organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-2-Amino­pyridinium cis-2-carb­­oxy­cyclo­hexane-1-carboxyl­ate

aFaculty of Science and Technology, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au

(Received 24 June 2011; accepted 27 June 2011; online 2 July 2011)

In the structure of the title compound, C5H7N2+·C8H11O4, the cis anions associate through head-to-tail carb­oxy­lic acid–carboxyl O—H⋯O hydrogen bonds [graph set C(7)], forming chains which extend along c and are inter­linked through the carboxyl groups, forming cyclic R22(8) associations with the pyridinium and an amine H-atom donor of the cation. Further amine–carboxyl N—H⋯O inter­actions form enlarged centrosymmetric rings [graph set R44(18)] and extensions down b, giving a three-dimensional structure.

Related literature

For the structure of racemic cis-cyclo­hexane,1,2-dicarb­oxy­lic acid, see: Benedetti et al. (1970[Benedetti, E., Pedone, C. & Allegra, G. (1970). J. Phys. Chem. 74, 512-516.]). For the structure of racemic ammonium cis-2-carb­oxy­cyclo­hexane-1-carboxyl­ate, see: Smith & Wermuth (2011[Smith, G. & Wermuth, U. D. (2011). Acta Cryst. E67, o174.]) and of brucinium (1R,2S-2-carb­oxy­cyclo­hexane-1-carboxyl­ate dihydrate, see: Smith et al. (2011[Smith, G., Wermuth, U. W. & Williams, M. L. (2011). Acta Cryst. E67. Submitted.]). For the structure of the adduct of cis-cyclo­hexane-1,2-dicarb­oxy­lic acid with 4,4′-bipyridine, see: Bhogala et al. (2005[Bhogala, B. R., Basavogu, S. & Nangia, A. (2005). Cryst. Struct. Commun. 7, 512-516.]). For graph-set analysis, see: Etter et al. (1990)[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.].

[Scheme 1]

Experimental

Crystal data
  • C5H7N2+·C8H11O4

  • Mr = 266.29

  • Monoclinic, P 21 /c

  • a = 12.4709 (5) Å

  • b = 10.4191 (5) Å

  • c = 10.6451 (5) Å

  • β = 101.250 (4)°

  • V = 1356.60 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 200 K

  • 0.35 × 0.32 × 0.20 mm

Data collection
  • Oxford Diffraction Gemini-S CCD-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.90, Tmax = 0.98

  • 9200 measured reflections

  • 2658 independent reflections

  • 1947 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.081

  • S = 0.99

  • 2658 reflections

  • 188 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯O11 0.981 (15) 1.656 (15) 2.6223 (15) 167.7 (14)
N21A—H21A⋯O12 0.911 (18) 2.044 (17) 2.9361 (16) 166.3 (14)
N21A—H22A⋯O22i 0.873 (16) 2.105 (16) 2.9103 (17) 153.1 (14)
O21—H21⋯O11ii 0.991 (19) 1.595 (19) 2.5806 (13) 172.9 (18)
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Although the structure of racemic cis-cyclohexane-1,2-dicarboxylic acid (cis-CHDC) is known (Benedetti et al., 1970), together with its 1:1 adduct with 4,4'-bipyridine (Bhogala et al., 2005), there are few examples of salts of this acid in the crystallographic literature. We have now reported the structures of the 1:1 ammonium salt (Smith & Wermuth, 2011) and the 1:1 brucinium salt trihydrate (Smith et al., 2011), in which the 1R,2S enantiomer of cis-CHDC has been resolved. Our 1:1 stoichiometric reaction of cyclohexane-1,2-dicarboxylic anhydride with 2-aminopyridine in 50% ethanol/water solution gave large crystals of the title compound, C5H7N2+ C8H11O4- and the structure is reported here.

In the structure (Fig. 1) of the title compound, cisC5H7N2+ C8H11O4-, the cis-anions associate through head-to-tail carboxylic acid–carboxyl O—H···O hydrogen-bonds [graph set C(7) (Etter et al., 1990)] and are inter-linked through the carboxyl groups, forming cyclic R22(8) associations with the pyridinium and an amine H donor of the cation. Further amine···carboxyl N—H···O interactions (Table 1) form enlarged centrosymmetric rings [graph set R44(18)] (Fig. 2) and extensions down b (Fig. 3) to give a three-dimensional structure.

Related literature top

For the structure of racemic cis-cyclohexane,1,2-dicarboxylic acid, see: Benedetti et al. (1970). For the structure of racemic ammonium cis-2-carboxycyclohexane-1-carboxylate, see: Smith & Wermuth (2011) and of brucinium (1R,2S-2-carboxycyclohexane-1-carboxylate trihydrate, see: Smith et al. (2011). For the structure of the adduct of cis-cyclohexane-1,2-dicarboxylic acid with 4,4'-bipyridine, see: Bhogala et al. (2005). For graph-set analysis, see: Etter et al. (1990).

Experimental top

The title compound was synthesized by heating a solution of 1 mmol of cyclohexane-1,2-dicarboxylic anhydride and 1 mmol of 2-aminopyridine in 50 ml of 1:1 ethanol–water under reflux for 10 min. After concentration to 30 ml the solution was allowed evaporate to moist dryness at room temperature, giving large colourless plates of the title compound (m.p. 396 K) from which a specimen was cleaved for the X-ray analysis.

Refinement top

Hydrogen atoms involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. Other H-atoms were included in the refinement at calculated positions [C—H = 0.93–0.98 Å and with Uiso(H) = 1.2Ueq(C), using a riding-model approximation.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular configuration for the cation and anion species. Inter-species hydrogen bonds are shown as dashed lines and displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. The inter-associated duplex cis-CHDC anion chains which extend along the c direction in the unit cell, showing hydrogen-bonding interactions as dashed lines. Non-associative H atoms are omitted. For symmetry codes, see Table 1.
[Figure 3] Fig. 3. A view of the hydrogen-bonding extensions in the structure down the b axis.
rac-2-Aminopyridinium cis-2-carboxycyclohexane-1-carboxylate top
Crystal data top
C5H7N2+·C8H11O4F(000) = 568
Mr = 266.29Dx = 1.304 Mg m3
Monoclinic, P21/cMelting point: 396 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.4709 (5) ÅCell parameters from 4347 reflections
b = 10.4191 (5) Åθ = 3.4–28.7°
c = 10.6451 (5) ŵ = 0.10 mm1
β = 101.250 (4)°T = 200 K
V = 1356.60 (11) Å3Block, colourless
Z = 40.35 × 0.32 × 0.20 mm
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2658 independent reflections
Radiation source: Enhance (Mo) X-ray source1947 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.4°
ω scansh = 1515
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1212
Tmin = 0.90, Tmax = 0.98l = 1313
9200 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0472P)2]
where P = (Fo2 + 2Fc2)/3
2658 reflections(Δ/σ)max = 0.001
188 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C5H7N2+·C8H11O4V = 1356.60 (11) Å3
Mr = 266.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.4709 (5) ŵ = 0.10 mm1
b = 10.4191 (5) ÅT = 200 K
c = 10.6451 (5) Å0.35 × 0.32 × 0.20 mm
β = 101.250 (4)°
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2658 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1947 reflections with I > 2σ(I)
Tmin = 0.90, Tmax = 0.98Rint = 0.022
9200 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.16 e Å3
2658 reflectionsΔρmin = 0.15 e Å3
188 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O110.29045 (7)0.58197 (9)0.65073 (8)0.0412 (3)
O120.34131 (6)0.57102 (9)0.86187 (8)0.0405 (3)
O210.18216 (7)0.77924 (9)0.96839 (9)0.0411 (3)
O220.23826 (8)0.62543 (10)1.11054 (8)0.0494 (3)
C10.14901 (9)0.59059 (12)0.77138 (11)0.0310 (4)
C20.12817 (9)0.56727 (12)0.90706 (12)0.0327 (4)
C30.14384 (10)0.42684 (13)0.94720 (14)0.0426 (4)
C40.07163 (11)0.34055 (14)0.85100 (16)0.0529 (5)
C50.09356 (11)0.36091 (14)0.71709 (16)0.0521 (5)
C60.07708 (10)0.50055 (13)0.67677 (13)0.0422 (4)
C110.26966 (10)0.57955 (11)0.76400 (12)0.0308 (4)
C210.19003 (9)0.65774 (13)1.00503 (12)0.0341 (4)
N1A0.49126 (9)0.62635 (11)0.62208 (11)0.0387 (4)
N21A0.55457 (11)0.50551 (13)0.80144 (12)0.0474 (5)
C2A0.57435 (10)0.56346 (12)0.69688 (13)0.0356 (4)
C3A0.67632 (10)0.56253 (13)0.65925 (13)0.0410 (4)
C4A0.68805 (11)0.62558 (14)0.55114 (14)0.0467 (5)
C5A0.60091 (12)0.69282 (14)0.47783 (14)0.0509 (5)
C6A0.50392 (12)0.69068 (14)0.51527 (14)0.0473 (5)
H10.126000.678600.747400.0370*
H20.050600.586000.903100.0390*
H210.2185 (15)0.8363 (19)1.0383 (18)0.089 (6)*
H310.219800.402900.953000.0510*
H320.125700.415501.031100.0510*
H410.085400.251500.875700.0640*
H420.004600.358900.851400.0640*
H510.044600.307300.657100.0630*
H520.168000.335500.715000.0630*
H610.000900.523500.671200.0510*
H620.094400.511300.592400.0510*
H1A0.4183 (12)0.6177 (14)0.6427 (14)0.055 (4)*
H3A0.735200.519100.708000.0490*
H4A0.755200.624000.525500.0560*
H5A0.609700.737900.405100.0610*
H6A0.444700.734000.467100.0570*
H21A0.4889 (14)0.5126 (15)0.8261 (15)0.060 (5)*
H22A0.6077 (13)0.4646 (15)0.8509 (15)0.054 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0347 (5)0.0558 (6)0.0334 (5)0.0086 (4)0.0076 (4)0.0050 (5)
O120.0271 (4)0.0577 (6)0.0347 (5)0.0022 (4)0.0011 (4)0.0019 (4)
O210.0456 (5)0.0376 (5)0.0356 (5)0.0017 (4)0.0031 (4)0.0025 (4)
O220.0553 (6)0.0572 (7)0.0314 (5)0.0134 (5)0.0024 (4)0.0036 (5)
C10.0273 (6)0.0309 (7)0.0323 (7)0.0041 (5)0.0002 (5)0.0005 (5)
C20.0222 (6)0.0373 (7)0.0380 (7)0.0045 (5)0.0044 (5)0.0027 (6)
C30.0362 (7)0.0406 (8)0.0515 (8)0.0003 (6)0.0101 (6)0.0107 (7)
C40.0414 (8)0.0384 (8)0.0781 (11)0.0057 (7)0.0094 (7)0.0034 (8)
C50.0402 (8)0.0424 (9)0.0703 (10)0.0070 (6)0.0023 (7)0.0179 (8)
C60.0309 (6)0.0505 (9)0.0418 (8)0.0017 (6)0.0009 (6)0.0083 (7)
C110.0307 (6)0.0280 (7)0.0327 (7)0.0026 (5)0.0034 (5)0.0007 (5)
C210.0262 (6)0.0429 (8)0.0332 (7)0.0082 (5)0.0061 (5)0.0022 (6)
N1A0.0327 (6)0.0385 (6)0.0435 (7)0.0042 (5)0.0040 (5)0.0024 (5)
N21A0.0344 (7)0.0615 (9)0.0462 (8)0.0105 (6)0.0073 (6)0.0133 (6)
C2A0.0319 (6)0.0336 (7)0.0392 (7)0.0008 (5)0.0018 (6)0.0030 (6)
C3A0.0311 (7)0.0437 (8)0.0468 (8)0.0005 (6)0.0039 (6)0.0004 (7)
C4A0.0391 (8)0.0464 (9)0.0558 (9)0.0082 (6)0.0121 (7)0.0023 (7)
C5A0.0539 (9)0.0479 (9)0.0511 (9)0.0059 (7)0.0109 (7)0.0115 (7)
C6A0.0473 (8)0.0414 (8)0.0498 (9)0.0045 (7)0.0009 (7)0.0083 (7)
Geometric parameters (Å, º) top
O11—C111.2821 (15)C1—H10.9800
O12—C111.2363 (15)C2—H20.9800
O21—C211.3226 (16)C3—H320.9700
O22—C211.2137 (15)C3—H310.9700
O21—H210.991 (19)C4—H420.9700
N1A—C6A1.3554 (19)C4—H410.9700
N1A—C2A1.3473 (17)C5—H510.9700
N21A—C2A1.3310 (19)C5—H520.9700
N1A—H1A0.981 (15)C6—H610.9700
N21A—H21A0.911 (18)C6—H620.9700
N21A—H22A0.873 (16)C2A—C3A1.4059 (18)
C1—C21.5359 (17)C3A—C4A1.358 (2)
C1—C111.5262 (17)C4A—C5A1.396 (2)
C1—C61.5319 (18)C5A—C6A1.346 (2)
C2—C31.5261 (19)C3A—H3A0.9300
C2—C211.5025 (18)C4A—H4A0.9300
C3—C41.519 (2)C5A—H5A0.9300
C4—C51.518 (2)C6A—H6A0.9300
C5—C61.520 (2)
O11···N1A2.6223 (15)C11···H21i2.520 (19)
O11···C21i3.2513 (16)C11···H522.8400
O11···O21i2.5806 (13)C11···H312.8800
O11···C4Aii3.0969 (17)C21···H42viii3.0200
O11···O22i3.1292 (14)C21···H22Aiv2.972 (16)
O12···C6Aiii3.4134 (17)H1···O212.5500
O12···C33.1653 (16)H1···C4v3.0000
O12···O223.2105 (12)H1···H42v2.5100
O12···N21A2.9361 (16)H1A···C112.489 (15)
O12···C212.7964 (15)H1A···O111.656 (15)
O21···C113.3436 (15)H1A···O122.734 (15)
O21···O11iii2.5806 (13)H1A···H21i2.57 (2)
O22···O123.2105 (12)H1A···H21A2.26 (2)
O22···C3Aiv3.1555 (16)H2···H612.5100
O22···O11iii3.1292 (14)H2···H32viii2.4300
O22···N21Aiv2.9103 (17)H2···H422.5000
O22···C2Aiv3.4158 (16)H3A···H22A2.4700
O11···H622.5100H3A···O22iv2.4200
O11···H4Aii2.8300H4A···H41vii2.4500
O11···H21A2.886 (17)H4A···O11ii2.8300
O11···H1A1.656 (15)H5A···C2Ai3.0000
O11···H21i1.595 (19)H5A···N21Ai2.9200
O12···H312.6200H6A···O12i2.5500
O12···H21A2.044 (17)H21···O11iii1.595 (19)
O12···H1A2.734 (15)H21···C1iii2.886 (19)
O12···H6Aiii2.5500H21···H1Aiii2.57 (2)
O21···H62iii2.8800H21···H62iii2.3700
O21···H12.5500H21···C6iii3.031 (19)
O21···H51v2.9000H21···C11iii2.520 (19)
O22···H322.6500H21A···C112.774 (18)
O22···H3Aiv2.4200H21A···O112.886 (17)
O22···H22Aiv2.105 (16)H21A···H1A2.26 (2)
O22···H312.8400H21A···O122.044 (17)
N1A···O112.6223 (15)H22A···H3A2.4700
N1A···C113.4331 (17)H22A···O22iv2.105 (16)
N21A···O122.9361 (16)H22A···C21iv2.972 (16)
N21A···O22iv2.9103 (17)H31···O122.6200
N21A···H5Aiii2.9200H31···O222.8400
C2A···C6Aii3.494 (2)H31···H522.5900
C2A···O22iv3.4158 (16)H31···C112.8800
C3···O123.1653 (16)H32···O222.6500
C3A···O22iv3.1555 (16)H32···H2viii2.4300
C4A···O11ii3.0969 (17)H41···H4Aix2.4500
C6A···O12i3.4134 (17)H41···C4Aix3.0700
C6A···C2Aii3.494 (2)H42···H22.5000
C11···N1A3.4331 (17)H42···H612.5800
C11···O213.3436 (15)H42···C21viii3.0200
C21···O122.7964 (15)H42···H1vi2.5100
C21···O11iii3.2513 (16)H51···O21vi2.9000
C1···H21i2.886 (19)H52···H312.5900
C2A···H5Aiii3.0000H52···C112.8400
C4···H1vi3.0000H61···H22.5100
C4A···H41vii3.0700H61···H422.5800
C6···H21i3.031 (19)H62···O21i2.8800
C11···H21A2.774 (18)H62···H21i2.3700
C11···H1A2.489 (15)H62···O112.5100
C21—O21—H21110.9 (11)C2—C3—H31110.00
C2A—N1A—C6A122.30 (12)C2—C3—H32110.00
C6A—N1A—H1A119.9 (9)C5—C4—H41109.00
C2A—N1A—H1A117.6 (9)C5—C4—H42109.00
H21A—N21A—H22A119.0 (14)C3—C4—H42109.00
C2A—N21A—H21A121.9 (10)C3—C4—H41109.00
C2A—N21A—H22A118.9 (11)H41—C4—H42108.00
C2—C1—C6109.67 (10)C6—C5—H51109.00
C2—C1—C11112.70 (10)C4—C5—H52109.00
C6—C1—C11112.13 (10)C6—C5—H52109.00
C1—C2—C21113.29 (10)H51—C5—H52108.00
C1—C2—C3112.27 (10)C4—C5—H51109.00
C3—C2—C21112.76 (11)C5—C6—H62109.00
C2—C3—C4110.61 (11)H61—C6—H62108.00
C3—C4—C5111.02 (12)C1—C6—H61109.00
C4—C5—C6111.09 (12)C1—C6—H62109.00
C1—C6—C5111.78 (11)C5—C6—H61109.00
O11—C11—C1115.42 (11)N1A—C2A—C3A117.98 (12)
O11—C11—O12123.26 (12)N21A—C2A—C3A124.10 (13)
O12—C11—C1121.31 (11)N1A—C2A—N21A117.92 (12)
O21—C21—C2113.41 (11)C2A—C3A—C4A119.42 (12)
O22—C21—C2124.26 (12)C3A—C4A—C5A121.05 (13)
O21—C21—O22122.23 (12)C4A—C5A—C6A118.21 (14)
C6—C1—H1107.00N1A—C6A—C5A121.01 (14)
C2—C1—H1107.00C2A—C3A—H3A120.00
C11—C1—H1107.00C4A—C3A—H3A120.00
C1—C2—H2106.00C3A—C4A—H4A119.00
C3—C2—H2106.00C5A—C4A—H4A119.00
C21—C2—H2106.00C4A—C5A—H5A121.00
C4—C3—H32110.00C6A—C5A—H5A121.00
H31—C3—H32108.00N1A—C6A—H6A120.00
C4—C3—H31110.00C5A—C6A—H6A119.00
C6A—N1A—C2A—N21A178.49 (13)C3—C2—C21—O21176.42 (10)
C6A—N1A—C2A—C3A1.86 (19)C3—C2—C21—O227.23 (17)
C2A—N1A—C6A—C5A1.1 (2)C1—C2—C21—O2147.52 (14)
C6—C1—C2—C354.66 (13)C1—C2—C21—O22136.14 (12)
C11—C1—C2—C2158.14 (14)C21—C2—C3—C4174.78 (11)
C6—C1—C2—C21176.19 (10)C2—C3—C4—C556.17 (14)
C2—C1—C11—O11171.57 (10)C3—C4—C5—C656.90 (15)
C2—C1—C11—O129.55 (16)C4—C5—C6—C156.70 (14)
C11—C1—C2—C371.01 (13)N1A—C2A—C3A—C4A0.9 (2)
C6—C1—C11—O12133.87 (12)N21A—C2A—C3A—C4A179.53 (14)
C11—C1—C6—C571.16 (13)C2A—C3A—C4A—C5A0.9 (2)
C6—C1—C11—O1147.24 (14)C3A—C4A—C5A—C6A1.8 (2)
C2—C1—C6—C554.84 (14)C4A—C5A—C6A—N1A0.8 (2)
C1—C2—C3—C455.80 (14)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z+1; (iii) x, y+3/2, z+1/2; (iv) x+1, y+1, z+2; (v) x, y+1/2, z+3/2; (vi) x, y1/2, z+3/2; (vii) x+1, y+1/2, z+3/2; (viii) x, y+1, z+2; (ix) x+1, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O110.981 (15)1.656 (15)2.6223 (15)167.7 (14)
N21A—H21A···O120.911 (18)2.044 (17)2.9361 (16)166.3 (14)
N21A—H22A···O22iv0.873 (16)2.105 (16)2.9103 (17)153.1 (14)
O21—H21···O11iii0.991 (19)1.595 (19)2.5806 (13)172.9 (18)
C3A—H3A···O22iv0.932.423.1555 (16)136
C6A—H6A···O12i0.932.553.4134 (17)155
C6—H62···O110.972.512.8574 (16)101
Symmetry codes: (i) x, y+3/2, z1/2; (iii) x, y+3/2, z+1/2; (iv) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC5H7N2+·C8H11O4
Mr266.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)12.4709 (5), 10.4191 (5), 10.6451 (5)
β (°) 101.250 (4)
V3)1356.60 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.35 × 0.32 × 0.20
Data collection
DiffractometerOxford Diffraction Gemini-S CCD-detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.90, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
9200, 2658, 1947
Rint0.022
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.081, 0.99
No. of reflections2658
No. of parameters188
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.15

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O110.981 (15)1.656 (15)2.6223 (15)167.7 (14)
N21A—H21A···O120.911 (18)2.044 (17)2.9361 (16)166.3 (14)
N21A—H22A···O22i0.873 (16)2.105 (16)2.9103 (17)153.1 (14)
O21—H21···O11ii0.991 (19)1.595 (19)2.5806 (13)172.9 (18)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+3/2, z+1/2.
 

Acknowledgements

The authors acknowledge financial support from the Australian Research Council, the Faculty of Science and Technology and the University Library, Queensland University of Technology.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBenedetti, E., Pedone, C. & Allegra, G. (1970). J. Phys. Chem. 74, 512–516.  CSD CrossRef CAS Web of Science Google Scholar
First citationBhogala, B. R., Basavogu, S. & Nangia, A. (2005). Cryst. Struct. Commun. 7, 512–516.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2011). Acta Cryst. E67, o174.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. W. & Williams, M. L. (2011). Acta Cryst. E67. Submitted.  CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds