organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(5-Fluoro-7-methyl-3-methyl­sulfanyl-1-benzo­furan-2-yl)acetic acid

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 4 July 2011; accepted 5 July 2011; online 9 July 2011)

The title compound, C12H11FO3S, was prepared by alkaline hydrolysis of ethyl 2-(5-fluoro-7-methyl-3-methyl­sulfanyl-1-benzofuran-2-yl)acetate. In the crystal, the carboxyl groups are involved in inter­molecular O—H⋯O hydrogen bonds, which link the mol­ecules into centrosymmetric dimers.

Related literature

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2009[Aslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191-195.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For structural studies of related 2-(5-halo-3-methyl­sulfanyl-1-benzofuran-2-yl)acetic acid derivatives, see: Choi et al. (2009a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009a). Acta Cryst. E65, o563.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009b). Acta Cryst. E65, o1813.]).

[Scheme 1]

Experimental

Crystal data
  • C12H11FO3S

  • Mr = 254.27

  • Monoclinic, P 21 /c

  • a = 16.1747 (9) Å

  • b = 4.9242 (3) Å

  • c = 14.4572 (7) Å

  • β = 91.701 (3)°

  • V = 1150.97 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 173 K

  • 0.42 × 0.19 × 0.09 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.889, Tmax = 0.975

  • 10241 measured reflections

  • 2873 independent reflections

  • 2114 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.153

  • S = 1.05

  • 2873 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3i 0.84 1.87 2.706 (2) 177
Symmetry code: (i) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, many compounds involving a benzofuran moiety have drawn much attention due to their valuable pharmacological properties such as antibacterial and antifungal, antitumor and antiviral, and antimicrobial activities (Aslam et al., 2009, Galal et al., 2009, Khan et al., 2005). These benzofuran derivatives occur in a wide range of natural products (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our ongoing study of the substituent effect on the solid state structures of 2-(5-halo-3-methylsulfanyl-1-benzofuran-2-yl) acetic acid analogues (Choi et al., 2009a,b), we report herein the crystal structure of the title compound

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.005 (1) Å from the least-squares plane defined by the nine constituent atoms. The carboxyl groups are involved in intermolecular O—H···O hydrogen bonds (Table 1), which link the molecules into centrosymmetric dimers.

Related literature top

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2009); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For structural studies of related 2-(5-halo-3-methylsulfanyl-1-benzofuran-2-yl)acetic acid derivatives, see: Choi et al. (2009a,b).

Experimental top

Ethyl 2-(5-fluoro-7-methyl-3-methylsulfanyl-1-benzofuran-2-yl)acetate (338 mg, 1.2 mmol) was added to a solution of potassium hydroxide (337 mg, 6 mmol) in water (10 ml) and methanol (10 ml), and the mixture was refluxed for 5 h, then cooled. Water was added, and the solution was extracted with dichloromethane. The aqueous layer was acidified to pH 1 with concentrated hydrochloric acid and then extracted with chloroform, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (ethyl acetate) to afford the title compound as a colorless solid [yield 82%, m.p. 436–437 K; Rf = 0.65 (ethyl acetate)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in benzene at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with O—H = 0.84 Å, and C—H = 0.95 Å for aryl, 0.99 Å for methylene and 0.98 Å for methyl H atoms, respectively. Uiso(H) = 1.5Ueq(O), and 1.2Ueq(C) for aryl and methylene, and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
2-(5-Fluoro-7-methyl-3-methylsulfanyl-1-benzofuran-2-yl)acetic acid top
Crystal data top
C12H11FO3SF(000) = 528
Mr = 254.27Dx = 1.467 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3638 reflections
a = 16.1747 (9) Åθ = 2.5–27.9°
b = 4.9242 (3) ŵ = 0.29 mm1
c = 14.4572 (7) ÅT = 173 K
β = 91.701 (3)°Block, colourless
V = 1150.97 (11) Å30.42 × 0.19 × 0.09 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
2873 independent reflections
Radiation source: rotating anode2114 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.050
Detector resolution: 10.0 pixels mm-1θmax = 28.4°, θmin = 2.5°
ϕ and ω scansh = 1921
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 66
Tmin = 0.889, Tmax = 0.975l = 1919
10241 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: difference Fourier map
wR(F2) = 0.153H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0891P)2 + 0.0162P]
where P = (Fo2 + 2Fc2)/3
2873 reflections(Δ/σ)max < 0.001
156 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C12H11FO3SV = 1150.97 (11) Å3
Mr = 254.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.1747 (9) ŵ = 0.29 mm1
b = 4.9242 (3) ÅT = 173 K
c = 14.4572 (7) Å0.42 × 0.19 × 0.09 mm
β = 91.701 (3)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
2873 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2114 reflections with I > 2σ(I)
Tmin = 0.889, Tmax = 0.975Rint = 0.050
10241 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.05Δρmax = 0.38 e Å3
2873 reflectionsΔρmin = 0.27 e Å3
156 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.15190 (3)0.70323 (12)0.30067 (3)0.0375 (2)
F10.38947 (9)0.1018 (3)0.42507 (7)0.0606 (5)
O10.29563 (7)0.4092 (3)0.10941 (7)0.0292 (3)
O20.10398 (10)0.3674 (3)0.03782 (12)0.0558 (5)
H20.05650.31890.01950.084*
O30.05132 (8)0.7769 (3)0.01681 (10)0.0438 (4)
C10.22446 (10)0.5379 (4)0.23383 (11)0.0273 (4)
C20.28406 (10)0.3388 (4)0.26357 (10)0.0255 (4)
C30.30513 (12)0.2144 (4)0.34788 (11)0.0324 (5)
H30.27820.25790.40350.039*
C40.36662 (11)0.0275 (5)0.34518 (11)0.0355 (5)
C50.40838 (11)0.0469 (4)0.26625 (11)0.0337 (5)
H50.45060.18110.27000.040*
C60.38838 (10)0.0749 (4)0.18228 (11)0.0291 (4)
C70.32623 (11)0.2652 (4)0.18496 (10)0.0257 (4)
C80.23433 (10)0.5719 (4)0.14195 (11)0.0286 (4)
C90.43079 (12)0.0035 (5)0.09414 (12)0.0402 (5)
H9A0.38960.05920.04790.060*
H9B0.47130.14100.10650.060*
H9C0.45910.16420.07070.060*
C100.18996 (12)0.7432 (5)0.07219 (13)0.0358 (5)
H10A0.22520.76460.01790.043*
H10B0.18150.92590.09890.043*
C110.10771 (11)0.6315 (4)0.04024 (11)0.0292 (4)
C120.07261 (13)0.4483 (5)0.30180 (15)0.0471 (6)
H12A0.05080.41870.23860.071*
H12B0.02780.50870.34110.071*
H12C0.09590.27820.32630.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0334 (3)0.0289 (4)0.0506 (3)0.0038 (2)0.0054 (2)0.0077 (2)
F10.0761 (9)0.0696 (12)0.0360 (6)0.0303 (8)0.0012 (5)0.0216 (6)
O10.0293 (6)0.0322 (8)0.0258 (5)0.0010 (6)0.0025 (4)0.0047 (5)
O20.0470 (9)0.0267 (9)0.0917 (11)0.0022 (8)0.0345 (8)0.0036 (9)
O30.0319 (8)0.0305 (9)0.0680 (9)0.0070 (7)0.0143 (7)0.0012 (7)
C10.0244 (8)0.0239 (10)0.0335 (8)0.0010 (8)0.0007 (6)0.0001 (8)
C20.0238 (8)0.0249 (10)0.0279 (7)0.0015 (8)0.0001 (6)0.0010 (7)
C30.0373 (10)0.0343 (12)0.0258 (7)0.0002 (9)0.0020 (7)0.0027 (8)
C40.0401 (10)0.0375 (13)0.0286 (8)0.0040 (10)0.0042 (7)0.0097 (8)
C50.0296 (9)0.0306 (12)0.0406 (9)0.0063 (9)0.0022 (7)0.0001 (9)
C60.0246 (8)0.0307 (12)0.0321 (8)0.0019 (8)0.0007 (6)0.0042 (8)
C70.0247 (8)0.0278 (11)0.0243 (7)0.0033 (8)0.0032 (6)0.0021 (7)
C80.0240 (8)0.0251 (11)0.0362 (8)0.0015 (8)0.0052 (6)0.0024 (8)
C90.0342 (10)0.0504 (15)0.0362 (9)0.0065 (10)0.0058 (7)0.0090 (9)
C100.0359 (10)0.0290 (11)0.0420 (9)0.0021 (9)0.0099 (8)0.0080 (9)
C110.0324 (9)0.0257 (11)0.0291 (7)0.0007 (9)0.0042 (6)0.0034 (8)
C120.0375 (11)0.0407 (15)0.0637 (12)0.0032 (11)0.0121 (9)0.0064 (11)
Geometric parameters (Å, º) top
S1—C11.7440 (17)C5—C61.384 (2)
S1—C121.795 (2)C5—H50.9500
F1—C41.3605 (19)C6—C71.376 (3)
O1—C81.369 (2)C6—C91.507 (2)
O1—C71.382 (2)C8—C101.484 (3)
O2—C111.303 (2)C9—H9A0.9800
O2—H20.8400C9—H9B0.9800
O3—C111.200 (2)C9—H9C0.9800
C1—C81.353 (2)C10—C111.500 (3)
C1—C21.432 (3)C10—H10A0.9900
C2—C71.391 (2)C10—H10B0.9900
C2—C31.397 (2)C12—H12A0.9800
C3—C41.356 (3)C12—H12B0.9800
C3—H30.9500C12—H12C0.9800
C4—C51.392 (2)
C1—S1—C1299.86 (10)C1—C8—O1111.87 (15)
C8—O1—C7105.96 (12)C1—C8—C10131.99 (18)
C11—O2—H2109.5O1—C8—C10116.10 (15)
C8—C1—C2106.36 (15)C6—C9—H9A109.5
C8—C1—S1125.95 (15)C6—C9—H9B109.5
C2—C1—S1127.69 (12)H9A—C9—H9B109.5
C7—C2—C3119.05 (17)C6—C9—H9C109.5
C7—C2—C1105.98 (14)H9A—C9—H9C109.5
C3—C2—C1134.97 (16)H9B—C9—H9C109.5
C4—C3—C2115.62 (15)C8—C10—C11114.05 (16)
C4—C3—H3122.2C8—C10—H10A108.7
C2—C3—H3122.2C11—C10—H10A108.7
C3—C4—F1118.29 (15)C8—C10—H10B108.7
C3—C4—C5125.18 (16)C11—C10—H10B108.7
F1—C4—C5116.52 (18)H10A—C10—H10B107.6
C6—C5—C4119.90 (18)O3—C11—O2123.63 (18)
C6—C5—H5120.0O3—C11—C10121.85 (19)
C4—C5—H5120.0O2—C11—C10114.49 (17)
C7—C6—C5115.00 (15)S1—C12—H12A109.5
C7—C6—C9122.29 (16)S1—C12—H12B109.5
C5—C6—C9122.71 (17)H12A—C12—H12B109.5
C6—C7—O1124.91 (14)S1—C12—H12C109.5
C6—C7—C2125.25 (16)H12A—C12—H12C109.5
O1—C7—C2109.83 (16)H12B—C12—H12C109.5
C12—S1—C1—C897.22 (19)C9—C6—C7—C2179.39 (18)
C12—S1—C1—C281.79 (19)C8—O1—C7—C6179.17 (18)
C8—C1—C2—C70.3 (2)C8—O1—C7—C20.02 (19)
S1—C1—C2—C7178.89 (14)C3—C2—C7—C60.3 (3)
C8—C1—C2—C3179.4 (2)C1—C2—C7—C6179.00 (18)
S1—C1—C2—C30.2 (3)C3—C2—C7—O1179.47 (16)
C7—C2—C3—C40.0 (3)C1—C2—C7—O10.2 (2)
C1—C2—C3—C4179.0 (2)C2—C1—C8—O10.3 (2)
C2—C3—C4—F1179.57 (17)S1—C1—C8—O1178.91 (13)
C2—C3—C4—C50.3 (3)C2—C1—C8—C10178.18 (19)
C3—C4—C5—C60.5 (3)S1—C1—C8—C101.0 (3)
F1—C4—C5—C6179.75 (17)C7—O1—C8—C10.2 (2)
C4—C5—C6—C70.3 (3)C7—O1—C8—C10178.42 (15)
C4—C5—C6—C9179.8 (2)C1—C8—C10—C1177.6 (3)
C5—C6—C7—O1179.19 (16)O1—C8—C10—C11100.2 (2)
C9—C6—C7—O10.3 (3)C8—C10—C11—O3148.89 (18)
C5—C6—C7—C20.1 (3)C8—C10—C11—O232.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.841.872.706 (2)177
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H11FO3S
Mr254.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)16.1747 (9), 4.9242 (3), 14.4572 (7)
β (°) 91.701 (3)
V3)1150.97 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.42 × 0.19 × 0.09
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.889, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
10241, 2873, 2114
Rint0.050
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.153, 1.05
No. of reflections2873
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.27

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.841.872.706 (2)177
Symmetry code: (i) x, y+1, z.
 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191–195.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009a). Acta Cryst. E65, o563.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009b). Acta Cryst. E65, o1813.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds