organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Ureidoeth­yl)quinolinium tetra­phenyl­borate

aShanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai 200062, People's Republic of China
*Correspondence e-mail: ghgao@chem.ecnu.edu.cn

(Received 28 June 2011; accepted 7 July 2011; online 13 July 2011)

In the cation of the title salt, C12H14N3O+·C24H20B, the dihedral angle between the quinoline ring and the mean plane of the urea fragment is 61.51 (5)°. In the crystal, the cations inter­act through weak C—H⋯O hydrogen bonding, forming a zigzag chain along the c-axis direction; the cations and anions are involved in weak inter­molecular C—H⋯π and N—H⋯π inter­actions as donors and acceptors, respectively.

Related literature

For applications of ionic liquids, see: Zhao & Malhotra (2002[Zhao, H. & Malhotra, S. V. (2002). Aldrichim. Acta, 35, 75-83.]); Chauvin & Olivier-Bourbigou (1995[Chauvin, Y. & Olivier-Bourbigou, H. (1995). Chemtech, 25, 26-30.]); Seddon (2001[Seddon, K. R. (2001). Chem. Commun. 23, 2399-2407.]); Hapiot & Lagros (2008[Hapiot, P. & Lagros, C. (2008). Chem. Rev. 108, 2238-2264.]); Blaster & Studer (2003[Blaster, H. U. & Studer, M. (2003). Green Chem. 5, 112-117.]). For a related structure, see: Youngme et al. (2006[Youngme, S., Wannarit, N. & Chaichit, N. (2006). Acta Cryst. E62, o5265-o5267.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14N3O+·C24H20B

  • Mr = 535.47

  • Orthorhombic, A b a 2

  • a = 25.5434 (11) Å

  • b = 18.7954 (8) Å

  • c = 12.0837 (5) Å

  • V = 5801.4 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 173 K

  • 0.40 × 0.18 × 0.13 mm

Data collection
  • Rigaku Saturn CCD diffractometer

  • 32920 measured reflections

  • 2700 independent reflections

  • 2428 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.070

  • S = 1.06

  • 2700 reflections

  • 370 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C7–C12 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C30—H30A⋯O1i 0.95 2.30 3.173 (3) 153
N2—H2BCg2ii 0.88 2.62 3.483 (2) 168
C26—H26ACg1iii 0.95 2.61 3.438 (3) 146
C27—H27ACg2iv 0.95 2.68 3.572 (3) 157
Symmetry codes: (i) [-x+{\script{1\over 2}}, y, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Ionic liquids (ILs) are widely used as new and designable green chemical materials in organic, organometallic and enzymatic catalyses as solvents (Zhao & Malhotra, 2002; Chauvin & Olivier-Bourbigou, 1995; Seddon, 2001) and nano- and electrochemistry (Hapiot & Lagros, 2008; Blaster & Studer, 2003).

In the title salt (Fig. 1), the 1-(2-ureidoethyl)quinolinium cation consists of urea and quinoline ring connected to each other via ethylidene. The dihedral angle between the quinoline ring and mean plane of urea is 61.51 (5)°. The 1-(2-ureidoethyl)quinolinium cations interact through a weak C—H···O interaction, forming a zidzag chain along the C direction (Fig. 2). The 1-(2-ureidoethyl)quinolinium cation is situated between three [BPh4]- anions and this orientation is further stabilized via C—H···π and N—H···π interaction (Table 1 and Fig. 3), similar to that found in the structure of tetraphenylborate anion [BPh4]- (Youngme et al., 2006).

Related literature top

For applications of ionic liquids, see: Zhao & Malhotra (2002); Chauvin & Olivier-Bourbigou (1995); Seddon (2001); Hapiot & Lagros (2008); Blaster & Studer (2003). For a related structure, see: Youngme et al. (2006).

Experimental top

All chemicals were obtained from commercial sources and used without further purification. A solution of quinoline (0.65 g, 5 mmol) and 2-chloroethylurea (0.61 g, 5 mmol) in ethanol(10 ml) was heated at 353 K with stirring for 72 h under N2. After the reaction mixture cooled to room temperature, the purple precipitate was collected and dissolved in water (0.34 g, 40 ml) and treated with a saturated solution of sodium tetraphenylborate (10 ml). The title compound was separated and recrystallized from ethanol. Colourless single crystals were grown from methanol by slow evaporation at ambient room temperature over a period of 18 d.

Refinement top

Positional parameters of all H atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C). The H atoms bonded to N atoms were refined with a distance restraint of N—H = 0.88 Å.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50%.
[Figure 2] Fig. 2. A view of the H-bonds between cations.
[Figure 3] Fig. 3. A detailed view of the interactions between cations and anions involves H-bonds, C—H···π and N—H···π, some H atoms have been omitted for clarity.
1-[2-(carbamoylamino)ethyl]quinolinium tetraphenylboranuide top
Crystal data top
C12H14N3O+·C24H20BF(000) = 2272
Mr = 535.47Dx = 1.226 Mg m3
Orthorhombic, Aba2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: A 2 -2acCell parameters from 5127 reflections
a = 25.5434 (11) Åθ = 1.6–25.0°
b = 18.7954 (8) ŵ = 0.07 mm1
c = 12.0837 (5) ÅT = 173 K
V = 5801.4 (4) Å3Block, colorless
Z = 80.40 × 0.18 × 0.13 mm
Data collection top
Rigaku Saturn CCD
diffractometer
2428 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
Graphite monochromatorθmax = 25.0°, θmin = 1.6°
ω scansh = 2930
32920 measured reflectionsk = 2122
2700 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0339P)2 + 1.8667P]
where P = (Fo2 + 2Fc2)/3
2700 reflections(Δ/σ)max < 0.001
370 parametersΔρmax = 0.17 e Å3
1 restraintΔρmin = 0.13 e Å3
Crystal data top
C12H14N3O+·C24H20BV = 5801.4 (4) Å3
Mr = 535.47Z = 8
Orthorhombic, Aba2Mo Kα radiation
a = 25.5434 (11) ŵ = 0.07 mm1
b = 18.7954 (8) ÅT = 173 K
c = 12.0837 (5) Å0.40 × 0.18 × 0.13 mm
Data collection top
Rigaku Saturn CCD
diffractometer
2428 reflections with I > 2σ(I)
32920 measured reflectionsRint = 0.039
2700 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0271 restraint
wR(F2) = 0.070H-atom parameters constrained
S = 1.06Δρmax = 0.17 e Å3
2700 reflectionsΔρmin = 0.13 e Å3
370 parameters
Special details top

Experimental. 1H NMR (Bruker Avance DRX 500 F T NMR spectrometer, DMSO-d6 solvent, ambient temperature): 3.59 (t, J = 5.5 Hz, 2 H), 5.05 (t, J = 5.5 Hz, 2H), 5.59 (s, 2 H), 6.16 (s, 1 H), 6.79 (t, J = 7.5 Hz, 4 H), 6.92 (t, J = 7.5 Hz, 8 H), 7.18 (s, 8H), 8.04 (t, J = 7.5 Hz, 1 H), 8.14–8.17 (m, 1 H), 8.27 (t, J = 4.5 Hz, 1 H), 8.46 (d, J = 8.0 Hz, 1 H), 8.68 (d, J = 9.0 Hz, 1 H), 9.26 (d, J = 8.5 Hz, 1 H), 9.30 (d, J = 5.5 Hz, 1 H).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
B10.36506 (9)0.28381 (12)0.1753 (2)0.0305 (5)
N30.19822 (8)0.07125 (10)0.54551 (19)0.0488 (5)
H3A0.20890.07180.61470.059*
H3B0.17390.10130.52340.059*
C10.38950 (7)0.20251 (10)0.18152 (17)0.0280 (4)
C20.44354 (8)0.19105 (10)0.19212 (17)0.0325 (5)
H2A0.46580.23130.19850.039*
C30.46596 (9)0.12399 (11)0.19376 (18)0.0364 (5)
H3C0.50290.11910.19990.044*
C40.43460 (9)0.06419 (11)0.18648 (19)0.0367 (5)
H4A0.44960.01800.18790.044*
C50.38123 (9)0.07275 (11)0.1771 (2)0.0373 (5)
H5A0.35920.03220.17230.045*
C60.35952 (8)0.14047 (11)0.17453 (18)0.0317 (5)
H6A0.32260.14480.16770.038*
C70.39097 (8)0.33034 (11)0.27733 (18)0.0314 (5)
C80.40921 (8)0.40028 (11)0.2654 (2)0.0367 (5)
H8A0.40630.42280.19530.044*
C90.43147 (9)0.43786 (13)0.3533 (2)0.0471 (6)
H9A0.44340.48510.34180.057*
C100.43627 (9)0.40757 (15)0.4555 (2)0.0494 (7)
H10A0.45100.43370.51510.059*
C110.41931 (10)0.33815 (15)0.4710 (2)0.0481 (6)
H11A0.42300.31600.54120.058*
C120.39687 (9)0.30122 (12)0.38328 (19)0.0402 (5)
H12A0.38500.25400.39580.048*
C130.37940 (8)0.32221 (10)0.05635 (18)0.0299 (4)
C140.35195 (9)0.38272 (11)0.02078 (19)0.0369 (5)
H14A0.32470.40070.06630.044*
C150.36284 (10)0.41740 (12)0.0777 (2)0.0437 (6)
H15A0.34370.45880.09760.052*
C160.40143 (10)0.39196 (13)0.1469 (2)0.0491 (6)
H16A0.40850.41480.21550.059*
C170.42949 (10)0.33316 (13)0.1151 (2)0.0481 (6)
H17A0.45630.31510.16190.058*
C180.41890 (8)0.29986 (11)0.0149 (2)0.0363 (5)
H18A0.43960.26000.00590.044*
C190.30087 (8)0.27991 (10)0.18398 (19)0.0300 (4)
C200.27153 (8)0.29676 (11)0.27789 (19)0.0360 (5)
H20A0.28930.31180.34280.043*
C210.21687 (9)0.29227 (12)0.2799 (2)0.0429 (6)
H21A0.19830.30470.34520.051*
C220.18979 (9)0.27008 (12)0.1880 (2)0.0438 (6)
H22A0.15270.26730.18910.053*
C230.21741 (9)0.25180 (12)0.0939 (2)0.0412 (6)
H23A0.19930.23580.02990.049*
C240.27154 (8)0.25679 (11)0.09271 (19)0.0347 (5)
H24A0.28960.24390.02700.042*
C250.13503 (10)0.11765 (11)0.38478 (19)0.0393 (5)
H25A0.15720.11490.44770.047*
C260.08270 (10)0.13228 (11)0.3999 (2)0.0426 (6)
H26A0.06890.13800.47230.051*
C270.05106 (10)0.13850 (11)0.3102 (2)0.0392 (5)
H27A0.01530.15120.31960.047*
C280.07092 (8)0.12627 (11)0.20353 (18)0.0325 (5)
C290.12449 (8)0.10883 (10)0.19089 (18)0.0317 (5)
C300.14452 (10)0.09501 (13)0.08501 (19)0.0427 (6)
H30A0.18030.08290.07560.051*
C310.11207 (11)0.09919 (14)0.0041 (2)0.0529 (7)
H31A0.12580.09000.07580.063*
C320.05902 (11)0.11660 (15)0.0070 (2)0.0524 (7)
H32A0.03720.11920.05660.063*
C330.03888 (10)0.12971 (13)0.1085 (2)0.0448 (6)
H33A0.00290.14130.11590.054*
C340.21205 (9)0.09099 (14)0.2790 (2)0.0498 (6)
H34A0.23000.11280.34320.060*
H34B0.22690.11220.21090.060*
C350.22221 (10)0.01157 (14)0.2788 (2)0.0515 (6)
H35A0.20890.00870.20860.062*
H35B0.26050.00350.28080.062*
C360.21909 (8)0.02431 (11)0.4730 (2)0.0358 (5)
N10.15554 (7)0.10719 (9)0.28474 (15)0.0349 (4)
N20.19846 (7)0.02603 (10)0.36987 (17)0.0423 (5)
H2B0.16980.05080.35810.051*
O10.25263 (7)0.01830 (9)0.49865 (15)0.0523 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B10.0317 (12)0.0293 (11)0.0305 (12)0.0016 (9)0.0020 (11)0.0061 (10)
N30.0510 (12)0.0388 (11)0.0567 (13)0.0044 (9)0.0027 (11)0.0042 (10)
C10.0339 (11)0.0305 (10)0.0198 (9)0.0010 (8)0.0008 (9)0.0021 (8)
C20.0361 (11)0.0311 (10)0.0303 (11)0.0021 (9)0.0042 (10)0.0058 (9)
C30.0392 (12)0.0388 (12)0.0313 (11)0.0054 (10)0.0085 (10)0.0054 (10)
C40.0505 (14)0.0287 (10)0.0310 (11)0.0063 (9)0.0019 (11)0.0008 (9)
C50.0472 (13)0.0281 (10)0.0367 (12)0.0068 (9)0.0037 (11)0.0002 (10)
C60.0318 (11)0.0337 (11)0.0297 (11)0.0028 (8)0.0026 (10)0.0003 (9)
C70.0251 (10)0.0325 (11)0.0367 (12)0.0046 (8)0.0024 (10)0.0071 (10)
C80.0295 (11)0.0322 (11)0.0485 (14)0.0030 (9)0.0020 (10)0.0101 (10)
C90.0387 (13)0.0372 (12)0.0654 (18)0.0026 (10)0.0062 (12)0.0195 (13)
C100.0390 (14)0.0581 (16)0.0510 (16)0.0010 (12)0.0057 (12)0.0307 (13)
C110.0438 (14)0.0663 (17)0.0341 (12)0.0024 (12)0.0000 (11)0.0136 (12)
C120.0431 (14)0.0433 (13)0.0341 (12)0.0043 (10)0.0023 (11)0.0084 (10)
C130.0302 (11)0.0258 (10)0.0337 (11)0.0061 (8)0.0016 (9)0.0035 (8)
C140.0380 (12)0.0328 (11)0.0398 (12)0.0009 (9)0.0024 (11)0.0003 (10)
C150.0471 (14)0.0304 (11)0.0536 (15)0.0015 (10)0.0040 (12)0.0072 (10)
C160.0521 (15)0.0429 (14)0.0524 (16)0.0081 (12)0.0094 (13)0.0182 (12)
C170.0470 (14)0.0451 (14)0.0522 (15)0.0009 (11)0.0196 (12)0.0081 (12)
C180.0372 (12)0.0290 (11)0.0426 (13)0.0033 (9)0.0052 (11)0.0027 (10)
C190.0347 (11)0.0245 (9)0.0309 (10)0.0006 (8)0.0015 (10)0.0020 (9)
C200.0397 (12)0.0339 (11)0.0344 (11)0.0017 (9)0.0018 (10)0.0018 (9)
C210.0388 (13)0.0423 (12)0.0474 (14)0.0070 (10)0.0102 (11)0.0066 (11)
C220.0298 (11)0.0444 (12)0.0571 (15)0.0001 (10)0.0001 (12)0.0149 (12)
C230.0390 (13)0.0403 (12)0.0444 (13)0.0063 (10)0.0105 (11)0.0105 (11)
C240.0366 (12)0.0351 (11)0.0324 (11)0.0027 (9)0.0002 (10)0.0023 (9)
C250.0558 (15)0.0320 (11)0.0302 (12)0.0027 (11)0.0017 (11)0.0008 (9)
C260.0628 (17)0.0329 (12)0.0321 (12)0.0024 (11)0.0103 (12)0.0025 (10)
C270.0398 (13)0.0314 (12)0.0464 (14)0.0040 (10)0.0141 (11)0.0019 (9)
C280.0351 (11)0.0263 (10)0.0360 (12)0.0017 (8)0.0037 (9)0.0013 (9)
C290.0373 (12)0.0277 (10)0.0301 (11)0.0001 (8)0.0011 (10)0.0015 (9)
C300.0440 (14)0.0484 (13)0.0356 (13)0.0138 (11)0.0100 (11)0.0040 (10)
C310.0748 (19)0.0552 (16)0.0286 (12)0.0153 (13)0.0067 (13)0.0004 (11)
C320.0581 (17)0.0593 (16)0.0399 (14)0.0076 (13)0.0145 (13)0.0013 (12)
C330.0384 (13)0.0471 (13)0.0489 (14)0.0042 (11)0.0052 (11)0.0010 (12)
C340.0319 (12)0.0661 (16)0.0513 (16)0.0020 (11)0.0030 (12)0.0160 (13)
C350.0414 (14)0.0718 (18)0.0413 (14)0.0180 (12)0.0050 (11)0.0021 (13)
C360.0296 (11)0.0303 (11)0.0473 (13)0.0057 (9)0.0065 (10)0.0056 (10)
N10.0359 (10)0.0342 (9)0.0345 (10)0.0017 (8)0.0021 (9)0.0041 (8)
N20.0372 (10)0.0397 (10)0.0499 (12)0.0010 (8)0.0130 (10)0.0058 (9)
O10.0484 (9)0.0545 (10)0.0540 (10)0.0165 (9)0.0176 (9)0.0039 (8)
Geometric parameters (Å, º) top
B1—C191.645 (3)C19—C241.402 (3)
B1—C11.652 (3)C19—C201.396 (3)
B1—C71.650 (3)C20—C211.399 (3)
B1—C131.649 (3)C20—H20A0.9500
N3—C361.353 (3)C21—C221.373 (4)
N3—H3A0.8800C21—H21A0.9500
N3—H3B0.8800C22—C231.382 (4)
C1—C61.398 (3)C22—H22A0.9500
C1—C21.403 (3)C23—C241.386 (3)
C2—C31.385 (3)C23—H23A0.9500
C2—H2A0.9500C24—H24A0.9500
C3—C41.383 (3)C25—N11.332 (3)
C3—H3C0.9500C25—C261.377 (3)
C4—C51.377 (3)C25—H25A0.9500
C4—H4A0.9500C26—C271.357 (3)
C5—C61.389 (3)C26—H26A0.9500
C5—H5A0.9500C27—C281.404 (3)
C6—H6A0.9500C27—H27A0.9500
C7—C121.400 (3)C28—C291.415 (3)
C7—C81.402 (3)C28—C331.411 (3)
C8—C91.396 (3)C29—N11.384 (3)
C8—H8A0.9500C29—C301.402 (3)
C9—C101.365 (4)C30—C311.361 (4)
C9—H9A0.9500C30—H30A0.9500
C10—C111.388 (4)C31—C321.400 (4)
C10—H10A0.9500C31—H31A0.9500
C11—C121.391 (3)C32—C331.353 (4)
C11—H11A0.9500C32—H32A0.9500
C12—H12A0.9500C33—H33A0.9500
C13—C181.391 (3)C34—N11.477 (3)
C13—C141.404 (3)C34—C351.515 (4)
C14—C151.385 (3)C34—H34A0.9900
C14—H14A0.9500C34—H34B0.9900
C15—C161.378 (4)C35—N21.442 (3)
C15—H15A0.9500C35—H35A0.9900
C16—C171.372 (3)C35—H35B0.9900
C16—H16A0.9500C36—O11.213 (3)
C17—C181.390 (3)C36—N21.354 (3)
C17—H17A0.9500N2—H2B0.8800
C18—H18A0.9500
C19—B1—C1109.42 (16)C20—C19—B1125.24 (19)
C19—B1—C7112.06 (17)C19—C20—C21122.4 (2)
C1—B1—C7107.72 (17)C19—C20—H20A118.8
C19—B1—C13107.26 (17)C21—C20—H20A118.8
C1—B1—C13111.14 (17)C22—C21—C20120.5 (2)
C7—B1—C13109.28 (16)C22—C21—H21A119.8
C36—N3—H3A120.0C20—C21—H21A119.8
C36—N3—H3B120.0C21—C22—C23118.9 (2)
H3A—N3—H3B120.0C21—C22—H22A120.5
C6—C1—C2114.62 (18)C23—C22—H22A120.5
C6—C1—B1124.18 (17)C22—C23—C24120.1 (2)
C2—C1—B1121.19 (17)C22—C23—H23A120.0
C3—C2—C1123.23 (19)C24—C23—H23A120.0
C3—C2—H2A118.4C19—C24—C23123.1 (2)
C1—C2—H2A118.4C19—C24—H24A118.4
C2—C3—C4120.0 (2)C23—C24—H24A118.4
C2—C3—H3C120.0N1—C25—C26122.1 (2)
C4—C3—H3C120.0N1—C25—H25A118.9
C5—C4—C3118.91 (19)C26—C25—H25A118.9
C5—C4—H4A120.5C27—C26—C25119.3 (2)
C3—C4—H4A120.5C27—C26—H26A120.3
C4—C5—C6120.28 (19)C25—C26—H26A120.3
C4—C5—H5A119.9C26—C27—C28120.2 (2)
C6—C5—H5A119.9C26—C27—H27A119.9
C1—C6—C5123.0 (2)C28—C27—H27A119.9
C1—C6—H6A118.5C29—C28—C27119.1 (2)
C5—C6—H6A118.5C29—C28—C33118.9 (2)
C12—C7—C8115.1 (2)C27—C28—C33122.0 (2)
C12—C7—B1121.28 (19)N1—C29—C30122.30 (19)
C8—C7—B1123.6 (2)N1—C29—C28118.08 (19)
C9—C8—C7122.1 (2)C30—C29—C28119.6 (2)
C9—C8—H8A118.9C31—C30—C29119.3 (2)
C7—C8—H8A118.9C31—C30—H30A120.4
C8—C9—C10120.9 (2)C29—C30—H30A120.4
C8—C9—H9A119.6C30—C31—C32121.8 (2)
C10—C9—H9A119.6C30—C31—H31A119.1
C11—C10—C9119.1 (2)C32—C31—H31A119.1
C11—C10—H10A120.4C33—C32—C31119.8 (2)
C9—C10—H10A120.4C33—C32—H32A120.1
C10—C11—C12119.6 (2)C31—C32—H32A120.1
C10—C11—H11A120.2C32—C33—C28120.6 (2)
C12—C11—H11A120.2C32—C33—H33A119.7
C11—C12—C7123.1 (2)C28—C33—H33A119.7
C11—C12—H12A118.4N1—C34—C35111.8 (2)
C7—C12—H12A118.4N1—C34—H34A109.3
C18—C13—C14114.7 (2)C35—C34—H34A109.3
C18—C13—B1124.62 (18)N1—C34—H34B109.3
C14—C13—B1120.70 (18)C35—C34—H34B109.3
C15—C14—C13123.0 (2)H34A—C34—H34B107.9
C15—C14—H14A118.5N2—C35—C34114.2 (2)
C13—C14—H14A118.5N2—C35—H35A108.7
C16—C15—C14120.1 (2)C34—C35—H35A108.7
C16—C15—H15A119.9N2—C35—H35B108.7
C14—C15—H15A119.9C34—C35—H35B108.7
C15—C16—C17118.9 (2)H35A—C35—H35B107.6
C15—C16—H16A120.5O1—C36—N2121.7 (2)
C17—C16—H16A120.5O1—C36—N3123.0 (2)
C18—C17—C16120.3 (2)N2—C36—N3115.3 (2)
C18—C17—H17A119.8C25—N1—C29120.98 (19)
C16—C17—H17A119.8C25—N1—C34117.2 (2)
C17—C18—C13123.0 (2)C29—N1—C34121.74 (19)
C17—C18—H18A118.5C36—N2—C35121.83 (19)
C13—C18—H18A118.5C36—N2—H2B119.1
C24—C19—C20115.00 (19)C35—N2—H2B119.1
C24—C19—B1119.75 (19)
C19—B1—C1—C610.8 (3)C1—B1—C19—C2474.9 (2)
C7—B1—C1—C6132.9 (2)C7—B1—C19—C24165.72 (18)
C13—B1—C1—C6107.5 (2)C13—B1—C19—C2445.8 (2)
C19—B1—C1—C2170.64 (19)C1—B1—C19—C20103.8 (2)
C7—B1—C1—C248.6 (3)C7—B1—C19—C2015.6 (3)
C13—B1—C1—C271.1 (2)C13—B1—C19—C20135.6 (2)
C6—C1—C2—C31.0 (3)C24—C19—C20—C211.3 (3)
B1—C1—C2—C3177.6 (2)B1—C19—C20—C21180.0 (2)
C1—C2—C3—C41.0 (3)C19—C20—C21—C220.6 (3)
C2—C3—C4—C50.3 (3)C20—C21—C22—C230.4 (3)
C3—C4—C5—C60.3 (3)C21—C22—C23—C240.8 (3)
C2—C1—C6—C50.4 (3)C20—C19—C24—C230.9 (3)
B1—C1—C6—C5178.2 (2)B1—C19—C24—C23179.7 (2)
C4—C5—C6—C10.2 (3)C22—C23—C24—C190.0 (3)
C19—B1—C7—C1278.1 (3)N1—C25—C26—C272.1 (3)
C1—B1—C7—C1242.3 (3)C25—C26—C27—C283.5 (3)
C13—B1—C7—C12163.18 (19)C26—C27—C28—C291.3 (3)
C19—B1—C7—C8102.9 (2)C26—C27—C28—C33177.7 (2)
C1—B1—C7—C8136.7 (2)C27—C28—C29—N12.4 (3)
C13—B1—C7—C815.9 (3)C33—C28—C29—N1178.66 (19)
C12—C7—C8—C90.1 (3)C27—C28—C29—C30178.6 (2)
B1—C7—C8—C9179.3 (2)C33—C28—C29—C300.3 (3)
C7—C8—C9—C100.2 (4)N1—C29—C30—C31178.4 (2)
C8—C9—C10—C110.9 (4)C28—C29—C30—C310.5 (3)
C9—C10—C11—C121.3 (4)C29—C30—C31—C320.3 (4)
C10—C11—C12—C71.0 (4)C30—C31—C32—C330.1 (4)
C8—C7—C12—C110.3 (3)C31—C32—C33—C280.2 (4)
B1—C7—C12—C11178.9 (2)C29—C28—C33—C320.0 (3)
C19—B1—C13—C18137.6 (2)C27—C28—C33—C32179.0 (2)
C1—B1—C13—C1818.1 (3)N1—C34—C35—N254.0 (3)
C7—B1—C13—C18100.7 (2)C26—C25—N1—C291.7 (3)
C19—B1—C13—C1443.7 (2)C26—C25—N1—C34179.3 (2)
C1—B1—C13—C14163.26 (18)C30—C29—N1—C25177.2 (2)
C7—B1—C13—C1478.0 (2)C28—C29—N1—C253.8 (3)
C18—C13—C14—C150.5 (3)C30—C29—N1—C340.3 (3)
B1—C13—C14—C15179.3 (2)C28—C29—N1—C34178.71 (19)
C13—C14—C15—C161.3 (4)C35—C34—N1—C2593.1 (3)
C14—C15—C16—C171.6 (4)C35—C34—N1—C2984.5 (3)
C15—C16—C17—C180.2 (4)O1—C36—N2—C3513.3 (3)
C16—C17—C18—C131.7 (4)N3—C36—N2—C35169.2 (2)
C14—C13—C18—C172.0 (3)C34—C35—N2—C3677.0 (3)
B1—C13—C18—C17179.3 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C7–C12 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C30—H30A···O1i0.952.303.173 (3)153
N2—H2B···Cg2ii0.882.623.483 (2)168
C26—H26A···Cg1iii0.952.613.438 (3)146
C27—H27A···Cg2iv0.952.683.572 (3)157
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1/2, y1/2, z; (iii) x+1/2, y, z+1/2; (iv) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC12H14N3O+·C24H20B
Mr535.47
Crystal system, space groupOrthorhombic, Aba2
Temperature (K)173
a, b, c (Å)25.5434 (11), 18.7954 (8), 12.0837 (5)
V3)5801.4 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.40 × 0.18 × 0.13
Data collection
DiffractometerRigaku Saturn CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
32920, 2700, 2428
Rint0.039
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.070, 1.06
No. of reflections2700
No. of parameters370
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.13

Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C7–C12 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C30—H30A···O1i0.952.303.173 (3)153
N2—H2B···Cg2ii0.882.623.483 (2)168
C26—H26A···Cg1iii0.952.613.438 (3)146
C27—H27A···Cg2iv0.952.683.572 (3)157
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1/2, y1/2, z; (iii) x+1/2, y, z+1/2; (iv) x1/2, y+1/2, z.
 

Acknowledgements

We acknowledge the National Natural Science Foundation of China (grant Nos. 20873041 and 21072061) and the Shanghai Leading Academic Discipline Project (grant No. B409) for financial support.

References

First citationBlaster, H. U. & Studer, M. (2003). Green Chem. 5, 112–117.  Google Scholar
First citationChauvin, Y. & Olivier-Bourbigou, H. (1995). Chemtech, 25, 26–30.  CAS Google Scholar
First citationHapiot, P. & Lagros, C. (2008). Chem. Rev. 108, 2238–2264.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSeddon, K. R. (2001). Chem. Commun. 23, 2399–2407.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoungme, S., Wannarit, N. & Chaichit, N. (2006). Acta Cryst. E62, o5265–o5267.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, H. & Malhotra, S. V. (2002). Aldrichim. Acta, 35, 75–83.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds