metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1080-m1081

Tetra­kis[μ-1,4-bis­­(4,5-di­hydro-1,3-oxazol-2-yl)benzene-κ2N:N′]tetra­kis­(μ-methano­lato-κ2O:O)bis­­(μ-perchlorato-κ2O:O′)tetra­copper(II) bis­­(perchlorate)

aDepartment of Chemistry, Chung-Yuan Christian University, Chung-Li 32023, Taiwan, bDepartment of Civil and Environmental Engineering, Nanya Institute of Technology, Chung-Li 32091, Taiwan, cDepartment of Chemical and Material Engineering, Nanya Institute of Technology, Chung-Li 32091, Taiwan, and dDepartment of Material and Fiber, Nanya Institute of Technology, Chung-Li 32091, Taiwan
*Correspondence e-mail: sun@nanya.edu.tw

(Received 29 June 2011; accepted 6 July 2011; online 13 July 2011)

The title tetra­nuclear CuII complex, [Cu4(C12H12N2O2)4(CH3O)4(ClO4)2](ClO4)2, is located around an inversion center. Each CuII atom is coordinated by two cis-O atoms from two bridging methano­late anions and two cis-N atoms from two bridging 1,4-bis­(4,5-dihydro-1,3-oxazol-2-yl)benzene (L) ligands in the basal plane, and is further coordinated by one O atom of the bridging perchlorate anion, forming a distorted square-pyramidal geometry. The Cu⋯Cu separations in the recta­ngular core are 2.9878 (11) and 6.974 (1) Å. In the asymmetric unit, there are two L ligands with a syn conformation. In one L ligand, the dihedral angles between the central benzene ring and the terminal 4,5-dihydro-1,3-oxazol-2-yl mean planes are 22.1 (4) and 33.1 (4)°, and in the other L ligand the corresponding dihedral angles are 29.3 (4) and 29.9 (4)°. The uncoordinated perchlorate anion is linked with the complex mol­ecules via weak C—H⋯O hydrogen bonds.

Related literature

For related structures, see: Wang et al. (2008[Wang, Y.-H., Lee, H.-T. & Suen, M.-C. (2008). Polyhedron, 27, 1177-1184.], 2011[Wang, P.-N., Yeh, C.-W., Tsai, H.-A., Wang, J.-C. & Suen, M.-C. (2011). Acta Cryst. E67, m881.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu4(C12H12N2O2)4(CH3O)4(ClO4)2](ClO4)2

  • Mr = 1641.04

  • Monoclinic, P 21 /n

  • a = 8.3508 (8) Å

  • b = 16.9820 (18) Å

  • c = 22.337 (2) Å

  • β = 93.936 (2)°

  • V = 3160.1 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.59 mm−1

  • T = 297 K

  • 0.30 × 0.15 × 0.07 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.647, Tmax = 0.897

  • 17717 measured reflections

  • 6219 independent reflections

  • 3428 reflections with I > 2σ(I)

  • Rint = 0.077

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.186

  • S = 1.00

  • 6219 reflections

  • 433 parameters

  • H-atom parameters constrained

  • Δρmax = 1.65 e Å−3

  • Δρmin = −1.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O13i 0.97 2.55 3.281 (11) 132
C3—H3B⋯O11i 0.97 2.42 3.228 (11) 141
C8—H8A⋯O5ii 0.93 2.60 3.476 (8) 157
C9—H9A⋯O6 0.93 2.57 3.465 (8) 161
C12—H12A⋯O13iii 0.97 2.54 3.450 (12) 157
C24—H24A⋯O2iv 0.97 2.54 3.270 (9) 132
C26—H26B⋯O9 0.96 2.36 3.240 (14) 152
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z; (iii) x, y-1, z; (iv) x+1, y, z.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Several Ag(I) and Cu(II) coordination polymers containing 1,4-bis(4,5-dihydro-1,3-oxazol-2-yl)benzene ligands has been reported, which show various two-dimensional networks (Wang, et al., 2008; Wang, et al., 2011). In the title molecule, [Cu4(C12H12N2O2)4(CH3O)4(ClO4)2](ClO4)2, the tetranuclear Cu(II) ion are located around an inversion center. The Cu(II) atom is bounded by two cis-O atoms from two bridging meyhoxide anions and two cis-N atoms from two L ligands in the basal plane and the Cu(II) atom is also bonded one oxygen atom of the bridging perchlorate anion forming a highly distorted square-pyramidal geometry. The Cu···Cu separation in the rectangular core are 2.9878 (11) and 6.974 (1) Å, while those are separated by the bridging perchlorate anions and L ligands. In the present work, the structure of the L ligand has been determined to explore its ligand conformation. In the crystal structure of the title compound the molecule is in a syn conformation. This conformation is different from those in the Ag(I) and Cu(II) complexes, which is anti (Wang, et al., 2008).

Related literature top

For related structures, see: Wang et al. (2008, 2011).

Experimental top

1,4-Bis(4,5-dihydro-1,3-oxazol-2-yl)benzene (1.0 mmol) was placed in a flask containing 20 ml methanol and copper perchlorate (1.0 mmol) was added. The mixture was then refluxed for 24 h to afford a blue solution with some blue solid. The solution was filtered and the blue crystals were obtained by slow diffusion of diethyl ether into the filtrate of the compound for several weeks. These were washed with methanol and diethylether and collected in 75.0% yield.

Refinement top

H atoms were constrained to ideal geometries, with C—H = 0.93 (phenyl), 0.96 (methyl) or 0.97 (methylene) Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DAIMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecule structure showing the coordination environment of the Cu(II) atoms. Thermal ellipsoids are drawn at 30% probability level, and H atoms are omitted for clarity. Symmetry code: (i) -x + 1, -y + 1, -z.
Tetrakis[µ-1,4-bis(4,5-dihydro-1,3-oxazol-2-yl)benzene- κ2N:N']tetrakis(µ-methanolato-κ2O:O)bis(µ- perchlorato-κ2O:O')tetracopper(II) bis(perchlorate) top
Crystal data top
[Cu4(C12H12N2O2)4(CH3O)4(ClO4)2](ClO4)2F(000) = 1672
Mr = 1641.04Dx = 1.725 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3303 reflections
a = 8.3508 (8) Åθ = 2.2–23.9°
b = 16.9820 (18) ŵ = 1.59 mm1
c = 22.337 (2) ÅT = 297 K
β = 93.936 (2)°Parallelepiped, blue
V = 3160.1 (6) Å30.30 × 0.15 × 0.07 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
6219 independent reflections
Radiation source: fine-focus sealed tube3428 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
ϕ and ω scansθmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 108
Tmin = 0.647, Tmax = 0.897k = 1320
17717 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0854P)2 + 5.5939P]
where P = (Fo2 + 2Fc2)/3
6219 reflections(Δ/σ)max < 0.001
433 parametersΔρmax = 1.65 e Å3
0 restraintsΔρmin = 1.30 e Å3
Crystal data top
[Cu4(C12H12N2O2)4(CH3O)4(ClO4)2](ClO4)2V = 3160.1 (6) Å3
Mr = 1641.04Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.3508 (8) ŵ = 1.59 mm1
b = 16.9820 (18) ÅT = 297 K
c = 22.337 (2) Å0.30 × 0.15 × 0.07 mm
β = 93.936 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
6219 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3428 reflections with I > 2σ(I)
Tmin = 0.647, Tmax = 0.897Rint = 0.077
17717 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.186H-atom parameters constrained
S = 1.00Δρmax = 1.65 e Å3
6219 reflectionsΔρmin = 1.30 e Å3
433 parameters
Special details top

Experimental. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1122 (8)0.4667 (4)0.1591 (3)0.0359 (16)
C20.0067 (9)0.5004 (5)0.2428 (3)0.050 (2)
H2A0.03960.47470.27870.060*
H2B0.11270.51990.25030.060*
C30.0998 (9)0.5658 (5)0.2232 (3)0.047 (2)
H3A0.03670.61110.20950.057*
H3B0.17560.58190.25570.057*
C40.1474 (8)0.4084 (4)0.1125 (3)0.0342 (16)
C50.1018 (9)0.3300 (5)0.1204 (3)0.0448 (19)
H5A0.05130.31550.15460.054*
C60.1313 (9)0.2745 (4)0.0779 (3)0.0415 (18)
H6A0.10020.22250.08310.050*
C70.2083 (8)0.2962 (4)0.0266 (3)0.0344 (16)
C80.2554 (8)0.3736 (4)0.0189 (3)0.0400 (17)
H8A0.30820.38770.01490.048*
C90.2240 (8)0.4301 (4)0.0612 (3)0.0376 (17)
H9A0.25370.48220.05560.045*
C100.2276 (8)0.2353 (4)0.0197 (3)0.0349 (16)
C110.1477 (10)0.1274 (5)0.0718 (4)0.053 (2)
H11A0.06270.12620.10360.063*
H11B0.16420.07450.05600.063*
C120.3012 (9)0.1601 (5)0.0943 (3)0.0471 (19)
H12A0.38670.12140.09030.057*
H12B0.28520.17560.13610.057*
C130.5597 (8)0.4671 (5)0.2289 (3)0.0330 (16)
C140.5841 (11)0.5144 (5)0.3226 (3)0.057 (2)
H14A0.68120.53000.34590.069*
H14B0.50220.50190.34990.069*
C150.5281 (10)0.5786 (5)0.2801 (3)0.0470 (19)
H15A0.42800.60140.29140.056*
H15B0.60800.61990.27860.056*
C160.5799 (8)0.4058 (4)0.1829 (3)0.0372 (17)
C170.6125 (8)0.4276 (4)0.1250 (3)0.0375 (17)
H17A0.61500.48060.11440.045*
C180.6415 (8)0.3699 (4)0.0829 (3)0.0387 (17)
H18A0.65940.38440.04380.046*
C190.6439 (8)0.2904 (4)0.0988 (3)0.0364 (16)
C200.6098 (11)0.2702 (5)0.1575 (3)0.055 (2)
H20A0.60660.21740.16840.066*
C210.5813 (10)0.3267 (5)0.1987 (3)0.052 (2)
H21A0.56260.31220.23780.063*
C220.6849 (8)0.2287 (4)0.0567 (3)0.0345 (16)
C230.7830 (10)0.1081 (5)0.0355 (3)0.0455 (19)
H23A0.72130.06070.04140.055*
H23B0.89550.09430.03470.055*
C240.7231 (9)0.1506 (4)0.0216 (3)0.0427 (18)
H24A0.81000.15920.04760.051*
H24B0.63920.12060.04340.051*
C250.7168 (9)0.6445 (6)0.1504 (4)0.065 (3)
H25A0.78980.66990.12520.098*
H25B0.76070.59480.16380.098*
H25C0.70070.67730.18450.098*
C260.1317 (8)0.6419 (5)0.0591 (3)0.049 (2)
H26A0.11820.66620.02020.074*
H26B0.08720.67540.08830.074*
H26C0.07750.59200.05810.074*
N10.1845 (7)0.5304 (4)0.1729 (2)0.0360 (14)
N20.3399 (7)0.2294 (3)0.0559 (2)0.0341 (13)
N30.5057 (7)0.5363 (4)0.2212 (2)0.0382 (14)
N40.6591 (6)0.2277 (3)0.0004 (2)0.0347 (13)
O10.0137 (6)0.4464 (3)0.1911 (2)0.0457 (13)
O20.1089 (6)0.1818 (3)0.0245 (2)0.0445 (13)
O30.6144 (6)0.4476 (3)0.28487 (19)0.0437 (13)
O40.7583 (6)0.1666 (3)0.0827 (2)0.0468 (13)
O50.5680 (5)0.6320 (3)0.11751 (19)0.0355 (11)
O60.2978 (5)0.6303 (3)0.07467 (19)0.0334 (11)
O70.3217 (10)0.7040 (4)0.2147 (3)0.093 (2)
O80.3809 (8)0.7958 (4)0.1440 (3)0.0692 (18)
O90.1149 (11)0.7691 (7)0.1666 (5)0.146 (4)
O100.2738 (10)0.8399 (5)0.2321 (3)0.104 (3)
O110.6921 (15)0.8936 (6)0.1375 (4)0.156 (4)
O120.7923 (10)0.9813 (6)0.0703 (5)0.134 (4)
O130.5292 (11)0.9929 (5)0.1101 (4)0.114 (3)
O140.6030 (9)0.8924 (6)0.0449 (4)0.120 (3)
Cl10.2917 (4)0.77931 (15)0.19370 (10)0.0846 (9)
Cl20.6500 (3)0.93970 (13)0.09112 (9)0.0592 (6)
Cu10.38371 (9)0.58253 (5)0.14926 (3)0.0313 (2)
Cu20.53626 (9)0.29352 (5)0.06120 (3)0.0312 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.039 (4)0.044 (4)0.024 (3)0.001 (4)0.003 (3)0.007 (3)
C20.054 (5)0.067 (6)0.033 (4)0.010 (4)0.021 (4)0.011 (4)
C30.046 (4)0.055 (5)0.043 (4)0.007 (4)0.020 (4)0.014 (4)
C40.032 (4)0.044 (4)0.026 (3)0.002 (3)0.001 (3)0.001 (3)
C50.061 (5)0.048 (5)0.027 (4)0.007 (4)0.013 (3)0.005 (3)
C60.048 (4)0.037 (4)0.041 (4)0.008 (4)0.008 (3)0.002 (3)
C70.034 (4)0.038 (4)0.031 (4)0.003 (3)0.003 (3)0.002 (3)
C80.045 (4)0.039 (4)0.037 (4)0.004 (4)0.010 (3)0.001 (3)
C90.044 (4)0.038 (4)0.032 (4)0.009 (3)0.007 (3)0.005 (3)
C100.040 (4)0.034 (4)0.030 (4)0.002 (3)0.001 (3)0.004 (3)
C110.065 (5)0.044 (5)0.051 (5)0.019 (4)0.011 (4)0.018 (4)
C120.054 (5)0.038 (4)0.049 (5)0.002 (4)0.003 (4)0.014 (4)
C130.032 (4)0.048 (5)0.019 (3)0.005 (3)0.002 (3)0.005 (3)
C140.076 (6)0.070 (6)0.025 (4)0.022 (5)0.002 (4)0.000 (4)
C150.063 (5)0.055 (5)0.023 (4)0.004 (4)0.004 (3)0.001 (3)
C160.038 (4)0.048 (5)0.025 (3)0.002 (3)0.001 (3)0.003 (3)
C170.046 (4)0.032 (4)0.035 (4)0.008 (3)0.006 (3)0.006 (3)
C180.048 (4)0.044 (4)0.025 (3)0.005 (4)0.001 (3)0.006 (3)
C190.037 (4)0.041 (4)0.031 (4)0.003 (3)0.001 (3)0.006 (3)
C200.090 (6)0.038 (5)0.038 (4)0.001 (5)0.019 (4)0.006 (4)
C210.078 (6)0.051 (5)0.030 (4)0.002 (5)0.013 (4)0.008 (4)
C220.040 (4)0.034 (4)0.030 (4)0.002 (3)0.004 (3)0.008 (3)
C230.053 (5)0.042 (5)0.041 (4)0.010 (4)0.000 (4)0.001 (4)
C240.059 (5)0.036 (4)0.034 (4)0.007 (4)0.009 (4)0.002 (3)
C250.046 (5)0.090 (7)0.058 (5)0.008 (5)0.010 (4)0.024 (5)
C260.038 (4)0.061 (5)0.048 (5)0.001 (4)0.003 (3)0.019 (4)
N10.041 (3)0.040 (4)0.028 (3)0.003 (3)0.006 (3)0.001 (3)
N20.040 (3)0.029 (3)0.033 (3)0.001 (3)0.004 (3)0.000 (3)
N30.047 (4)0.039 (4)0.028 (3)0.004 (3)0.005 (3)0.003 (3)
N40.035 (3)0.036 (3)0.034 (3)0.000 (3)0.007 (3)0.001 (3)
O10.042 (3)0.057 (3)0.040 (3)0.012 (3)0.018 (2)0.007 (3)
O20.046 (3)0.038 (3)0.050 (3)0.015 (2)0.013 (2)0.014 (2)
O30.056 (3)0.049 (3)0.026 (2)0.014 (3)0.000 (2)0.008 (2)
O40.064 (3)0.044 (3)0.032 (3)0.014 (3)0.004 (2)0.005 (2)
O50.031 (2)0.045 (3)0.029 (2)0.002 (2)0.0024 (19)0.012 (2)
O60.030 (2)0.038 (3)0.031 (2)0.004 (2)0.0010 (19)0.005 (2)
O70.121 (6)0.075 (5)0.084 (5)0.013 (5)0.025 (4)0.034 (4)
O80.092 (5)0.065 (4)0.053 (4)0.001 (4)0.028 (3)0.006 (3)
O90.090 (6)0.188 (11)0.156 (9)0.002 (7)0.034 (6)0.040 (8)
O100.137 (7)0.095 (6)0.085 (5)0.013 (5)0.041 (5)0.040 (5)
O110.247 (12)0.142 (9)0.081 (6)0.053 (9)0.029 (7)0.032 (6)
O120.100 (6)0.104 (7)0.202 (10)0.027 (6)0.030 (6)0.003 (7)
O130.131 (7)0.100 (6)0.111 (6)0.038 (5)0.004 (5)0.049 (5)
O140.085 (5)0.179 (9)0.098 (6)0.014 (6)0.023 (4)0.091 (6)
Cl10.163 (3)0.0498 (14)0.0452 (13)0.0013 (16)0.0409 (16)0.0001 (11)
Cl20.0819 (16)0.0525 (13)0.0454 (11)0.0083 (12)0.0204 (11)0.0094 (10)
Cu10.0342 (5)0.0370 (5)0.0227 (4)0.0011 (4)0.0028 (3)0.0038 (4)
Cu20.0350 (5)0.0335 (5)0.0251 (4)0.0001 (4)0.0030 (3)0.0037 (4)
Geometric parameters (Å, º) top
C1—N11.268 (9)C18—C191.394 (10)
C1—O11.355 (8)C18—H18A0.9300
C1—C41.480 (10)C19—C201.404 (9)
C2—O11.472 (8)C19—C221.463 (10)
C2—C31.507 (10)C20—C211.361 (11)
C2—H2A0.9700C20—H20A0.9300
C2—H2B0.9700C21—H21A0.9300
C3—N11.493 (8)C22—N41.280 (8)
C3—H3A0.9700C22—O41.334 (8)
C3—H3B0.9700C23—O41.473 (9)
C4—C91.399 (9)C23—C241.522 (10)
C4—C51.399 (10)C23—H23A0.9700
C5—C61.373 (10)C23—H23B0.9700
C5—H5A0.9300C24—N41.503 (9)
C6—C71.399 (9)C24—H24A0.9700
C6—H6A0.9300C24—H24B0.9700
C7—C81.388 (10)C25—O51.415 (8)
C7—C101.479 (9)C25—H25A0.9600
C8—C91.385 (10)C25—H25B0.9600
C8—H8A0.9300C25—H25C0.9600
C9—H9A0.9300C26—O61.420 (8)
C10—N21.283 (8)C26—H26A0.9600
C10—O21.343 (8)C26—H26B0.9600
C11—O21.456 (8)C26—H26C0.9600
C11—C121.515 (10)N1—Cu11.987 (6)
C11—H11A0.9700N2—Cu21.979 (6)
C11—H11B0.9700N3—Cu12.003 (6)
C12—N21.478 (9)N4—Cu21.988 (6)
C12—H12A0.9700O5—Cu11.931 (4)
C12—H12B0.9700O5—Cu2i1.947 (4)
C13—N31.266 (9)O6—Cu2i1.935 (5)
C13—O31.343 (7)O6—Cu11.945 (4)
C13—C161.482 (10)O7—Cl11.380 (7)
C14—O31.446 (9)O8—Cl11.407 (6)
C14—C151.500 (10)O9—Cl11.566 (9)
C14—H14A0.9700O10—Cl11.353 (7)
C14—H14B0.9700O11—Cl21.364 (8)
C15—N31.499 (9)O12—Cl21.433 (9)
C15—H15A0.9700O13—Cl21.398 (8)
C15—H15B0.9700O14—Cl21.385 (7)
C16—C211.389 (10)Cu1—Cu2i2.9878 (11)
C16—C171.390 (9)Cu2—O6i1.935 (5)
C17—C181.391 (10)Cu2—O5i1.947 (4)
C17—H17A0.9300Cu2—Cu1i2.9878 (11)
N1—C1—O1117.5 (6)N4—C22—O4117.7 (6)
N1—C1—C4128.9 (6)N4—C22—C19128.2 (6)
O1—C1—C4113.6 (6)O4—C22—C19114.1 (6)
O1—C2—C3102.9 (5)O4—C23—C24103.1 (6)
O1—C2—H2A111.2O4—C23—H23A111.1
C3—C2—H2A111.2C24—C23—H23A111.1
O1—C2—H2B111.2O4—C23—H23B111.1
C3—C2—H2B111.2C24—C23—H23B111.1
H2A—C2—H2B109.1H23A—C23—H23B109.1
N1—C3—C2104.0 (6)N4—C24—C23104.6 (5)
N1—C3—H3A111.0N4—C24—H24A110.8
C2—C3—H3A111.0C23—C24—H24A110.8
N1—C3—H3B111.0N4—C24—H24B110.8
C2—C3—H3B111.0C23—C24—H24B110.8
H3A—C3—H3B109.0H24A—C24—H24B108.9
C9—C4—C5119.8 (6)O5—C25—H25A109.5
C9—C4—C1121.6 (6)O5—C25—H25B109.5
C5—C4—C1118.6 (6)H25A—C25—H25B109.5
C6—C5—C4120.2 (6)O5—C25—H25C109.5
C6—C5—H5A119.9H25A—C25—H25C109.5
C4—C5—H5A119.9H25B—C25—H25C109.5
C5—C6—C7120.0 (7)O6—C26—H26A109.5
C5—C6—H6A120.0O6—C26—H26B109.5
C7—C6—H6A120.0H26A—C26—H26B109.5
C8—C7—C6120.1 (7)O6—C26—H26C109.5
C8—C7—C10121.9 (6)H26A—C26—H26C109.5
C6—C7—C10117.8 (6)H26B—C26—H26C109.5
C9—C8—C7120.2 (6)C1—N1—C3106.5 (6)
C9—C8—H8A119.9C1—N1—Cu1135.1 (5)
C7—C8—H8A119.9C3—N1—Cu1118.0 (4)
C8—C9—C4119.7 (7)C10—N2—C12106.7 (6)
C8—C9—H9A120.1C10—N2—Cu2129.7 (5)
C4—C9—H9A120.1C12—N2—Cu2123.5 (4)
N2—C10—O2117.6 (6)C13—N3—C15107.7 (6)
N2—C10—C7128.0 (6)C13—N3—Cu1129.0 (5)
O2—C10—C7114.4 (6)C15—N3—Cu1122.8 (5)
O2—C11—C12104.0 (6)C22—N4—C24106.7 (6)
O2—C11—H11A111.0C22—N4—Cu2135.8 (5)
C12—C11—H11A111.0C24—N4—Cu2116.9 (4)
O2—C11—H11B111.0C1—O1—C2105.4 (5)
C12—C11—H11B111.0C10—O2—C11106.7 (5)
H11A—C11—H11B109.0C13—O3—C14106.7 (5)
N2—C12—C11104.8 (6)C22—O4—C23107.7 (5)
N2—C12—H12A110.8C25—O5—Cu1124.6 (4)
C11—C12—H12A110.8C25—O5—Cu2i125.2 (5)
N2—C12—H12B110.8Cu1—O5—Cu2i100.81 (19)
C11—C12—H12B110.8C26—O6—Cu2i124.5 (4)
H12A—C12—H12B108.9C26—O6—Cu1124.4 (4)
N3—C13—O3116.8 (6)Cu2i—O6—Cu1100.7 (2)
N3—C13—C16127.9 (6)O10—Cl1—O7120.9 (5)
O3—C13—C16115.1 (6)O10—Cl1—O8115.8 (5)
O3—C14—C15105.1 (6)O7—Cl1—O8111.1 (4)
O3—C14—H14A110.7O10—Cl1—O9100.7 (6)
C15—C14—H14A110.7O7—Cl1—O9100.0 (6)
O3—C14—H14B110.7O8—Cl1—O9104.7 (5)
C15—C14—H14B110.7O11—Cl2—O14109.5 (7)
H14A—C14—H14B108.8O11—Cl2—O13111.1 (6)
N3—C15—C14102.8 (6)O14—Cl2—O13111.4 (5)
N3—C15—H15A111.2O11—Cl2—O12106.2 (7)
C14—C15—H15A111.2O14—Cl2—O12108.3 (6)
N3—C15—H15B111.2O13—Cl2—O12110.2 (6)
C14—C15—H15B111.2O5—Cu1—O676.15 (18)
H15A—C15—H15B109.1O5—Cu1—N1173.9 (2)
C21—C16—C17119.8 (7)O6—Cu1—N198.4 (2)
C21—C16—C13120.2 (6)O5—Cu1—N395.2 (2)
C17—C16—C13119.8 (6)O6—Cu1—N3171.1 (2)
C16—C17—C18119.6 (7)N1—Cu1—N390.1 (2)
C16—C17—H17A120.2O5—Cu1—Cu2i39.79 (13)
C18—C17—H17A120.2O6—Cu1—Cu2i39.52 (13)
C17—C18—C19120.7 (6)N1—Cu1—Cu2i135.87 (17)
C17—C18—H18A119.6N3—Cu1—Cu2i132.83 (17)
C19—C18—H18A119.6O6i—Cu2—O5i76.02 (18)
C18—C19—C20118.3 (7)O6i—Cu2—N2169.4 (2)
C18—C19—C22122.0 (6)O5i—Cu2—N293.5 (2)
C20—C19—C22119.7 (6)O6i—Cu2—N498.1 (2)
C21—C20—C19121.0 (7)O5i—Cu2—N4173.4 (2)
C21—C20—H20A119.5N2—Cu2—N492.3 (2)
C19—C20—H20A119.5O6i—Cu2—Cu1i39.77 (12)
C20—C21—C16120.5 (7)O5i—Cu2—Cu1i39.40 (13)
C20—C21—H21A119.7N2—Cu2—Cu1i130.64 (16)
C16—C21—H21A119.7N4—Cu2—Cu1i135.84 (16)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O13ii0.972.553.281 (11)132
C3—H3B···O11ii0.972.423.228 (11)141
C8—H8A···O5i0.932.603.476 (8)157
C9—H9A···O60.932.573.465 (8)161
C12—H12A···O13iii0.972.543.450 (12)157
C24—H24A···O2iv0.972.543.270 (9)132
C26—H26B···O90.962.363.240 (14)152
Symmetry codes: (i) x+1, y+1, z; (ii) x1/2, y+3/2, z+1/2; (iii) x, y1, z; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu4(C12H12N2O2)4(CH3O)4(ClO4)2](ClO4)2
Mr1641.04
Crystal system, space groupMonoclinic, P21/n
Temperature (K)297
a, b, c (Å)8.3508 (8), 16.9820 (18), 22.337 (2)
β (°) 93.936 (2)
V3)3160.1 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.59
Crystal size (mm)0.30 × 0.15 × 0.07
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.647, 0.897
No. of measured, independent and
observed [I > 2σ(I)] reflections
17717, 6219, 3428
Rint0.077
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.186, 1.00
No. of reflections6219
No. of parameters433
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.65, 1.30

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXTL (Sheldrick, 2008), DAIMOND (Brandenburg, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O13i0.972.553.281 (11)132
C3—H3B···O11i0.972.423.228 (11)141
C8—H8A···O5ii0.932.603.476 (8)157
C9—H9A···O60.932.573.465 (8)161
C12—H12A···O13iii0.972.543.450 (12)157
C24—H24A···O2iv0.972.543.270 (9)132
C26—H26B···O90.962.363.240 (14)152
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x+1, y+1, z; (iii) x, y1, z; (iv) x+1, y, z.
 

Acknowledgements

We are grateful to the National Science Council of Taiwan and the Nanya Institute of Technology for support.

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y.-H., Lee, H.-T. & Suen, M.-C. (2008). Polyhedron, 27, 1177–1184.  Web of Science CSD CrossRef Google Scholar
First citationWang, P.-N., Yeh, C.-W., Tsai, H.-A., Wang, J.-C. & Suen, M.-C. (2011). Acta Cryst. E67, m881.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1080-m1081
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds