organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o1983-o1984

2-[(E)-4-(Di­methyl­amino)­benzyl­­idene]indan-1-one

aInstitute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 1 July 2011; accepted 4 July 2011; online 9 July 2011)

In the title compound, C18H17NO, the dihydro­indene ring system is approximately planar, with a maximum deviation of 0.041 (2) Å. This ring system is almost coplanar with the benzene ring, making a dihedral angle of 5.22 (9)°. In the crystal, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into chains along the b axis.

Related literature

For the background to dihydro­indene and its derivatives, see: Kohlhagen et al. (1998[Kohlhagen, G., Paull, K. D., Cushman, M., Nagafuji, P. & Pommier, Y. (1998). Mol. Pharmacol. 54, 50-58.]); Prasad et al. (2006[Prasad, Y. R., Ravikumar, P., Srivani, N. & Rao, A. S. (2006). Int. J. Chem. Sci. 4, 905-909.]); Tomar et al. (2007[Tomar, V., Bhattacharjee, G., Kamaluddin & Kumar, A. (2007). Bioorg. Med. Chem. Lett. 17, 5321-5324.]); Bhat et al. (2005[Bhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavelb, M. & Qazi, G. N. (2005). Bioorg. Med. Chem. Lett. 15, 3177-3180.]); Trivedi et al. (2007[Trivedi, J. C., Bariwal, J. B., Upadhyay, K. D., Naliapara, Y. T., Joshi, S. K., Pannecouque, C. C., De Clercq, E. & Shah, A. K. (2007). Tetrahedron Lett. 48, 8472-8474.]); Solankee et al. (2010[Solankee, A., Kapadia, K., Ana, C., Sokovic, M., Doytchinova, I. & Geronikaki, A. (2010). Eur. J. Med. Chem. 45, 510-518.]); Liu et al. (2003[Liu, M., Wilairat, P., Croft, S. L., Tan, A. L.-C. & Go, M.-L. (2003). Bioorg. Med. Chem. 11, 2729-2738.]); Trivedi et al. (2008[Trivedi, A. R., Dodiya, D. K., Ravat, N. R. & Shah, V. H. (2008). ARKIVOC, xi, 131-141.]); Cheng et al. (2008[Cheng, J.-H., Hung, C.-F., Yang, S.-C., Wang, J.-P., Won, S.-J. & Lin, C.-N. (2008). Bioorg. Med. Chem. 16, 7270-7276.]). For a closely related structure, see: Ali et al. (2010[Ali, M. A., Ismail, R., Choon, T. S., Rosli, M. M. & Fun, H.-K. (2010). Acta Cryst. E66, o2878.]).

[Scheme 1]

Experimental

Crystal data
  • C18H17NO

  • Mr = 263.33

  • Orthorhombic, P c a 21

  • a = 30.024 (5) Å

  • b = 5.9898 (9) Å

  • c = 7.6862 (11) Å

  • V = 1382.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 297 K

  • 0.46 × 0.33 × 0.06 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.965, Tmax = 0.995

  • 8530 measured reflections

  • 2147 independent reflections

  • 1657 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.099

  • S = 1.08

  • 2147 reflections

  • 183 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O1i 0.97 2.47 3.305 (3) 145
Symmetry code: (i) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Novel dihydroindene derivatives are found to be novel Top1 inhibitors with better pharmacokinetic features than camptothecin (CPT). Their moderate biological activity prompted us to investigate their structure activity relationships and a number of the analogs have demonstrated potent cytotoxicity (Kohlhagen et al., 1998). The search for new potent antimicrobial agents with reduced toxicity and lower side effects is a continuous process (Prasad et al., 2006). One of the most frequently encountered groups of organic compounds in medicinal chemistry is dihydroindene its derivatives (Tomar et al., 2007). In addition, dihydroindene derivatives have shown activity against dermatophytes but not against other types of fungi. Dihydroindene derivatives are readily synthesized by the base-catalysed Claisen-Schmidt condensation of an aldehyde and an appropriate ketone in a polar solvent such as ethanol and yields may be variable, ranging from 5% to 80% (Tomar et al., 2007). The dihydroindene derivatives have a diverse range of biological activities, among which antimalarial, antitubercular, anti-inflammatory, cytotoxic, antioxidant, analgesic, antiviral and antimicrobial properties have been widely cited (Tomar et al., 2007; Bhat et al., 2005; Trivedi et al., 2007; Solankee et al., 2010; Liu et al., 2003; Trivedi et al., 2008; Cheng et al., 2008).

In the title compound (Fig. 1), the dihydroindene ring system (C8–C16) is approximately planar, with a maximum deviation of 0.041 (2) Å at atom C15. This ring system is almost coplanar with the benzene ring (C1–C6), with a dihedral angle of 5.22 (9)°. Bond lengths and angles are within the normal ranges and are comparable to those in the related crystal structure (Ali et al., 2010).

In the crystal packing (Fig. 2), intermolecular C9—H9A···O1 hydrogen bonds (Table 1) link the molecules into chains along the b axis.

Related literature top

For the background to dihydroindene and its derivatives, see: Kohlhagen et al. (1998); Prasad et al. (2006); Tomar et al. (2007); Bhat et al. (2005); Trivedi et al. (2007); Solankee et al. (2010); Liu et al. (2003); Trivedi et al. (2008); Cheng et al. (2008). For a closely related crystal structure, see: Ali et al. (2010).

Experimental top

A mixture of 2,3-dihydro-1H-indene-1-one (0.001 mmol) and 4-nitrobenzaldehyde (0.001 mmol) was dissolved in methanol (10 ml) and to this mixture was added 30% sodium hydroxide solution (5 ml). The mixture was stirred for 5 h. After the completion of the reaction, as evident from TLC, the mixture was poured on to crushed ice, then neutralized with concentrated HCl. The precipitated solid was filtered, washed with water and recrystallized from ethanol to yield the title compound as light yellow crystals.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C) [C–H = 0.93–0.97 Å]. A rotating group model was applied to the methyl groups. In the absence of significant anomalous scattering effects, 1725 Friedel pairs were merged for the final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
2-[(E)-4-(Dimethylamino)benzylidene]indan-1-one top
Crystal data top
C18H17NOF(000) = 560
Mr = 263.33Dx = 1.265 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2132 reflections
a = 30.024 (5) Åθ = 2.7–23.6°
b = 5.9898 (9) ŵ = 0.08 mm1
c = 7.6862 (11) ÅT = 297 K
V = 1382.3 (4) Å3Plate, yellow
Z = 40.46 × 0.33 × 0.06 mm
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
2147 independent reflections
Radiation source: fine-focus sealed tube1657 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 30.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 4242
Tmin = 0.965, Tmax = 0.995k = 78
8530 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.062P]
where P = (Fo2 + 2Fc2)/3
2147 reflections(Δ/σ)max = 0.001
183 parametersΔρmax = 0.12 e Å3
1 restraintΔρmin = 0.12 e Å3
Crystal data top
C18H17NOV = 1382.3 (4) Å3
Mr = 263.33Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 30.024 (5) ŵ = 0.08 mm1
b = 5.9898 (9) ÅT = 297 K
c = 7.6862 (11) Å0.46 × 0.33 × 0.06 mm
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
2147 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1657 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.995Rint = 0.032
8530 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.099H-atom parameters constrained
S = 1.08Δρmax = 0.12 e Å3
2147 reflectionsΔρmin = 0.12 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.33515 (5)0.7381 (2)0.9621 (3)0.0591 (4)
N10.58774 (5)0.0911 (3)0.8681 (3)0.0523 (4)
C10.49445 (7)0.4669 (3)0.9738 (3)0.0466 (5)
H1A0.49000.60051.03290.056*
C20.53678 (7)0.3789 (3)0.9663 (3)0.0474 (5)
H2A0.56010.45361.02070.057*
C30.54532 (6)0.1784 (3)0.8779 (3)0.0409 (4)
C40.50852 (6)0.0695 (3)0.8021 (3)0.0428 (4)
H4A0.51270.06570.74490.051*
C50.46634 (6)0.1601 (3)0.8111 (3)0.0418 (4)
H5A0.44280.08430.75950.050*
C60.45795 (6)0.3632 (3)0.8959 (2)0.0391 (4)
C70.41495 (6)0.4734 (3)0.9089 (3)0.0414 (4)
H7A0.41570.60950.96710.050*
C80.37449 (6)0.4142 (3)0.8522 (3)0.0405 (4)
C90.35932 (6)0.2075 (3)0.7567 (3)0.0443 (4)
H9A0.36640.07360.82210.053*
H9B0.37310.19790.64270.053*
C100.30926 (6)0.2391 (3)0.7417 (3)0.0426 (4)
C110.27778 (6)0.0936 (4)0.6759 (3)0.0502 (5)
H11A0.28630.04350.62980.060*
C120.23334 (7)0.1555 (4)0.6796 (3)0.0556 (5)
H12A0.21190.05940.63430.067*
C130.22019 (7)0.3589 (4)0.7499 (3)0.0572 (5)
H13A0.19020.39710.75180.069*
C140.25135 (7)0.5039 (3)0.8169 (3)0.0536 (5)
H14A0.24270.64010.86430.064*
C150.29614 (6)0.4420 (3)0.8119 (3)0.0431 (4)
C160.33507 (6)0.5593 (3)0.8853 (3)0.0433 (4)
C170.62544 (7)0.2311 (4)0.9114 (4)0.0648 (7)
H17A0.62430.26951.03260.097*
H17B0.62450.36490.84260.097*
H17C0.65260.15190.88760.097*
C180.59698 (7)0.0926 (4)0.7520 (4)0.0626 (6)
H18A0.57770.21550.77920.094*
H18B0.62740.13820.76540.094*
H18C0.59200.04620.63400.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0587 (9)0.0423 (8)0.0762 (11)0.0033 (6)0.0014 (8)0.0079 (8)
N10.0402 (8)0.0582 (10)0.0585 (11)0.0032 (7)0.0044 (8)0.0105 (9)
C10.0468 (11)0.0445 (10)0.0485 (11)0.0034 (8)0.0011 (9)0.0097 (9)
C20.0422 (10)0.0517 (11)0.0484 (11)0.0068 (8)0.0055 (9)0.0099 (10)
C30.0397 (9)0.0456 (9)0.0375 (9)0.0028 (7)0.0002 (8)0.0006 (8)
C40.0441 (10)0.0387 (9)0.0457 (11)0.0029 (7)0.0001 (8)0.0041 (8)
C50.0394 (9)0.0399 (9)0.0462 (10)0.0074 (7)0.0027 (8)0.0035 (8)
C60.0391 (9)0.0397 (9)0.0384 (10)0.0046 (7)0.0014 (8)0.0010 (8)
C70.0459 (10)0.0365 (9)0.0419 (11)0.0027 (7)0.0037 (8)0.0009 (8)
C80.0404 (9)0.0376 (9)0.0437 (10)0.0016 (7)0.0037 (8)0.0023 (8)
C90.0388 (9)0.0434 (9)0.0507 (11)0.0009 (7)0.0016 (8)0.0020 (9)
C100.0400 (9)0.0463 (10)0.0415 (10)0.0026 (7)0.0001 (8)0.0061 (9)
C110.0499 (11)0.0533 (11)0.0474 (11)0.0051 (9)0.0020 (9)0.0017 (10)
C120.0455 (11)0.0691 (14)0.0523 (12)0.0102 (10)0.0053 (10)0.0080 (12)
C130.0401 (10)0.0709 (14)0.0606 (13)0.0029 (9)0.0030 (10)0.0141 (12)
C140.0477 (10)0.0536 (10)0.0597 (13)0.0070 (9)0.0015 (10)0.0096 (11)
C150.0414 (9)0.0437 (9)0.0442 (10)0.0005 (7)0.0016 (8)0.0078 (9)
C160.0451 (10)0.0373 (9)0.0476 (11)0.0003 (7)0.0037 (9)0.0072 (9)
C170.0396 (10)0.0734 (15)0.0815 (18)0.0012 (10)0.0097 (11)0.0083 (14)
C180.0513 (12)0.0626 (13)0.0738 (16)0.0101 (10)0.0024 (12)0.0112 (13)
Geometric parameters (Å, º) top
O1—C161.223 (2)C9—H9A0.9700
N1—C31.379 (2)C9—H9B0.9700
N1—C181.444 (3)C10—C111.382 (3)
N1—C171.448 (3)C10—C151.387 (3)
C1—C21.377 (3)C11—C121.385 (3)
C1—C61.394 (3)C11—H11A0.9300
C1—H1A0.9300C12—C131.390 (3)
C2—C31.403 (3)C12—H12A0.9300
C2—H2A0.9300C13—C141.377 (3)
C3—C41.409 (3)C13—H13A0.9300
C4—C51.380 (2)C14—C151.396 (3)
C4—H4A0.9300C14—H14A0.9300
C5—C61.403 (3)C15—C161.476 (3)
C5—H5A0.9300C17—H17A0.9600
C6—C71.454 (2)C17—H17B0.9600
C7—C81.339 (2)C17—H17C0.9600
C7—H7A0.9300C18—H18A0.9600
C8—C161.490 (2)C18—H18B0.9600
C8—C91.510 (3)C18—H18C0.9600
C9—C101.519 (3)
C3—N1—C18120.01 (17)C11—C10—C15120.07 (18)
C3—N1—C17119.35 (17)C11—C10—C9128.74 (18)
C18—N1—C17115.67 (18)C15—C10—C9111.15 (16)
C2—C1—C6122.48 (19)C10—C11—C12118.9 (2)
C2—C1—H1A118.8C10—C11—H11A120.6
C6—C1—H1A118.8C12—C11—H11A120.6
C1—C2—C3121.07 (17)C11—C12—C13121.1 (2)
C1—C2—H2A119.5C11—C12—H12A119.5
C3—C2—H2A119.5C13—C12—H12A119.5
N1—C3—C2121.30 (16)C14—C13—C12120.4 (2)
N1—C3—C4121.75 (17)C14—C13—H13A119.8
C2—C3—C4116.95 (17)C12—C13—H13A119.8
C5—C4—C3121.12 (18)C13—C14—C15118.5 (2)
C5—C4—H4A119.4C13—C14—H14A120.8
C3—C4—H4A119.4C15—C14—H14A120.8
C4—C5—C6121.96 (16)C10—C15—C14121.14 (18)
C4—C5—H5A119.0C10—C15—C16109.94 (16)
C6—C5—H5A119.0C14—C15—C16128.78 (19)
C1—C6—C5116.40 (16)O1—C16—C15127.09 (17)
C1—C6—C7117.79 (17)O1—C16—C8126.27 (17)
C5—C6—C7125.81 (16)C15—C16—C8106.62 (16)
C8—C7—C6131.55 (17)N1—C17—H17A109.5
C8—C7—H7A114.2N1—C17—H17B109.5
C6—C7—H7A114.2H17A—C17—H17B109.5
C7—C8—C16120.69 (17)N1—C17—H17C109.5
C7—C8—C9130.51 (16)H17A—C17—H17C109.5
C16—C8—C9108.78 (15)H17B—C17—H17C109.5
C8—C9—C10103.47 (15)N1—C18—H18A109.5
C8—C9—H9A111.1N1—C18—H18B109.5
C10—C9—H9A111.1H18A—C18—H18B109.5
C8—C9—H9B111.1N1—C18—H18C109.5
C10—C9—H9B111.1H18A—C18—H18C109.5
H9A—C9—H9B109.0H18B—C18—H18C109.5
C6—C1—C2—C30.3 (3)C8—C9—C10—C152.3 (2)
C18—N1—C3—C2169.1 (2)C15—C10—C11—C120.7 (3)
C17—N1—C3—C215.2 (3)C9—C10—C11—C12178.2 (2)
C18—N1—C3—C411.7 (3)C10—C11—C12—C130.7 (3)
C17—N1—C3—C4165.7 (2)C11—C12—C13—C140.3 (4)
C1—C2—C3—N1179.1 (2)C12—C13—C14—C150.1 (3)
C1—C2—C3—C41.7 (3)C11—C10—C15—C140.3 (3)
N1—C3—C4—C5179.24 (19)C9—C10—C15—C14178.2 (2)
C2—C3—C4—C51.6 (3)C11—C10—C15—C16175.67 (19)
C3—C4—C5—C60.2 (3)C9—C10—C15—C162.2 (2)
C2—C1—C6—C51.1 (3)C13—C14—C15—C100.1 (3)
C2—C1—C6—C7178.73 (19)C13—C14—C15—C16175.3 (2)
C4—C5—C6—C11.2 (3)C10—C15—C16—O1177.3 (2)
C4—C5—C6—C7178.63 (19)C14—C15—C16—O11.7 (4)
C1—C6—C7—C8178.3 (2)C10—C15—C16—C81.1 (2)
C5—C6—C7—C81.8 (3)C14—C15—C16—C8176.7 (2)
C6—C7—C8—C16179.24 (19)C7—C8—C16—O10.4 (3)
C6—C7—C8—C91.3 (4)C9—C8—C16—O1178.8 (2)
C7—C8—C9—C10176.6 (2)C7—C8—C16—C15178.01 (18)
C16—C8—C9—C101.5 (2)C9—C8—C16—C150.4 (2)
C8—C9—C10—C11175.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O1i0.972.473.305 (3)145
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC18H17NO
Mr263.33
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)297
a, b, c (Å)30.024 (5), 5.9898 (9), 7.6862 (11)
V3)1382.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.46 × 0.33 × 0.06
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.965, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
8530, 2147, 1657
Rint0.032
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.099, 1.08
No. of reflections2147
No. of parameters183
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.12

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O1i0.972.473.305 (3)145
Symmetry code: (i) x, y1, z.
 

Footnotes

Thomson Reuters ResearcherID: C-7581-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors wish to express their thanks to Universiti Sains Malaysia (USM), Penang, Malaysia, for providing research facilities. HKF and WSL also thank USM for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of a research fellowship.

References

First citationAli, M. A., Ismail, R., Choon, T. S., Rosli, M. M. & Fun, H.-K. (2010). Acta Cryst. E66, o2878.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavelb, M. & Qazi, G. N. (2005). Bioorg. Med. Chem. Lett. 15, 3177–3180.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, J.-H., Hung, C.-F., Yang, S.-C., Wang, J.-P., Won, S.-J. & Lin, C.-N. (2008). Bioorg. Med. Chem. 16, 7270–7276.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKohlhagen, G., Paull, K. D., Cushman, M., Nagafuji, P. & Pommier, Y. (1998). Mol. Pharmacol. 54, 50–58.  Web of Science CAS PubMed Google Scholar
First citationLiu, M., Wilairat, P., Croft, S. L., Tan, A. L.-C. & Go, M.-L. (2003). Bioorg. Med. Chem. 11, 2729–2738.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPrasad, Y. R., Ravikumar, P., Srivani, N. & Rao, A. S. (2006). Int. J. Chem. Sci. 4, 905–909.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSolankee, A., Kapadia, K., Ana, C., Sokovic, M., Doytchinova, I. & Geronikaki, A. (2010). Eur. J. Med. Chem. 45, 510–518.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomar, V., Bhattacharjee, G., Kamaluddin & Kumar, A. (2007). Bioorg. Med. Chem. Lett. 17, 5321–5324.  Google Scholar
First citationTrivedi, J. C., Bariwal, J. B., Upadhyay, K. D., Naliapara, Y. T., Joshi, S. K., Pannecouque, C. C., De Clercq, E. & Shah, A. K. (2007). Tetrahedron Lett. 48, 8472–8474.  Web of Science CrossRef CAS Google Scholar
First citationTrivedi, A. R., Dodiya, D. K., Ravat, N. R. & Shah, V. H. (2008). ARKIVOC, xi, 131–141.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o1983-o1984
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds