metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1049-m1050

Bis(2-amino­pyrazine-κN4)di­chlorido­zinc

aKey Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 28 June 2011; accepted 1 July 2011; online 9 July 2011)

In the title adduct, [ZnCl2(C4H5N3)2], the ZnII atom lies on a twofold rotation axis that relates one Cl atom to the other as well as one 2-amino­pyrazine ligand to the other; the coordination geometry is a distorted tetra­hedron. In the crystal, adjacent mol­ecules are linked by N—H⋯N hydrogen bonds across the center of inversion, generating a chain; neighboring chains are linked by N—H⋯Cl hydrogen bonds, forming a three-dimensional network.

Related literature

For a related compound, CoCl2(C4H5N3)4, see: Kang et al. (2009[Kang, W., Huo, L.-H., Gao, S. & Ng, S. W. (2009). Acta Cryst. E65, m1502.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C4H5N3)2]

  • Mr = 326.49

  • Monoclinic, C 2/c

  • a = 17.1445 (12) Å

  • b = 6.1660 (4) Å

  • c = 12.0198 (8) Å

  • β = 98.608 (2)°

  • V = 1256.34 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.37 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.15 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.491, Tmax = 0.718

  • 5769 measured reflections

  • 1432 independent reflections

  • 1350 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.066

  • S = 1.06

  • 1432 reflections

  • 84 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—N3 2.0576 (12)
Zn1—Cl1 2.2403 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.87 (1) 2.27 (1) 3.141 (2) 176 (3)
N1—H2⋯Cl1ii 0.87 (1) 2.63 (2) 3.392 (2) 147 (2)
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) x, y+1, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We have reported the metal(II) dichloride adducts of 2-aminopyrazine. For example, cobalt(II) dichloride forms a tetrakis adduct (Kang et al., 2009). The corresponding zinc(II) dichloride is a bis adduct; in the adduct, ZnCl2(C4H5N3)2 (Scheme I, Fig. 1), the ZnII atom lies on a twofold axis and the geometry is a tetrahedron. Adjacent adduct molecules are linked by an N–H···N hydrogen across a center-of-inversion to generate a chain; neighboring chains are linked by an N–H···Cl hydrogen bond to form a layer (Table 1).

Related literature top

For a related compound, CoCl2(C4H5N3)4, see: Kang et al. (2009).

Experimental top

Zinc dichloride hexahydrate (2 mmol) and 2-aminopyrazine (2 mmol) were dissolved in water (20 ml); the solution was filtered. Colorless crystals separated from solution after several days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The amino H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N–H 0.88±0.01 Å; their temperature factors were refined.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of ZnCl2(C4H5N3)2 at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The Zn atom lies on a twofold axis and the unlabeled atoms are related to the labeled ones by 1 - x, y, 1/2 - z.
Bis(2-aminopyrazine-κN4)dichloridozinc top
Crystal data top
[ZnCl2(C4H5N3)2]F(000) = 656
Mr = 326.49Dx = 1.726 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5413 reflections
a = 17.1445 (12) Åθ = 3.4–27.5°
b = 6.1660 (4) ŵ = 2.37 mm1
c = 12.0198 (8) ÅT = 293 K
β = 98.608 (2)°Prism, colorless
V = 1256.34 (15) Å30.35 × 0.30 × 0.15 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1432 independent reflections
Radiation source: fine-focus sealed tube1350 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2222
Tmin = 0.491, Tmax = 0.718k = 77
5769 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0415P)2 + 0.3611P]
where P = (Fo2 + 2Fc2)/3
1432 reflections(Δ/σ)max = 0.001
84 parametersΔρmax = 0.32 e Å3
2 restraintsΔρmin = 0.32 e Å3
Crystal data top
[ZnCl2(C4H5N3)2]V = 1256.34 (15) Å3
Mr = 326.49Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.1445 (12) ŵ = 2.37 mm1
b = 6.1660 (4) ÅT = 293 K
c = 12.0198 (8) Å0.35 × 0.30 × 0.15 mm
β = 98.608 (2)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1432 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1350 reflections with I > 2σ(I)
Tmin = 0.491, Tmax = 0.718Rint = 0.029
5769 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0242 restraints
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.32 e Å3
1432 reflectionsΔρmin = 0.32 e Å3
84 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.04567 (4)0.25000.03073 (11)
Cl10.44416 (2)0.15067 (7)0.37370 (3)0.04100 (13)
N10.63303 (10)0.7312 (3)0.48482 (17)0.0590 (5)
H10.6731 (12)0.808 (4)0.516 (2)0.088*
H20.5858 (9)0.779 (5)0.486 (2)0.088*
N20.71831 (9)0.4959 (3)0.41464 (14)0.0431 (3)
N30.59049 (7)0.2453 (2)0.31966 (11)0.0330 (3)
C10.66520 (10)0.1889 (3)0.30962 (16)0.0439 (4)
H1A0.67460.06460.26980.053*
C20.72731 (10)0.3139 (3)0.35775 (17)0.0456 (4)
H2A0.77820.26980.35040.055*
C30.57962 (10)0.4231 (3)0.37660 (14)0.0352 (3)
H30.52870.46460.38500.042*
C40.64450 (10)0.5519 (2)0.42521 (15)0.0380 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02308 (15)0.02663 (16)0.04198 (17)0.0000.00323 (10)0.000
Cl10.0322 (2)0.0426 (2)0.0489 (2)0.00146 (16)0.00822 (16)0.01054 (17)
N10.0411 (9)0.0467 (9)0.0853 (12)0.0010 (8)0.0031 (8)0.0283 (9)
N20.0292 (7)0.0403 (7)0.0577 (9)0.0066 (6)0.0007 (6)0.0060 (7)
N30.0265 (6)0.0298 (6)0.0422 (6)0.0028 (5)0.0035 (5)0.0027 (5)
C10.0301 (8)0.0404 (9)0.0617 (10)0.0027 (7)0.0086 (7)0.0139 (8)
C20.0257 (8)0.0477 (9)0.0636 (11)0.0030 (7)0.0070 (7)0.0081 (8)
C30.0261 (8)0.0330 (7)0.0460 (8)0.0003 (6)0.0034 (6)0.0016 (6)
C40.0350 (9)0.0320 (8)0.0450 (9)0.0022 (6)0.0008 (7)0.0023 (6)
Geometric parameters (Å, º) top
Zn1—N32.0576 (12)N2—C41.336 (2)
Zn1—N3i2.0576 (12)N3—C31.320 (2)
Zn1—Cl12.2403 (4)N3—C11.350 (2)
Zn1—Cl1i2.2403 (4)C1—C21.371 (2)
N1—C41.348 (2)C1—H1A0.9300
N1—H10.87 (1)C2—H2A0.9300
N1—H20.87 (1)C3—C41.419 (2)
N2—C21.335 (2)C3—H30.9300
N3—Zn1—N3i106.52 (7)N3—C1—C2120.33 (16)
N3—Zn1—Cl1115.10 (4)N3—C1—H1A119.8
N3i—Zn1—Cl1102.85 (4)C2—C1—H1A119.8
N3—Zn1—Cl1i102.85 (4)N2—C2—C1123.16 (17)
N3i—Zn1—Cl1i115.10 (4)N2—C2—H2A118.4
Cl1—Zn1—Cl1i114.58 (2)C1—C2—H2A118.4
C4—N1—H1120.5 (19)N3—C3—C4121.01 (15)
C4—N1—H2120 (2)N3—C3—H3119.5
H1—N1—H2119 (3)C4—C3—H3119.5
C2—N2—C4116.72 (15)N2—C4—N1118.57 (16)
C3—N3—C1118.01 (14)N2—C4—C3120.76 (15)
C3—N3—Zn1123.46 (11)N1—C4—C3120.67 (17)
C1—N3—Zn1118.50 (10)
N3i—Zn1—N3—C341.52 (11)C4—N2—C2—C11.2 (3)
Cl1—Zn1—N3—C371.75 (13)N3—C1—C2—N21.0 (3)
Cl1i—Zn1—N3—C3162.95 (12)C1—N3—C3—C40.4 (2)
N3i—Zn1—N3—C1140.45 (14)Zn1—N3—C3—C4178.43 (12)
Cl1—Zn1—N3—C1106.28 (13)C2—N2—C4—N1178.12 (19)
Cl1i—Zn1—N3—C119.02 (13)C2—N2—C4—C30.7 (3)
C3—N3—C1—C20.1 (3)N3—C3—C4—N20.1 (3)
Zn1—N3—C1—C2178.02 (15)N3—C3—C4—N1178.88 (17)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2ii0.87 (1)2.27 (1)3.141 (2)176 (3)
N1—H2···Cl1iii0.87 (1)2.63 (2)3.392 (2)147 (2)
Symmetry codes: (ii) x+3/2, y+3/2, z+1; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[ZnCl2(C4H5N3)2]
Mr326.49
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)17.1445 (12), 6.1660 (4), 12.0198 (8)
β (°) 98.608 (2)
V3)1256.34 (15)
Z4
Radiation typeMo Kα
µ (mm1)2.37
Crystal size (mm)0.35 × 0.30 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.491, 0.718
No. of measured, independent and
observed [I > 2σ(I)] reflections
5769, 1432, 1350
Rint0.029
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.066, 1.06
No. of reflections1432
No. of parameters84
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.32

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Zn1—N32.0576 (12)Zn1—Cl12.2403 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.87 (1)2.27 (1)3.141 (2)176 (3)
N1—H2···Cl1ii0.87 (1)2.63 (2)3.392 (2)147 (2)
Symmetry codes: (i) x+3/2, y+3/2, z+1; (ii) x, y+1, z.
 

Acknowledgements

This work is supported by the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Innovation Team of the Education Bureau of Heilongjiang Province (No. 2010 t d03), the Key Project of the Education Bureau of Heilongjiang Province, China (No. 12511z023) and the University of Malaya.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKang, W., Huo, L.-H., Gao, S. & Ng, S. W. (2009). Acta Cryst. E65, m1502.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1049-m1050
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds