metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[bis­­[μ-1,4-bis­­(imidazol-1-ylmeth­yl)benzene]­di­chloridomanganese(II)]

aNorth China University of Water Conservancy and Electric Power, Zhengzhou 450011, People's Republic of China
*Correspondence e-mail: hbsysww@163.com

(Received 27 June 2011; accepted 21 July 2011; online 30 July 2011)

In the crystal structure of the title compound, [MnCl2(C14H14N4)2]n, the MnII atom, lying on an inversion center, is coordinated by four N atoms from four 1,4-bis­(imidazol-1-ylmeth­yl)benzene (bimb) ligands and two Cl anions in a distorted octa­hedral geometry. The bimb ligands bridge the MnII atoms, forming a two-dimensional polymeric complex, which is composed of a 52-membered [Mn4(bimb)4] ring with distances of 7.7812 (2) and 27.4731 (9) Å between opposite metal atoms. Weak C—H⋯π inter­actions are present in the crystal structure.

Related literature

For the background to the network topologies and applications of coordination polymers, see: Maspoch et al. (2007[Maspoch, D., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Soc. Rev. 36, 770-818.]); Ockwig et al. (2005[Ockwig, N. W., Delgado-Friedrichs, O., O'Keefee, M. & Yaghi, O. M. (2005). Acc. Chem. Res. 38, 176-182.]); Zang et al. (2006[Zang, S.-Q., Su, Y., Li, Y.-Z., Ni, Z.-P. & Meng, Q.-J. (2006). Inorg. Chem. 45, 174-180.]); Zhang et al. (2009[Zhang, Y.-B., Zhang, W.-X., Feng, F.-Y., Zhang, J.-P. & Chen, X.-M. (2009). Angew. Chem. Int. Ed. 48, 5287-5290.]). For related syntheses and structures of compounds with a bimb ligand, see: Hoskins et al. (1997[Hoskins, B. F., Robson, R. & Slizys, D. A. (1997). J. Am. Chem. Soc. 119, 2952-2953.]).

[Scheme 1]

Experimental

Crystal data
  • [MnCl2(C14H14N4)2]

  • Mr = 602.42

  • Monoclinic, P 21 /c

  • a = 7.7812 (2) Å

  • b = 12.7910 (3) Å

  • c = 14.2575 (4) Å

  • β = 105.539 (3)°

  • V = 1367.17 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.71 mm−1

  • T = 296 K

  • 0.21 × 0.20 × 0.19 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.865, Tmax = 0.877

  • 3921 measured reflections

  • 2367 independent reflections

  • 2102 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.093

  • S = 1.04

  • 2367 reflections

  • 178 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—N1 2.2695 (13)
Mn1—N3 2.2665 (14)
Mn1—Cl1 2.5639 (4)

Table 2
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the N3,N4,C8–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4ACgi 0.97 2.65 3.522 (2) 150
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The supramolecular coordination assemblies are of great interest not only for their variety of architectures but also for the potential applications as functional materials (Maspoch et al., 2007; Ockwig et al., 2005). Many nitrogen-containing ligands have been successfully employed in the construction of the coordination compounds due to they can satisfy and even mediate the coordination needs of the metal center and consequently generate more meaningful architectures, in which supramolecular contacts (hydrogen bonding, π-π stacking) frequently occur (Zang et al., 2006; Zhang et al. 2009). To further explore various factors that influence the formation of result structures in the assembly reactions, we undertake synthetic and structural studies on one novel Mn(II) coordination polymers based on the highly flexible bidentate ligand 1,4-bis(imidazol-1-ylmethyl)-benzene (1,4-bimb): [Mn(bimb)2Cl2]n).

The metal-ligand connectivity pattern of complex is depicted in Figure 1. There are one kind of Mn(II) ion, one kind of Cl- and two kinds of bimb ligands in the structure. Metal center displays a symmetrical Cl2N4 octahedral geometry, and the related bond distances and bond angles are all symmetrically equivalent. Four N atoms from different bimb ligands comprise the equatorial plane, while two Cl- occupy the axial positions. Each bimb ligand acts as a µ2-bridge in trans-conformation with the planes of the two imidazole rings parallel. As shown in Figure 2, two rows of Mn(II) cations are linked together through bimb ligands to form a meso-helix running along the a-axis. Adjacent meso-helixes are associated together by sharing metal ions to form a two-dimensional architecture, in which large 52-membered rings [Mn4(bimb)4] with the opposite Mn···Mn distances being 7.7812 (2) Å and 27.4731 (9) Å are detected. If the metal center is considered as a four-connected node, the individual two-dimensional network can be described as a (4,4)-net. Further investigation shows that C8—H8···Cl1i hydrogen bonding is contribute to the stability of the layer. Neighboring layers are arranged parallel with the coordinated Cl- closed to H2 atoms of imidazole ring from adjacent layer, and interlayer C2—H2···Cl1ii hydrogen bonds can be detected which lead to the formation of the three-dimensional supromolecular structure, as shown in Figure 3. The hydrogen-bonding geometry is listed in Table 1.

Related literature top

For the background to the network topologies and applications of coordination polymers, see: Maspoch et al. (2007); Ockwig et al. (2005); Zang et al. (2006); Zhang et al. (2009). For related syntheses and structures of compounds with a bimb ligand, see: Hoskins et al. (1997).

Experimental top

1,4-Bis(imidazol-1-ylmethyl)-benzene (bimb) was prepared according to the literature (Hoskins et al., 1997), all other starting materials were of analytical grade and obtained from commercial sources without further purification. The title compound was synthesized hydrothermally in a Teflon-lined stainless steel container by heating a mixture of 1,4-bis(imidazol-1-ylmethyl)-benzene (bimb) (0.0119 g, 0.05 mmol), MnCl2.4H2O (0.0099 g, 0.05 mmol) and NaOH (0.0040 g, 0.1 mmol) in 7 ml of distilled water at 120°C for 3 days, and then cooled to room temperature. Yellow block crystals were obtained in 68% yield based on manganese.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å, Uiso(H) = 1.2Ueq(C) for aromatic H, and C—H = 0.97 Å, Uiso(H) = 1.2Ueq(C) for CH2.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Metal coordination and atom labeling in title compound (thermal ellipsoids at 50% probability level). All hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. A view of the layer structure in compound 1. Mn atoms are drawn as polyhedrons.
Poly[bis[µ-1,4-bis(imidazol-1-ylmethyl)benzene]dichloridomanganese(II)] top
Crystal data top
[MnCl2(C14H14N4)2]F(000) = 622
Mr = 602.42Dx = 1.463 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2678 reflections
a = 7.7812 (2) Åθ = 3.0–25.1°
b = 12.7910 (3) ŵ = 0.71 mm1
c = 14.2575 (4) ÅT = 296 K
β = 105.539 (3)°Block, yellow
V = 1367.17 (6) Å30.21 × 0.20 × 0.19 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2367 independent reflections
Radiation source: fine-focus sealed tube2102 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 99
Tmin = 0.865, Tmax = 0.877k = 715
3921 measured reflectionsl = 1610
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.069P)2]
where P = (Fo2 + 2Fc2)/3
2367 reflections(Δ/σ)max < 0.001
178 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[MnCl2(C14H14N4)2]V = 1367.17 (6) Å3
Mr = 602.42Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.7812 (2) ŵ = 0.71 mm1
b = 12.7910 (3) ÅT = 296 K
c = 14.2575 (4) Å0.21 × 0.20 × 0.19 mm
β = 105.539 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2367 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2102 reflections with I > 2σ(I)
Tmin = 0.865, Tmax = 0.877Rint = 0.015
3921 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.04Δρmax = 0.24 e Å3
2367 reflectionsΔρmin = 0.25 e Å3
178 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.00000.00000.00000.02539 (15)
N10.0491 (2)0.09844 (11)0.12272 (9)0.0311 (3)
N20.1216 (2)0.12917 (11)0.25951 (10)0.0313 (4)
N30.21756 (19)0.07932 (11)0.11619 (9)0.0305 (3)
N40.3569 (2)0.14248 (11)0.26047 (10)0.0314 (4)
Cl10.22693 (6)0.13438 (3)0.02653 (3)0.03544 (16)
C10.0739 (2)0.16467 (14)0.18007 (12)0.0330 (4)
H10.17210.19240.16320.040*
C20.0323 (3)0.18392 (14)0.26455 (12)0.0332 (4)
H20.09520.22570.31570.040*
C30.1654 (2)0.07860 (14)0.17360 (11)0.0314 (4)
H30.26440.03540.15260.038*
C40.2131 (3)0.11906 (15)0.33668 (13)0.0408 (5)
H4A0.23610.18810.35870.049*
H4B0.32690.08460.31070.049*
C50.1034 (2)0.05720 (14)0.42203 (12)0.0315 (4)
C60.0835 (3)0.04960 (15)0.41478 (12)0.0377 (4)
H60.13970.08350.35700.045*
C70.0182 (3)0.10667 (15)0.49176 (12)0.0382 (5)
H70.02960.17860.48580.046*
C80.3906 (3)0.10316 (15)0.11778 (13)0.0379 (4)
H80.44030.09420.06580.046*
C90.4773 (3)0.14128 (15)0.20553 (13)0.0407 (5)
H90.59580.16270.22520.049*
C100.2038 (2)0.10424 (13)0.20375 (12)0.0307 (4)
H100.10020.09620.22370.037*
C110.3886 (3)0.17165 (15)0.36308 (12)0.0385 (5)
H11A0.27960.20050.37310.046*
H11B0.47900.22590.37840.046*
C120.4485 (2)0.08073 (13)0.43225 (11)0.0287 (4)
C130.5545 (3)0.10091 (14)0.52584 (12)0.0344 (4)
H130.59210.16880.54370.041*
C140.3964 (3)0.02103 (14)0.40819 (12)0.0347 (4)
H140.32630.03580.34580.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0305 (2)0.0259 (2)0.0201 (2)0.00112 (14)0.00755 (16)0.00075 (13)
N10.0381 (8)0.0307 (8)0.0249 (7)0.0003 (7)0.0091 (6)0.0020 (6)
N20.0398 (9)0.0327 (8)0.0225 (7)0.0088 (7)0.0107 (6)0.0040 (6)
N30.0309 (8)0.0342 (8)0.0262 (7)0.0028 (6)0.0072 (6)0.0002 (6)
N40.0355 (9)0.0307 (8)0.0246 (7)0.0000 (6)0.0019 (6)0.0038 (6)
Cl10.0383 (3)0.0308 (3)0.0415 (3)0.00726 (19)0.0182 (2)0.00047 (18)
C10.0372 (10)0.0295 (9)0.0317 (9)0.0010 (8)0.0083 (8)0.0001 (7)
C20.0402 (10)0.0321 (9)0.0249 (8)0.0034 (8)0.0045 (7)0.0022 (7)
C30.0382 (10)0.0319 (9)0.0248 (8)0.0013 (8)0.0097 (7)0.0006 (7)
C40.0500 (12)0.0496 (12)0.0279 (9)0.0173 (9)0.0196 (9)0.0101 (8)
C50.0376 (10)0.0340 (9)0.0257 (8)0.0051 (8)0.0136 (8)0.0053 (7)
C60.0496 (12)0.0369 (10)0.0243 (8)0.0018 (9)0.0061 (8)0.0065 (8)
C70.0590 (13)0.0260 (9)0.0327 (10)0.0029 (9)0.0175 (9)0.0003 (7)
C80.0360 (11)0.0464 (11)0.0329 (10)0.0021 (9)0.0119 (8)0.0010 (8)
C90.0305 (10)0.0439 (11)0.0443 (11)0.0025 (9)0.0043 (9)0.0059 (9)
C100.0310 (9)0.0322 (9)0.0281 (9)0.0011 (8)0.0064 (7)0.0012 (7)
C110.0523 (12)0.0309 (10)0.0262 (9)0.0010 (9)0.0000 (8)0.0019 (8)
C120.0309 (9)0.0292 (9)0.0239 (8)0.0021 (7)0.0035 (7)0.0009 (7)
C130.0425 (10)0.0264 (9)0.0292 (9)0.0078 (8)0.0011 (8)0.0032 (7)
C140.0403 (11)0.0346 (10)0.0218 (8)0.0039 (8)0.0044 (8)0.0024 (7)
Geometric parameters (Å, º) top
Mn1—N1i2.2695 (13)C4—H4A0.9700
Mn1—N12.2695 (13)C4—H4B0.9700
Mn1—N3i2.2665 (14)C5—C61.382 (3)
Mn1—N32.2665 (14)C5—C7ii1.384 (2)
Mn1—Cl1i2.5639 (4)C6—C71.378 (3)
Mn1—Cl12.5639 (4)C6—H60.9300
N1—C31.327 (2)C7—C5ii1.384 (2)
N1—C11.373 (2)C7—H70.9300
N2—C31.346 (2)C8—C91.344 (3)
N2—C21.373 (2)C8—H80.9300
N2—C41.468 (2)C9—H90.9300
N3—C101.320 (2)C10—H100.9300
N3—C81.375 (2)C11—C121.515 (2)
N4—C101.340 (2)C11—H11A0.9700
N4—C91.373 (2)C11—H11B0.9700
N4—C111.465 (2)C12—C141.379 (2)
C1—C21.351 (2)C12—C131.392 (2)
C1—H10.9300C13—C14iii1.372 (2)
C2—H20.9300C13—H130.9300
C3—H30.9300C14—C13iii1.372 (2)
C4—C51.509 (2)C14—H140.9300
N3i—Mn1—N3180.00 (12)C5—C4—H4A109.3
N3i—Mn1—N1i86.10 (5)N2—C4—H4B109.3
N3—Mn1—N1i93.90 (5)C5—C4—H4B109.3
N3i—Mn1—N193.90 (5)H4A—C4—H4B108.0
N3—Mn1—N186.10 (5)C6—C5—C7ii118.81 (15)
N1i—Mn1—N1180.00 (10)C6—C5—C4120.56 (16)
N3i—Mn1—Cl1i90.07 (4)C7ii—C5—C4120.62 (16)
N3—Mn1—Cl1i89.93 (4)C7—C6—C5121.07 (16)
N1i—Mn1—Cl1i89.62 (4)C7—C6—H6119.5
N1—Mn1—Cl1i90.38 (4)C5—C6—H6119.5
N3i—Mn1—Cl189.93 (4)C6—C7—C5ii120.11 (18)
N3—Mn1—Cl190.07 (4)C6—C7—H7119.9
N1i—Mn1—Cl190.38 (4)C5ii—C7—H7119.9
N1—Mn1—Cl189.62 (4)C9—C8—N3109.95 (16)
Cl1i—Mn1—Cl1180.00 (2)C9—C8—H8125.0
C3—N1—C1105.16 (14)N3—C8—H8125.0
C3—N1—Mn1126.56 (12)C8—C9—N4106.61 (16)
C1—N1—Mn1124.54 (12)C8—C9—H9126.7
C3—N2—C2107.31 (15)N4—C9—H9126.7
C3—N2—C4125.77 (16)N3—C10—N4112.02 (16)
C2—N2—C4126.68 (15)N3—C10—H10124.0
C10—N3—C8104.94 (15)N4—C10—H10124.0
C10—N3—Mn1124.43 (12)N4—C11—C12113.24 (15)
C8—N3—Mn1130.38 (11)N4—C11—H11A108.9
C10—N4—C9106.47 (14)C12—C11—H11A108.9
C10—N4—C11125.48 (16)N4—C11—H11B108.9
C9—N4—C11127.90 (16)C12—C11—H11B108.9
C2—C1—N1110.37 (17)H11A—C11—H11B107.7
C2—C1—H1124.8C14—C12—C13118.21 (15)
N1—C1—H1124.8C14—C12—C11122.95 (15)
C1—C2—N2105.93 (15)C13—C12—C11118.78 (15)
C1—C2—H2127.0C14iii—C13—C12120.25 (16)
N2—C2—H2127.0C14iii—C13—H13119.9
N1—C3—N2111.22 (16)C12—C13—H13119.9
N1—C3—H3124.4C13iii—C14—C12121.54 (15)
N2—C3—H3124.4C13iii—C14—H14119.2
N2—C4—C5111.57 (15)C12—C14—H14119.2
N2—C4—H4A109.3
N3i—Mn1—N1—C387.09 (14)C3—N2—C4—C5106.8 (2)
N3—Mn1—N1—C392.91 (14)C2—N2—C4—C567.0 (2)
Cl1i—Mn1—N1—C3177.19 (14)N2—C4—C5—C672.4 (2)
Cl1—Mn1—N1—C32.81 (14)N2—C4—C5—C7ii106.34 (19)
N3i—Mn1—N1—C1118.00 (13)C7ii—C5—C6—C70.4 (3)
N3—Mn1—N1—C162.00 (13)C4—C5—C6—C7179.12 (18)
Cl1i—Mn1—N1—C127.91 (13)C5—C6—C7—C5ii0.4 (3)
Cl1—Mn1—N1—C1152.09 (13)C10—N3—C8—C90.2 (2)
N1i—Mn1—N3—C10139.92 (14)Mn1—N3—C8—C9174.10 (13)
N1—Mn1—N3—C1040.08 (14)N3—C8—C9—N40.5 (2)
Cl1i—Mn1—N3—C10130.47 (14)C10—N4—C9—C80.5 (2)
Cl1—Mn1—N3—C1049.53 (14)C11—N4—C9—C8176.26 (17)
N1i—Mn1—N3—C846.74 (16)C8—N3—C10—N40.1 (2)
N1—Mn1—N3—C8133.26 (16)Mn1—N3—C10—N4174.89 (11)
Cl1i—Mn1—N3—C842.87 (15)C9—N4—C10—N30.4 (2)
Cl1—Mn1—N3—C8137.13 (15)C11—N4—C10—N3176.28 (15)
C3—N1—C1—C20.28 (19)C10—N4—C11—C1286.3 (2)
Mn1—N1—C1—C2159.05 (12)C9—N4—C11—C1288.6 (2)
N1—C1—C2—N20.6 (2)N4—C11—C12—C1430.7 (2)
C3—N2—C2—C10.67 (19)N4—C11—C12—C13152.19 (17)
C4—N2—C2—C1175.37 (15)C14—C12—C13—C14iii0.5 (3)
C1—N1—C3—N20.16 (19)C11—C12—C13—C14iii176.75 (18)
Mn1—N1—C3—N2158.94 (11)C13—C12—C14—C13iii0.5 (3)
C2—N2—C3—N10.53 (19)C11—C12—C14—C13iii176.62 (19)
C4—N2—C3—N1175.29 (15)
Symmetry codes: (i) x, y, z; (ii) x, y, z+1; (iii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N3,N4,C8–C10 ring.
D—H···AD—HH···AD···AD—H···A
C4—H4A···Cgiv0.972.653.522 (2)150
Symmetry code: (iv) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[MnCl2(C14H14N4)2]
Mr602.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.7812 (2), 12.7910 (3), 14.2575 (4)
β (°) 105.539 (3)
V3)1367.17 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.71
Crystal size (mm)0.21 × 0.20 × 0.19
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.865, 0.877
No. of measured, independent and
observed [I > 2σ(I)] reflections
3921, 2367, 2102
Rint0.015
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.093, 1.04
No. of reflections2367
No. of parameters178
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.25

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2010).

Selected bond lengths (Å) top
Mn1—N12.2695 (13)Mn1—Cl12.5639 (4)
Mn1—N32.2665 (14)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N3,N4,C8–C10 ring.
D—H···AD—HH···AD···AD—H···A
C4—H4A···Cgi0.972.653.522 (2)150
Symmetry code: (i) x, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Henan Province (No. 2010 A140009) and the Inter­national Technology Cooperation Project of Science and Technology Department of Henan Province of China (No. 104300510044).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHoskins, B. F., Robson, R. & Slizys, D. A. (1997). J. Am. Chem. Soc. 119, 2952–2953.  CSD CrossRef CAS Web of Science Google Scholar
First citationMaspoch, D., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Soc. Rev. 36, 770–818.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOckwig, N. W., Delgado-Friedrichs, O., O'Keefee, M. & Yaghi, O. M. (2005). Acc. Chem. Res. 38, 176–182.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZang, S.-Q., Su, Y., Li, Y.-Z., Ni, Z.-P. & Meng, Q.-J. (2006). Inorg. Chem. 45, 174–180.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, Y.-B., Zhang, W.-X., Feng, F.-Y., Zhang, J.-P. & Chen, X.-M. (2009). Angew. Chem. Int. Ed. 48, 5287–5290.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds