organic compounds
2-[(E)-4-(Dimethylamino)benzylidene]indan-1-one
aInstitute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
In the title compound, C18H17NO, the dihydroindene ring system is approximately planar, with a maximum deviation of 0.041 (2) Å. This ring system is almost coplanar with the benzene ring, making a dihedral angle of 5.22 (9)°. In the crystal, intermolecular C—H⋯O hydrogen bonds link the molecules into chains along the b axis.
Related literature
For the background to dihydroindene and its derivatives, see: Kohlhagen et al. (1998); Prasad et al. (2006); Tomar et al. (2007); Bhat et al. (2005); Trivedi et al. (2007); Solankee et al. (2010); Liu et al. (2003); Trivedi et al. (2008); Cheng et al. (2008). For a closely related structure, see: Ali et al. (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S160053681102664X/wn2441sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681102664X/wn2441Isup2.hkl
Supporting information file. DOI: 10.1107/S160053681102664X/wn2441Isup3.cml
A mixture of 2,3-dihydro-1H-indene-1-one (0.001 mmol) and 4-nitrobenzaldehyde (0.001 mmol) was dissolved in methanol (10 ml) and to this mixture was added 30% sodium hydroxide solution (5 ml). The mixture was stirred for 5 h. After the completion of the reaction, as evident from TLC, the mixture was poured on to crushed ice, then neutralized with concentrated HCl. The precipitated solid was filtered, washed with water and recrystallized from ethanol to yield the title compound as light yellow crystals.
All H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C) [C–H = 0.93–0.97 Å]. A rotating group model was applied to the methyl groups. In the absence of significant
effects, 1725 Friedel pairs were merged for the final refinement.Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C18H17NO | F(000) = 560 |
Mr = 263.33 | Dx = 1.265 Mg m−3 |
Orthorhombic, Pca21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2ac | Cell parameters from 2132 reflections |
a = 30.024 (5) Å | θ = 2.7–23.6° |
b = 5.9898 (9) Å | µ = 0.08 mm−1 |
c = 7.6862 (11) Å | T = 297 K |
V = 1382.3 (4) Å3 | Plate, yellow |
Z = 4 | 0.46 × 0.33 × 0.06 mm |
Bruker SMART APEXII DUO CCD area-detector diffractometer | 2147 independent reflections |
Radiation source: fine-focus sealed tube | 1657 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
ϕ and ω scans | θmax = 30.0°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −42→42 |
Tmin = 0.965, Tmax = 0.995 | k = −7→8 |
8530 measured reflections | l = −10→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.099 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0455P)2 + 0.062P] where P = (Fo2 + 2Fc2)/3 |
2147 reflections | (Δ/σ)max = 0.001 |
183 parameters | Δρmax = 0.12 e Å−3 |
1 restraint | Δρmin = −0.12 e Å−3 |
C18H17NO | V = 1382.3 (4) Å3 |
Mr = 263.33 | Z = 4 |
Orthorhombic, Pca21 | Mo Kα radiation |
a = 30.024 (5) Å | µ = 0.08 mm−1 |
b = 5.9898 (9) Å | T = 297 K |
c = 7.6862 (11) Å | 0.46 × 0.33 × 0.06 mm |
Bruker SMART APEXII DUO CCD area-detector diffractometer | 2147 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 1657 reflections with I > 2σ(I) |
Tmin = 0.965, Tmax = 0.995 | Rint = 0.032 |
8530 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 1 restraint |
wR(F2) = 0.099 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.12 e Å−3 |
2147 reflections | Δρmin = −0.12 e Å−3 |
183 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.33515 (5) | 0.7381 (2) | 0.9621 (3) | 0.0591 (4) | |
N1 | 0.58774 (5) | 0.0911 (3) | 0.8681 (3) | 0.0523 (4) | |
C1 | 0.49445 (7) | 0.4669 (3) | 0.9738 (3) | 0.0466 (5) | |
H1A | 0.4900 | 0.6005 | 1.0329 | 0.056* | |
C2 | 0.53678 (7) | 0.3789 (3) | 0.9663 (3) | 0.0474 (5) | |
H2A | 0.5601 | 0.4536 | 1.0207 | 0.057* | |
C3 | 0.54532 (6) | 0.1784 (3) | 0.8779 (3) | 0.0409 (4) | |
C4 | 0.50852 (6) | 0.0695 (3) | 0.8021 (3) | 0.0428 (4) | |
H4A | 0.5127 | −0.0657 | 0.7449 | 0.051* | |
C5 | 0.46634 (6) | 0.1601 (3) | 0.8111 (3) | 0.0418 (4) | |
H5A | 0.4428 | 0.0843 | 0.7595 | 0.050* | |
C6 | 0.45795 (6) | 0.3632 (3) | 0.8959 (2) | 0.0391 (4) | |
C7 | 0.41495 (6) | 0.4734 (3) | 0.9089 (3) | 0.0414 (4) | |
H7A | 0.4157 | 0.6095 | 0.9671 | 0.050* | |
C8 | 0.37449 (6) | 0.4142 (3) | 0.8522 (3) | 0.0405 (4) | |
C9 | 0.35932 (6) | 0.2075 (3) | 0.7567 (3) | 0.0443 (4) | |
H9A | 0.3664 | 0.0736 | 0.8221 | 0.053* | |
H9B | 0.3731 | 0.1979 | 0.6427 | 0.053* | |
C10 | 0.30926 (6) | 0.2391 (3) | 0.7417 (3) | 0.0426 (4) | |
C11 | 0.27778 (6) | 0.0936 (4) | 0.6759 (3) | 0.0502 (5) | |
H11A | 0.2863 | −0.0435 | 0.6298 | 0.060* | |
C12 | 0.23334 (7) | 0.1555 (4) | 0.6796 (3) | 0.0556 (5) | |
H12A | 0.2119 | 0.0594 | 0.6343 | 0.067* | |
C13 | 0.22019 (7) | 0.3589 (4) | 0.7499 (3) | 0.0572 (5) | |
H13A | 0.1902 | 0.3971 | 0.7518 | 0.069* | |
C14 | 0.25135 (7) | 0.5039 (3) | 0.8169 (3) | 0.0536 (5) | |
H14A | 0.2427 | 0.6401 | 0.8643 | 0.064* | |
C15 | 0.29614 (6) | 0.4420 (3) | 0.8119 (3) | 0.0431 (4) | |
C16 | 0.33507 (6) | 0.5593 (3) | 0.8853 (3) | 0.0433 (4) | |
C17 | 0.62544 (7) | 0.2311 (4) | 0.9114 (4) | 0.0648 (7) | |
H17A | 0.6243 | 0.2695 | 1.0326 | 0.097* | |
H17B | 0.6245 | 0.3649 | 0.8426 | 0.097* | |
H17C | 0.6526 | 0.1519 | 0.8876 | 0.097* | |
C18 | 0.59698 (7) | −0.0926 (4) | 0.7520 (4) | 0.0626 (6) | |
H18A | 0.5777 | −0.2155 | 0.7792 | 0.094* | |
H18B | 0.6274 | −0.1382 | 0.7654 | 0.094* | |
H18C | 0.5920 | −0.0462 | 0.6340 | 0.094* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0587 (9) | 0.0423 (8) | 0.0762 (11) | 0.0033 (6) | 0.0014 (8) | −0.0079 (8) |
N1 | 0.0402 (8) | 0.0582 (10) | 0.0585 (11) | 0.0032 (7) | −0.0044 (8) | −0.0105 (9) |
C1 | 0.0468 (11) | 0.0445 (10) | 0.0485 (11) | −0.0034 (8) | −0.0011 (9) | −0.0097 (9) |
C2 | 0.0422 (10) | 0.0517 (11) | 0.0484 (11) | −0.0068 (8) | −0.0055 (9) | −0.0099 (10) |
C3 | 0.0397 (9) | 0.0456 (9) | 0.0375 (9) | −0.0028 (7) | −0.0002 (8) | 0.0006 (8) |
C4 | 0.0441 (10) | 0.0387 (9) | 0.0457 (11) | −0.0029 (7) | −0.0001 (8) | −0.0041 (8) |
C5 | 0.0394 (9) | 0.0399 (9) | 0.0462 (10) | −0.0074 (7) | −0.0027 (8) | −0.0035 (8) |
C6 | 0.0391 (9) | 0.0397 (9) | 0.0384 (10) | −0.0046 (7) | 0.0014 (8) | 0.0010 (8) |
C7 | 0.0459 (10) | 0.0365 (9) | 0.0419 (11) | −0.0027 (7) | 0.0037 (8) | 0.0009 (8) |
C8 | 0.0404 (9) | 0.0376 (9) | 0.0437 (10) | −0.0016 (7) | 0.0037 (8) | 0.0023 (8) |
C9 | 0.0388 (9) | 0.0434 (9) | 0.0507 (11) | −0.0009 (7) | 0.0016 (8) | −0.0020 (9) |
C10 | 0.0400 (9) | 0.0463 (10) | 0.0415 (10) | −0.0026 (7) | −0.0001 (8) | 0.0061 (9) |
C11 | 0.0499 (11) | 0.0533 (11) | 0.0474 (11) | −0.0051 (9) | −0.0020 (9) | 0.0017 (10) |
C12 | 0.0455 (11) | 0.0691 (14) | 0.0523 (12) | −0.0102 (10) | −0.0053 (10) | 0.0080 (12) |
C13 | 0.0401 (10) | 0.0709 (14) | 0.0606 (13) | 0.0029 (9) | −0.0030 (10) | 0.0141 (12) |
C14 | 0.0477 (10) | 0.0536 (10) | 0.0597 (13) | 0.0070 (9) | 0.0015 (10) | 0.0096 (11) |
C15 | 0.0414 (9) | 0.0437 (9) | 0.0442 (10) | −0.0005 (7) | 0.0016 (8) | 0.0078 (9) |
C16 | 0.0451 (10) | 0.0373 (9) | 0.0476 (11) | 0.0003 (7) | 0.0037 (9) | 0.0072 (9) |
C17 | 0.0396 (10) | 0.0734 (15) | 0.0815 (18) | −0.0012 (10) | −0.0097 (11) | −0.0083 (14) |
C18 | 0.0513 (12) | 0.0626 (13) | 0.0738 (16) | 0.0101 (10) | 0.0024 (12) | −0.0112 (13) |
O1—C16 | 1.223 (2) | C9—H9A | 0.9700 |
N1—C3 | 1.379 (2) | C9—H9B | 0.9700 |
N1—C18 | 1.444 (3) | C10—C11 | 1.382 (3) |
N1—C17 | 1.448 (3) | C10—C15 | 1.387 (3) |
C1—C2 | 1.377 (3) | C11—C12 | 1.385 (3) |
C1—C6 | 1.394 (3) | C11—H11A | 0.9300 |
C1—H1A | 0.9300 | C12—C13 | 1.390 (3) |
C2—C3 | 1.403 (3) | C12—H12A | 0.9300 |
C2—H2A | 0.9300 | C13—C14 | 1.377 (3) |
C3—C4 | 1.409 (3) | C13—H13A | 0.9300 |
C4—C5 | 1.380 (2) | C14—C15 | 1.396 (3) |
C4—H4A | 0.9300 | C14—H14A | 0.9300 |
C5—C6 | 1.403 (3) | C15—C16 | 1.476 (3) |
C5—H5A | 0.9300 | C17—H17A | 0.9600 |
C6—C7 | 1.454 (2) | C17—H17B | 0.9600 |
C7—C8 | 1.339 (2) | C17—H17C | 0.9600 |
C7—H7A | 0.9300 | C18—H18A | 0.9600 |
C8—C16 | 1.490 (2) | C18—H18B | 0.9600 |
C8—C9 | 1.510 (3) | C18—H18C | 0.9600 |
C9—C10 | 1.519 (3) | ||
C3—N1—C18 | 120.01 (17) | C11—C10—C15 | 120.07 (18) |
C3—N1—C17 | 119.35 (17) | C11—C10—C9 | 128.74 (18) |
C18—N1—C17 | 115.67 (18) | C15—C10—C9 | 111.15 (16) |
C2—C1—C6 | 122.48 (19) | C10—C11—C12 | 118.9 (2) |
C2—C1—H1A | 118.8 | C10—C11—H11A | 120.6 |
C6—C1—H1A | 118.8 | C12—C11—H11A | 120.6 |
C1—C2—C3 | 121.07 (17) | C11—C12—C13 | 121.1 (2) |
C1—C2—H2A | 119.5 | C11—C12—H12A | 119.5 |
C3—C2—H2A | 119.5 | C13—C12—H12A | 119.5 |
N1—C3—C2 | 121.30 (16) | C14—C13—C12 | 120.4 (2) |
N1—C3—C4 | 121.75 (17) | C14—C13—H13A | 119.8 |
C2—C3—C4 | 116.95 (17) | C12—C13—H13A | 119.8 |
C5—C4—C3 | 121.12 (18) | C13—C14—C15 | 118.5 (2) |
C5—C4—H4A | 119.4 | C13—C14—H14A | 120.8 |
C3—C4—H4A | 119.4 | C15—C14—H14A | 120.8 |
C4—C5—C6 | 121.96 (16) | C10—C15—C14 | 121.14 (18) |
C4—C5—H5A | 119.0 | C10—C15—C16 | 109.94 (16) |
C6—C5—H5A | 119.0 | C14—C15—C16 | 128.78 (19) |
C1—C6—C5 | 116.40 (16) | O1—C16—C15 | 127.09 (17) |
C1—C6—C7 | 117.79 (17) | O1—C16—C8 | 126.27 (17) |
C5—C6—C7 | 125.81 (16) | C15—C16—C8 | 106.62 (16) |
C8—C7—C6 | 131.55 (17) | N1—C17—H17A | 109.5 |
C8—C7—H7A | 114.2 | N1—C17—H17B | 109.5 |
C6—C7—H7A | 114.2 | H17A—C17—H17B | 109.5 |
C7—C8—C16 | 120.69 (17) | N1—C17—H17C | 109.5 |
C7—C8—C9 | 130.51 (16) | H17A—C17—H17C | 109.5 |
C16—C8—C9 | 108.78 (15) | H17B—C17—H17C | 109.5 |
C8—C9—C10 | 103.47 (15) | N1—C18—H18A | 109.5 |
C8—C9—H9A | 111.1 | N1—C18—H18B | 109.5 |
C10—C9—H9A | 111.1 | H18A—C18—H18B | 109.5 |
C8—C9—H9B | 111.1 | N1—C18—H18C | 109.5 |
C10—C9—H9B | 111.1 | H18A—C18—H18C | 109.5 |
H9A—C9—H9B | 109.0 | H18B—C18—H18C | 109.5 |
C6—C1—C2—C3 | 0.3 (3) | C8—C9—C10—C15 | 2.3 (2) |
C18—N1—C3—C2 | −169.1 (2) | C15—C10—C11—C12 | 0.7 (3) |
C17—N1—C3—C2 | −15.2 (3) | C9—C10—C11—C12 | 178.2 (2) |
C18—N1—C3—C4 | 11.7 (3) | C10—C11—C12—C13 | −0.7 (3) |
C17—N1—C3—C4 | 165.7 (2) | C11—C12—C13—C14 | 0.3 (4) |
C1—C2—C3—N1 | 179.1 (2) | C12—C13—C14—C15 | 0.1 (3) |
C1—C2—C3—C4 | −1.7 (3) | C11—C10—C15—C14 | −0.3 (3) |
N1—C3—C4—C5 | −179.24 (19) | C9—C10—C15—C14 | −178.2 (2) |
C2—C3—C4—C5 | 1.6 (3) | C11—C10—C15—C16 | 175.67 (19) |
C3—C4—C5—C6 | −0.2 (3) | C9—C10—C15—C16 | −2.2 (2) |
C2—C1—C6—C5 | 1.1 (3) | C13—C14—C15—C10 | −0.1 (3) |
C2—C1—C6—C7 | −178.73 (19) | C13—C14—C15—C16 | −175.3 (2) |
C4—C5—C6—C1 | −1.2 (3) | C10—C15—C16—O1 | −177.3 (2) |
C4—C5—C6—C7 | 178.63 (19) | C14—C15—C16—O1 | −1.7 (4) |
C1—C6—C7—C8 | −178.3 (2) | C10—C15—C16—C8 | 1.1 (2) |
C5—C6—C7—C8 | 1.8 (3) | C14—C15—C16—C8 | 176.7 (2) |
C6—C7—C8—C16 | 179.24 (19) | C7—C8—C16—O1 | 0.4 (3) |
C6—C7—C8—C9 | 1.3 (4) | C9—C8—C16—O1 | 178.8 (2) |
C7—C8—C9—C10 | 176.6 (2) | C7—C8—C16—C15 | −178.01 (18) |
C16—C8—C9—C10 | −1.5 (2) | C9—C8—C16—C15 | 0.4 (2) |
C8—C9—C10—C11 | −175.3 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9A···O1i | 0.97 | 2.47 | 3.305 (3) | 145 |
Symmetry code: (i) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C18H17NO |
Mr | 263.33 |
Crystal system, space group | Orthorhombic, Pca21 |
Temperature (K) | 297 |
a, b, c (Å) | 30.024 (5), 5.9898 (9), 7.6862 (11) |
V (Å3) | 1382.3 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.46 × 0.33 × 0.06 |
Data collection | |
Diffractometer | Bruker SMART APEXII DUO CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.965, 0.995 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8530, 2147, 1657 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.099, 1.08 |
No. of reflections | 2147 |
No. of parameters | 183 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.12, −0.12 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9A···O1i | 0.97 | 2.47 | 3.305 (3) | 145 |
Symmetry code: (i) x, y−1, z. |
Acknowledgements
The authors wish to express their thanks to Universiti Sains Malaysia (USM), Penang, Malaysia, for providing research facilities. HKF and WSL also thank USM for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of a research fellowship.
References
Ali, M. A., Ismail, R., Choon, T. S., Rosli, M. M. & Fun, H.-K. (2010). Acta Cryst. E66, o2878. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavelb, M. & Qazi, G. N. (2005). Bioorg. Med. Chem. Lett. 15, 3177–3180. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cheng, J.-H., Hung, C.-F., Yang, S.-C., Wang, J.-P., Won, S.-J. & Lin, C.-N. (2008). Bioorg. Med. Chem. 16, 7270–7276. Web of Science CrossRef PubMed CAS Google Scholar
Kohlhagen, G., Paull, K. D., Cushman, M., Nagafuji, P. & Pommier, Y. (1998). Mol. Pharmacol. 54, 50–58. Web of Science CAS PubMed Google Scholar
Liu, M., Wilairat, P., Croft, S. L., Tan, A. L.-C. & Go, M.-L. (2003). Bioorg. Med. Chem. 11, 2729–2738. Web of Science CrossRef PubMed CAS Google Scholar
Prasad, Y. R., Ravikumar, P., Srivani, N. & Rao, A. S. (2006). Int. J. Chem. Sci. 4, 905–909. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Solankee, A., Kapadia, K., Ana, C., Sokovic, M., Doytchinova, I. & Geronikaki, A. (2010). Eur. J. Med. Chem. 45, 510–518. Web of Science CrossRef PubMed CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tomar, V., Bhattacharjee, G., Kamaluddin & Kumar, A. (2007). Bioorg. Med. Chem. Lett. 17, 5321–5324. Google Scholar
Trivedi, J. C., Bariwal, J. B., Upadhyay, K. D., Naliapara, Y. T., Joshi, S. K., Pannecouque, C. C., De Clercq, E. & Shah, A. K. (2007). Tetrahedron Lett. 48, 8472–8474. Web of Science CrossRef CAS Google Scholar
Trivedi, A. R., Dodiya, D. K., Ravat, N. R. & Shah, V. H. (2008). ARKIVOC, xi, 131–141. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Novel dihydroindene derivatives are found to be novel Top1 inhibitors with better pharmacokinetic features than camptothecin (CPT). Their moderate biological activity prompted us to investigate their structure activity relationships and a number of the analogs have demonstrated potent cytotoxicity (Kohlhagen et al., 1998). The search for new potent antimicrobial agents with reduced toxicity and lower side effects is a continuous process (Prasad et al., 2006). One of the most frequently encountered groups of organic compounds in medicinal chemistry is dihydroindene its derivatives (Tomar et al., 2007). In addition, dihydroindene derivatives have shown activity against dermatophytes but not against other types of fungi. Dihydroindene derivatives are readily synthesized by the base-catalysed Claisen-Schmidt condensation of an aldehyde and an appropriate ketone in a polar solvent such as ethanol and yields may be variable, ranging from 5% to 80% (Tomar et al., 2007). The dihydroindene derivatives have a diverse range of biological activities, among which antimalarial, antitubercular, anti-inflammatory, cytotoxic, antioxidant, analgesic, antiviral and antimicrobial properties have been widely cited (Tomar et al., 2007; Bhat et al., 2005; Trivedi et al., 2007; Solankee et al., 2010; Liu et al., 2003; Trivedi et al., 2008; Cheng et al., 2008).
In the title compound (Fig. 1), the dihydroindene ring system (C8–C16) is approximately planar, with a maximum deviation of 0.041 (2) Å at atom C15. This ring system is almost coplanar with the benzene ring (C1–C6), with a dihedral angle of 5.22 (9)°. Bond lengths and angles are within the normal ranges and are comparable to those in the related crystal structure (Ali et al., 2010).
In the crystal packing (Fig. 2), intermolecular C9—H9A···O1 hydrogen bonds (Table 1) link the molecules into chains along the b axis.