metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[(μ-2-amino-1,3,4-thia­diazole-κ2N3:N4)di-μ-chlorido-cadmium]

aDepartment of Material and Fiber, Nanya Institute of Technology, Chung-Li 320, Taiwan, bDepartment of Chemistry, Chung-Yuan Christian University, Chung-Li, Taiwan, and cDepartment of Materials and Textiles, Oriental Institute of Technology, New Taipei City, Taiwan
*Correspondence e-mail: sun@nanya.edu.tw

(Received 4 July 2011; accepted 6 July 2011; online 13 July 2011)

In the title coordination polymer, [CdCl2(C2H3N3S)]n, the CdII cation is coordinated by four Cl anions and two N atoms from two trans 2-amino-1,3,4-thia­diazole (L) ligands in a distorted octa­hedral geometry. The L ligand and Cl anions bridge adjacent Cd cations, forming a polymeric chain along the b axis; the separation between adjacent Cd cations is 3.619 (1) Å. In the crystal, the polymeric chains are inter­linking through N—H⋯Cl hydrogen bonds between the L ligands and Cl anions.

Related literature

For background to coordination polymers, see: Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]); Chiang et al. (2008[Chiang, L.-M., Yeh, C.-W., Chan, Z.-K., Wang, K.-M., Chou, Y.-C., Chen, J.-D., Wang, J.-C. & Lai, J. Y. (2008). Cryst. Growth Des. 8, 470-477.]); Yeh et al. (2008[Yeh, C.-W., Chen, J.-D. & Wang, J.-C. (2008). Polyhedron, 27, 3611-3618.], 2009[Yeh, C.-W., Chen, T.-R., Chen, J.-D. & Wang, J.-C. (2009). Cryst. Growth Des. 9, 2595-2603.]); Hsu et al. (2009[Hsu, Y.-F., Hu, H.-L., Wu, C.-J., Yeh, C.-W., Proserpio, D. M. & Chen, J.-D. (2009). CrystEngComm, 11, 168-176.]). For related Cd coordination polymers, see: Suen & Wang (2007a[Suen, M.-C. & Wang, J.-C. (2007a). J. Coord. Chem. 60, 257-268.],b[Suen, M.-C. & Wang, J.-C. (2007b). J. Coord. Chem. 60, 2197-2205.]).

[Scheme 1]

Experimental

Crystal data
  • [CdCl2(C2H3N3S)]

  • Mr = 284.43

  • Monoclinic, P 21 /n

  • a = 7.7264 (6) Å

  • b = 7.2227 (6) Å

  • c = 12.7608 (11) Å

  • β = 95.489 (2)°

  • V = 708.86 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.04 mm−1

  • T = 297 K

  • 0.48 × 0.46 × 0.34 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.170, Tmax = 0.341

  • 3718 measured reflections

  • 1381 independent reflections

  • 1354 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.056

  • S = 1.16

  • 1381 reflections

  • 83 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.76 e Å−3

Table 1
Selected bond lengths (Å)

Cd—N1 2.361 (2)
Cd—N2i 2.341 (2)
Cd—Cl1 2.6262 (7)
Cd—Cl1ii 2.6697 (7)
Cd—Cl2 2.6583 (7)
Cd—Cl2ii 2.6222 (7)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯Cl2iii 0.86 2.60 3.390 (3) 154
N3—H3B⋯Cl2iv 0.86 2.77 3.216 (3) 114
Symmetry codes: (iii) x, y+1, z; (iv) -x+2, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DAIMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The synthesis of metal coordination polymers has been a subject of intense research due to their interesting structural chemistry and potential applications in gas storage, separation, catalysis, magnetism, luminescence, and drug delivery (Kitagawa et al., 2004). Roles of anion, solvent and ligand comformations in self-assembly of coordination complexes containing polydentate nitrogen ligands are very intersting (Chiang et al., 2008; Yeh et al., 2008; Hsu et al., 2009; Yeh et al., 2009). Tha Cd(II) complexes containing polydentate ligands showing various type frameworks are also reported (Suen & Wang, 2007a,b). The Cd2+ cations are six-coordinate, which are coordinated with four Cl atoms and two N atoms from two L ligands (Fig. 1). The Cd···Cd distance separated by the bridging L ligands and Cl atoms is 10.257 (1) and 3.619 (1) Å. The one-dimensional polymeric chains are interlinking through N—H···Cl hydrogen bonds between the L ligands and Cl anions in the crystal structure (Fig. 2, Tab.1).

Related literature top

For background to coordination polymers, see: Kitagawa et al. (2004); Chiang et al. (2008); Yeh et al. (2008, 2009); Hsu et al. (2009). For related Cd(II) coordination polymers, see: Suen & Wang (2007a,b).

Experimental top

An aqueous solution (5.0 ml) of cadmium chloride (1.0 mmol) was layered carefully over a methanolic solution (5.0 ml) of 2-amino-1,3,4-thiadiazole (1.0 mmol) in a tube. Colourless crystals were obtained after several weeks. These were washed with methanol and collected in 68.7% yield.

Refinement top

H atoms were contrained to ideal geometries with C—H = 0.93 and N—H = 0.86 Å and Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DAIMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A portion of the one-dimensional chain. Ellipsoids are drawn at 30% probability level, and H atoms of spheres of arbitrary radius. Symmetry codes: (i) -x + 3/2, y - 1/2, -z + 3/2; (ii) -x + 3/2, y + 1/2, -z + 3/2.
[Figure 2] Fig. 2. The packing diagram shows the N—H···Cl hydrogen bonds among the one-dimensional Chains.
catena-Poly[(µ-2-amino-1,3,4-thiadiazole- κ2N3:N4)di-µ-chlorido-cadmium] top
Crystal data top
[CdCl2(C2H3N3S)]F(000) = 536
Mr = 284.43Dx = 2.665 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3467 reflections
a = 7.7264 (6) Åθ = 2.7–26.0°
b = 7.2227 (6) ŵ = 4.04 mm1
c = 12.7608 (11) ÅT = 297 K
β = 95.489 (2)°Parallelepiped, colourless
V = 708.86 (10) Å30.48 × 0.46 × 0.34 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1381 independent reflections
Radiation source: fine-focus sealed tube1354 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 26.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 99
Tmin = 0.170, Tmax = 0.341k = 87
3718 measured reflectionsl = 1510
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0313P)2 + 0.7123P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max = 0.001
1381 reflectionsΔρmax = 0.61 e Å3
83 parametersΔρmin = 0.76 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0097 (6)
Crystal data top
[CdCl2(C2H3N3S)]V = 708.86 (10) Å3
Mr = 284.43Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.7264 (6) ŵ = 4.04 mm1
b = 7.2227 (6) ÅT = 297 K
c = 12.7608 (11) Å0.48 × 0.46 × 0.34 mm
β = 95.489 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
1381 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1354 reflections with I > 2σ(I)
Tmin = 0.170, Tmax = 0.341Rint = 0.019
3718 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0211 restraint
wR(F2) = 0.056H-atom parameters constrained
S = 1.16Δρmax = 0.61 e Å3
1381 reflectionsΔρmin = 0.76 e Å3
83 parameters
Special details top

Experimental. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd0.73571 (3)0.17322 (3)0.745512 (14)0.02441 (12)
Cl10.51717 (10)0.08486 (9)0.79344 (6)0.02966 (18)
Cl20.97270 (10)0.06290 (9)0.83088 (6)0.03076 (18)
S0.70167 (11)0.40964 (10)1.09911 (6)0.03228 (19)
N10.7182 (3)0.3292 (3)0.90672 (19)0.0253 (5)
N20.7623 (3)0.5146 (3)0.91436 (18)0.0245 (5)
N30.7988 (4)0.7503 (4)1.0408 (2)0.0412 (7)
H3A0.82420.83020.99470.049*
H3B0.79690.78271.10560.049*
C10.6831 (4)0.2586 (4)0.9949 (2)0.0281 (6)
H1A0.65040.13561.00160.034*
C20.7623 (4)0.5757 (4)1.0118 (2)0.0260 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd0.03477 (16)0.01300 (14)0.02532 (16)0.00063 (7)0.00221 (9)0.00127 (6)
Cl10.0319 (4)0.0198 (3)0.0383 (4)0.0011 (3)0.0083 (3)0.0025 (3)
Cl20.0327 (4)0.0180 (3)0.0395 (4)0.0019 (3)0.0070 (3)0.0008 (3)
S0.0457 (5)0.0284 (4)0.0229 (4)0.0039 (3)0.0040 (3)0.0012 (3)
N10.0344 (13)0.0146 (11)0.0270 (12)0.0000 (9)0.0037 (10)0.0012 (9)
N20.0324 (12)0.0156 (11)0.0255 (11)0.0012 (9)0.0025 (9)0.0007 (9)
N30.0633 (19)0.0271 (14)0.0331 (14)0.0125 (13)0.0037 (13)0.0069 (11)
C10.0370 (16)0.0189 (14)0.0282 (14)0.0014 (12)0.0027 (11)0.0014 (11)
C20.0298 (15)0.0218 (14)0.0258 (14)0.0001 (11)0.0006 (11)0.0006 (10)
Geometric parameters (Å, º) top
Cd—N12.361 (2)N1—C11.287 (4)
Cd—N2i2.341 (2)N1—N21.383 (3)
Cd—Cl12.6262 (7)N2—C21.320 (4)
Cd—Cl1ii2.6697 (7)N2—Cdii2.341 (2)
Cd—Cl22.6583 (7)N3—C21.337 (4)
Cd—Cl2ii2.6222 (7)N3—H3A0.8600
S—C11.715 (3)N3—H3B0.8600
S—C21.731 (3)C1—H1A0.9300
N2i—Cd—N1177.00 (9)C1—S—C287.11 (14)
N2i—Cd—Cl2ii94.97 (6)C1—N1—N2113.1 (2)
N1—Cd—Cl2ii83.84 (6)C1—N1—Cd127.38 (19)
N2i—Cd—Cl185.04 (6)N2—N1—Cd119.28 (16)
N1—Cd—Cl192.52 (6)C2—N2—N1111.6 (2)
Cl2ii—Cd—Cl1102.52 (2)C2—N2—Cdii131.18 (19)
N2i—Cd—Cl288.94 (6)N1—N2—Cdii115.76 (16)
N1—Cd—Cl292.51 (6)C2—N3—H3A120.0
Cl2ii—Cd—Cl2173.27 (2)C2—N3—H3B120.0
Cl1—Cd—Cl283.24 (2)H3A—N3—H3B120.0
N2i—Cd—Cl1ii95.37 (6)N1—C1—S114.6 (2)
N1—Cd—Cl1ii87.23 (6)N1—C1—H1A122.7
Cl2ii—Cd—Cl1ii83.09 (2)S—C1—H1A122.7
Cl1—Cd—Cl1ii174.324 (18)N2—C2—N3123.8 (3)
Cl2—Cd—Cl1ii91.11 (2)N2—C2—S113.5 (2)
Cd—Cl1—Cdi86.22 (2)N3—C2—S122.6 (2)
Cdi—Cl2—Cd86.53 (2)
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+3/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···Cl2iii0.862.603.390 (3)154
N3—H3B···Cl2iv0.862.773.216 (3)114
Symmetry codes: (iii) x, y+1, z; (iv) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formula[CdCl2(C2H3N3S)]
Mr284.43
Crystal system, space groupMonoclinic, P21/n
Temperature (K)297
a, b, c (Å)7.7264 (6), 7.2227 (6), 12.7608 (11)
β (°) 95.489 (2)
V3)708.86 (10)
Z4
Radiation typeMo Kα
µ (mm1)4.04
Crystal size (mm)0.48 × 0.46 × 0.34
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.170, 0.341
No. of measured, independent and
observed [I > 2σ(I)] reflections
3718, 1381, 1354
Rint0.019
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.056, 1.16
No. of reflections1381
No. of parameters83
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.76

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SAINT (Bruker, 2010, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DAIMOND (Brandenburg, 2010).

Selected bond lengths (Å) top
Cd—N12.361 (2)Cd—Cl1ii2.6697 (7)
Cd—N2i2.341 (2)Cd—Cl22.6583 (7)
Cd—Cl12.6262 (7)Cd—Cl2ii2.6222 (7)
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+3/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···Cl2iii0.862.603.390 (3)154
N3—H3B···Cl2iv0.862.773.216 (3)114
Symmetry codes: (iii) x, y+1, z; (iv) x+2, y+1, z+2.
 

Acknowledgements

We are grateful to the National Science Council of the Republic of China and the Nanya Institute of Technology for support.

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChiang, L.-M., Yeh, C.-W., Chan, Z.-K., Wang, K.-M., Chou, Y.-C., Chen, J.-D., Wang, J.-C. & Lai, J. Y. (2008). Cryst. Growth Des. 8, 470–477.  Web of Science CSD CrossRef CAS Google Scholar
First citationHsu, Y.-F., Hu, H.-L., Wu, C.-J., Yeh, C.-W., Proserpio, D. M. & Chen, J.-D. (2009). CrystEngComm, 11, 168–176.  Web of Science CSD CrossRef CAS Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuen, M.-C. & Wang, J.-C. (2007a). J. Coord. Chem. 60, 257–268.  Web of Science CSD CrossRef CAS Google Scholar
First citationSuen, M.-C. & Wang, J.-C. (2007b). J. Coord. Chem. 60, 2197–2205.  Web of Science CSD CrossRef CAS Google Scholar
First citationYeh, C.-W., Chen, T.-R., Chen, J.-D. & Wang, J.-C. (2009). Cryst. Growth Des. 9, 2595–2603.  Web of Science CSD CrossRef CAS Google Scholar
First citationYeh, C.-W., Chen, J.-D. & Wang, J.-C. (2008). Polyhedron, 27, 3611–3618.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds