Crystals of the title compound suitable for X-ray diffraction were obtained by allowing a refluxed solution of the product in ethyl acetate to cool slowly to room temperature and allowing the solvent to evaporate over a period of 2 d.

Refinement top

All hydrogen atoms were positioned geometrically [C—H = 0.93 Å for Csp2, C—H = 0.97 Å for methylene C and C—H = 0.96 Å for methyl C] and were refined using a riding model, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and 1.2 for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted.
[Figure 2] Fig. 2. A view of the packing of molecules in the crystal structure. Dashed lines indicate hydrogen bonds.
Ethyl 1-benzyl-3-(4-bromophenyl)-1H-pyrazole-5-carboxylate top
Crystal data top
C19H17BrN2O2F(000) = 784
Mr = 385.26Dx = 1.466 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3103 reflections
a = 10.5656 (13) Åθ = 2.2–25.3°
b = 15.3433 (19) ŵ = 2.37 mm1
c = 11.5706 (14) ÅT = 298 K
β = 111.506 (2)°Block, colorless
V = 1745.1 (4) Å30.22 × 0.16 × 0.12 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3089 independent reflections
Radiation source: fine-focus sealed tube2332 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
phi and ω scansθmax = 25.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.624, Tmax = 0.764k = 1817
8955 measured reflectionsl = 1311
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0415P)2 + 0.8018P]
where P = (Fo2 + 2Fc2)/3
3089 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.70 e Å3
Crystal data top
C19H17BrN2O2V = 1745.1 (4) Å3
Mr = 385.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.5656 (13) ŵ = 2.37 mm1
b = 15.3433 (19) ÅT = 298 K
c = 11.5706 (14) Å0.22 × 0.16 × 0.12 mm
β = 111.506 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3089 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2332 reflections with I > 2σ(I)
Tmin = 0.624, Tmax = 0.764Rint = 0.022
8955 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.02Δρmax = 0.33 e Å3
3089 reflectionsΔρmin = 0.70 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.14954 (3)0.23557 (2)0.33861 (3)0.07268 (15)
N10.5993 (2)0.57103 (14)0.88561 (19)0.0464 (5)
N20.4883 (2)0.52724 (13)0.81156 (19)0.0458 (5)
O10.87411 (19)0.63973 (15)1.00922 (19)0.0689 (6)
O20.92884 (17)0.57135 (12)0.86274 (18)0.0552 (5)
C10.2646 (3)0.31434 (16)0.4583 (2)0.0460 (6)
C20.2191 (3)0.35288 (18)0.5429 (3)0.0540 (7)
H20.13160.34210.54050.065*
C30.3052 (3)0.40806 (17)0.6317 (3)0.0495 (6)
H30.27480.43420.68920.059*
C40.4364 (2)0.42517 (14)0.6366 (2)0.0385 (5)
C50.4785 (3)0.38498 (17)0.5496 (2)0.0501 (6)
H50.56570.39550.55090.060*
C60.3933 (3)0.32961 (18)0.4609 (3)0.0540 (7)
H60.42310.30290.40330.065*
C70.5294 (2)0.48270 (15)0.7316 (2)0.0391 (5)
C80.6665 (2)0.49904 (16)0.7551 (2)0.0425 (6)
H80.71850.47620.71260.051*
C90.7089 (2)0.55554 (16)0.8535 (2)0.0428 (6)
C100.8439 (3)0.59442 (17)0.9187 (3)0.0482 (6)
C111.0643 (3)0.6089 (2)0.9142 (3)0.0624 (8)
H11A1.10910.59121.00020.075*
H11B1.05900.67210.91110.075*
C121.1416 (3)0.5767 (3)0.8380 (4)0.0874 (12)
H12A1.14630.51420.84210.131*
H12B1.23190.60040.86960.131*
H12C1.09630.59460.75330.131*
C130.5871 (3)0.62843 (18)0.9823 (3)0.0534 (7)
H13A0.65780.61371.06100.064*
H13B0.50000.61800.99000.064*
C140.5983 (2)0.72389 (17)0.9565 (2)0.0447 (6)
C150.5372 (3)0.7587 (2)0.8389 (3)0.0596 (8)
H150.48900.72250.77300.071*
C160.5469 (4)0.8471 (2)0.8179 (3)0.0712 (9)
H160.50640.86950.73810.085*
C170.6163 (4)0.9013 (2)0.9148 (3)0.0719 (9)
H170.62170.96070.90100.086*
C180.6778 (3)0.8676 (2)1.0323 (3)0.0677 (9)
H180.72540.90411.09810.081*
C190.6687 (3)0.77974 (19)1.0524 (3)0.0551 (7)
H190.71080.75751.13210.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0671 (2)0.0617 (2)0.0738 (2)0.01026 (15)0.00757 (17)0.02063 (16)
N10.0462 (12)0.0457 (12)0.0486 (13)0.0028 (10)0.0190 (10)0.0077 (10)
N20.0414 (12)0.0458 (12)0.0506 (13)0.0048 (9)0.0172 (10)0.0060 (10)
O10.0518 (12)0.0864 (16)0.0595 (13)0.0039 (11)0.0099 (10)0.0261 (12)
O20.0386 (10)0.0590 (12)0.0668 (12)0.0089 (8)0.0182 (9)0.0150 (9)
C10.0467 (15)0.0361 (14)0.0478 (15)0.0021 (11)0.0084 (12)0.0007 (11)
C20.0434 (15)0.0511 (16)0.0680 (18)0.0061 (12)0.0210 (14)0.0079 (13)
C30.0442 (15)0.0488 (15)0.0588 (17)0.0000 (12)0.0228 (13)0.0062 (13)
C40.0376 (13)0.0327 (12)0.0434 (14)0.0027 (10)0.0128 (11)0.0044 (10)
C50.0447 (15)0.0530 (16)0.0555 (16)0.0042 (12)0.0221 (13)0.0065 (13)
C60.0620 (18)0.0511 (16)0.0534 (17)0.0033 (13)0.0263 (14)0.0100 (13)
C70.0390 (13)0.0329 (12)0.0447 (14)0.0017 (10)0.0146 (11)0.0020 (10)
C80.0398 (14)0.0411 (14)0.0489 (15)0.0010 (11)0.0190 (12)0.0037 (11)
C90.0384 (13)0.0422 (14)0.0472 (15)0.0021 (11)0.0152 (11)0.0003 (11)
C100.0438 (15)0.0464 (15)0.0495 (16)0.0022 (12)0.0111 (13)0.0001 (13)
C110.0400 (15)0.0645 (19)0.075 (2)0.0077 (13)0.0121 (14)0.0046 (15)
C120.055 (2)0.107 (3)0.110 (3)0.0105 (19)0.041 (2)0.007 (2)
C130.0558 (17)0.0602 (17)0.0497 (16)0.0044 (14)0.0259 (14)0.0095 (13)
C140.0397 (14)0.0543 (16)0.0442 (15)0.0028 (11)0.0202 (12)0.0090 (12)
C150.0621 (19)0.070 (2)0.0467 (17)0.0058 (15)0.0196 (14)0.0094 (14)
C160.086 (2)0.076 (2)0.0583 (19)0.0211 (19)0.0350 (18)0.0132 (17)
C170.093 (2)0.0549 (19)0.091 (3)0.0002 (17)0.061 (2)0.0007 (18)
C180.072 (2)0.061 (2)0.078 (2)0.0158 (16)0.0364 (18)0.0192 (17)
C190.0540 (17)0.0639 (19)0.0467 (16)0.0058 (14)0.0176 (13)0.0096 (13)
Geometric parameters (Å, º) top
Br1—C11.903 (2)C9—C101.474 (4)
N1—N21.351 (3)C11—C121.489 (4)
N1—C91.360 (3)C11—H11A0.9700
N1—C131.466 (3)C11—H11B0.9700
N2—C71.344 (3)C12—H12A0.9600
O1—C101.199 (3)C12—H12B0.9600
O2—C101.332 (3)C12—H12C0.9600
O2—C111.453 (3)C13—C141.508 (4)
C1—C61.369 (4)C13—H13A0.9700
C1—C21.371 (4)C13—H13B0.9700
C2—C31.384 (4)C14—C151.382 (4)
C2—H20.9300C14—C191.383 (4)
C3—C41.391 (3)C15—C161.387 (4)
C3—H30.9300C15—H150.9300
C4—C51.386 (3)C16—C171.373 (5)
C4—C71.470 (3)C16—H160.9300
C5—C61.381 (4)C17—C181.375 (5)
C5—H50.9300C17—H170.9300
C6—H60.9300C18—C191.378 (4)
C7—C81.395 (3)C18—H180.9300
C8—C91.369 (3)C19—H190.9300
C8—H80.9300
N2—N1—C9111.58 (19)O2—C11—H11A110.3
N2—N1—C13118.9 (2)C12—C11—H11A110.3
C9—N1—C13129.5 (2)O2—C11—H11B110.3
C7—N2—N1105.40 (19)C12—C11—H11B110.3
C10—O2—C11115.6 (2)H11A—C11—H11B108.5
C6—C1—C2121.0 (2)C11—C12—H12A109.5
C6—C1—Br1119.2 (2)C11—C12—H12B109.5
C2—C1—Br1119.7 (2)H12A—C12—H12B109.5
C1—C2—C3119.1 (2)C11—C12—H12C109.5
C1—C2—H2120.4H12A—C12—H12C109.5
C3—C2—H2120.4H12B—C12—H12C109.5
C2—C3—C4121.3 (2)N1—C13—C14113.4 (2)
C2—C3—H3119.3N1—C13—H13A108.9
C4—C3—H3119.3C14—C13—H13A108.9
C5—C4—C3117.8 (2)N1—C13—H13B108.9
C5—C4—C7120.4 (2)C14—C13—H13B108.9
C3—C4—C7121.8 (2)H13A—C13—H13B107.7
C6—C5—C4121.2 (2)C15—C14—C19118.0 (3)
C6—C5—H5119.4C15—C14—C13121.9 (2)
C4—C5—H5119.4C19—C14—C13120.1 (3)
C1—C6—C5119.5 (3)C14—C15—C16120.9 (3)
C1—C6—H6120.2C14—C15—H15119.6
C5—C6—H6120.2C16—C15—H15119.6
N2—C7—C8110.4 (2)C17—C16—C15120.0 (3)
N2—C7—C4121.6 (2)C17—C16—H16120.0
C8—C7—C4128.0 (2)C15—C16—H16120.0
C9—C8—C7106.0 (2)C16—C17—C18119.8 (3)
C9—C8—H8127.0C16—C17—H17120.1
C7—C8—H8127.0C18—C17—H17120.1
N1—C9—C8106.6 (2)C17—C18—C19119.9 (3)
N1—C9—C10123.4 (2)C17—C18—H18120.1
C8—C9—C10130.0 (2)C19—C18—H18120.1
O1—C10—O2124.6 (2)C18—C19—C14121.4 (3)
O1—C10—C9125.4 (3)C18—C19—H19119.3
O2—C10—C9110.0 (2)C14—C19—H19119.3
O2—C11—C12107.3 (2)
C9—N1—N2—C70.4 (3)C13—N1—C9—C102.5 (4)
C13—N1—N2—C7178.5 (2)C7—C8—C9—N10.1 (3)
C6—C1—C2—C30.1 (4)C7—C8—C9—C10179.4 (3)
Br1—C1—C2—C3178.2 (2)C11—O2—C10—O13.4 (4)
C1—C2—C3—C40.1 (4)C11—O2—C10—C9177.1 (2)
C2—C3—C4—C50.1 (4)N1—C9—C10—O13.8 (4)
C2—C3—C4—C7179.1 (2)C8—C9—C10—O1175.4 (3)
C3—C4—C5—C60.1 (4)N1—C9—C10—O2176.6 (2)
C7—C4—C5—C6178.9 (2)C8—C9—C10—O24.1 (4)
C2—C1—C6—C50.3 (4)C10—O2—C11—C12179.0 (3)
Br1—C1—C6—C5178.4 (2)N2—N1—C13—C14110.3 (3)
C4—C5—C6—C10.3 (4)C9—N1—C13—C1467.4 (4)
N1—N2—C7—C80.4 (3)N1—C13—C14—C1540.9 (4)
N1—N2—C7—C4178.8 (2)N1—C13—C14—C19140.5 (2)
C5—C4—C7—N2175.3 (2)C19—C14—C15—C160.2 (4)
C3—C4—C7—N25.7 (4)C13—C14—C15—C16178.9 (3)
C5—C4—C7—C85.7 (4)C14—C15—C16—C170.9 (5)
C3—C4—C7—C8173.3 (2)C15—C16—C17—C180.9 (5)
N2—C7—C8—C90.2 (3)C16—C17—C18—C190.4 (5)
C4—C7—C8—C9178.9 (2)C17—C18—C19—C140.2 (5)
N2—N1—C9—C80.3 (3)C15—C14—C19—C180.3 (4)
C13—N1—C9—C8178.1 (2)C13—C14—C19—C18178.4 (3)
N2—N1—C9—C10179.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O1i0.932.503.369 (4)155
Symmetry code: (i) x1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC19H17BrN2O2
Mr385.26
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)10.5656 (13), 15.3433 (19), 11.5706 (14)
β (°) 111.506 (2)
V3)1745.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.37
Crystal size (mm)0.22 × 0.16 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.624, 0.764
No. of measured, independent and
observed [I > 2σ(I)] reflections
8955, 3089, 2332
Rint0.022
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.088, 1.02
No. of reflections3089
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.70

Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O1i0.932.503.369 (4)155
Symmetry code: (i) x1/2, y+3/2, z1/2.
 

Acknowledgements

The authors are very grateful to Li Jikun (Taishan College) for his invaluable support.

References

First citationBruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGe, Y.-Q., Dong, W.-L., Xia, Y., Wei, F. & Zhao, B.-X. (2007). Acta Cryst. E63, o1313–o1314.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGe, Y. Q., Jia, J., Li, Y., Yin, L. & Wang, J. W. (2009). Heterocycles, 42, 197–206.  Google Scholar
First citationGe, Y. Q., Jia, J., Yang, H., Tao, X. T. & Wang, J. W. (2011). Dyes Pigments, 88, 344-349.  Web of Science CSD CrossRef CAS Google Scholar
First citationHan, Z., Zheng, H.-L. & Tian, X.-L. (2011). Acta Cryst. E67, o511.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, Y.-Q., Jia, B.-X., Xiao, Y.-L. & Guo, F.-G. (2011). Acta Cryst. E67, o468.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds