organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzyl 3-[(E)-1-(pyrazin-2-yl)ethyl­­idene]di­thio­carbazate

aCollege of Chemical Engineering and Materials Science, Zhejiang University of Technology, People's Republic of China
*Correspondence e-mail: shanshang@mail.hz.zj.cn

(Received 9 July 2011; accepted 15 July 2011; online 23 July 2011)

The title compound, C14H14N4S2, was obtained from a condensation reaction of benzyl dithio­carbazate and acetyl­pyrazine. The asymmetric unit contains two independent mol­ecules, in each of which the pyrazine ring and dithio­carbazate unit are approximately co-planar, the r.m.s. deviations being 0.0304 and 0.0418 Å. The mean plane is oriented with respect to the benzene ring at 49.22 (4)° in one mol­ecule and at 69.76 (7)° in the other. In the crystal, the mol­ecules are linked to each other via inter­molecular N—H⋯S hydrogen bonds, forming centrosymmetric supra­molecular dimers.

Related literature

For applications of hydrazone and its derivatives in the biological field, see: Okabe et al. (1993[Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.]); Hu et al. (2001[Hu, W., Sun, N. & Yang, Z. (2001). Chem. J. Chin. Univ. 22, 2014-2017.]). For related structures, see: Shan et al. (2006[Shan, S., Zhang, Y.-L. & Xu, D.-J. (2006). Acta Cryst. E62, o1567-o1569.], 2008a[Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008a). Acta Cryst. E64, o1014.],b[Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008b). Acta Cryst. E64, o1024.]). For the synthesis, see: Hu et al. (2001[Hu, W., Sun, N. & Yang, Z. (2001). Chem. J. Chin. Univ. 22, 2014-2017.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14N4S2

  • Mr = 302.41

  • Triclinic, [P \overline 1]

  • a = 9.511 (3) Å

  • b = 9.786 (3) Å

  • c = 17.144 (5) Å

  • α = 90.688 (4)°

  • β = 100.178 (6)°

  • γ = 111.006 (6)°

  • V = 1461.2 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 294 K

  • 0.45 × 0.23 × 0.22 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.88, Tmax = 0.90

  • 9171 measured reflections

  • 5249 independent reflections

  • 3005 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.111

  • S = 0.94

  • 5249 reflections

  • 364 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4N⋯S3i 0.86 2.75 3.611 (2) 175
N8—H8N⋯S1i 0.86 2.77 3.622 (2) 174
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Hydrazone and its derivatives have shown the potential application in the biological field (Okabe et al., 1993; Hu et al., 2001). As part of the ongoing investigation on anti-cancer compounds, the title compound has recently been prepared in our laboratory and its crystal structure is presented here.

The molecular structure of the title compound is shown in Fig. 1. The asymmetric unit contains two independent molecules. In each, the pyrazine ring and dithiocarbazate moiety are approximately co-planer, r.m.s. deviation being 0.0304 and 0.0418 Å, respectively. The mean plane is oriented with respect to the benzene ring at 49.22 (4)° in one molecule while at 69.76 (7)° in the other. The N3—C5 bond length of 1.284 (3) Å and the N7—C19 bond length of 1.282 (3) Å indicate the typical CN double bonds. The pyrazine ring and dithiocarbazate moieties are located on the opposite positions of the CN bonds, showing the E-configuration, which agrees with those found in related compounds (Shan et al., 2006; Shan et al., 2008a,b).

In the crystal the two independent molecules are linked to each other via intermolecular N—H···S hydrogen bonding to form the centro-symmetric supramolecular dimer (Table 1).

Related literature top

For applications of hydrazone and its derivatives in the biological field, see: Okabe et al. (1993); Hu et al. (2001). For related structures, see: Shan et al. (2006, 2008a,b). For the synthesis, see: Hu et al. (2001).

Experimental top

Benzyl dithiocarbazate was synthesized as described previously (Hu et al., 2001). Benzyl dithiocarbazate (0.4 g, 2 mmol) and acetylpyrazine (0.24 g, 2 mmol) were dissolved in ethanol (20 ml), then acetic acid (0.2 ml) was added to the ethanol solution with stirring. The mixture solution was refluxed for 6 h. After cooling to room temperature, yellow microcrystals appeared. The microcrystals were separated from the solution and washed with cold water three times. Recrystallization was performed twice with absolute methanol to obtain single crystals of the title compound.

Refinement top

H atoms were placed in calculated positions with C—H = 0.93 (aromatic), 0.97 (methylene) and N—H = 0.86 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 40% probability displacement (arbitrary spheres for H atoms).
Benzyl 3-[(E)-1-(pyrazin-2-yl)ethylidene]dithiocarbazate top
Crystal data top
C14H14N4S2Z = 4
Mr = 302.41F(000) = 632
Triclinic, P1Dx = 1.375 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.511 (3) ÅCell parameters from 5249 reflections
b = 9.786 (3) Åθ = 3.3–25.2°
c = 17.144 (5) ŵ = 0.36 mm1
α = 90.688 (4)°T = 294 K
β = 100.178 (6)°Needle, yellow
γ = 111.006 (6)°0.45 × 0.23 × 0.22 mm
V = 1461.2 (8) Å3
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
5249 independent reflections
Radiation source: fine-focus sealed tube3005 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 10.0 pixels mm-1θmax = 25.2°, θmin = 3.4°
ω scansh = 1110
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1011
Tmin = 0.88, Tmax = 0.90l = 1720
9171 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0442P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max < 0.001
5249 reflectionsΔρmax = 0.21 e Å3
364 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0051 (7)
Crystal data top
C14H14N4S2γ = 111.006 (6)°
Mr = 302.41V = 1461.2 (8) Å3
Triclinic, P1Z = 4
a = 9.511 (3) ÅMo Kα radiation
b = 9.786 (3) ŵ = 0.36 mm1
c = 17.144 (5) ÅT = 294 K
α = 90.688 (4)°0.45 × 0.23 × 0.22 mm
β = 100.178 (6)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
5249 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3005 reflections with I > 2σ(I)
Tmin = 0.88, Tmax = 0.90Rint = 0.027
9171 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 0.94Δρmax = 0.21 e Å3
5249 reflectionsΔρmin = 0.22 e Å3
364 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.37949 (8)0.30497 (8)0.39964 (4)0.0577 (2)
S20.47351 (8)0.22593 (7)0.25099 (4)0.0478 (2)
S30.36950 (8)0.79605 (8)0.39238 (4)0.0576 (2)
S40.47142 (8)0.73081 (7)0.24347 (4)0.0475 (2)
N10.9596 (3)0.0100 (2)0.37093 (13)0.0612 (6)
N20.9043 (3)0.0108 (3)0.20740 (14)0.0678 (7)
N30.6706 (2)0.1393 (2)0.35110 (11)0.0440 (5)
N40.5883 (2)0.1903 (2)0.39383 (12)0.0462 (5)
H4N0.60290.19050.44480.055*
N50.9564 (3)0.4878 (2)0.37052 (13)0.0579 (6)
N60.9118 (3)0.5081 (3)0.20683 (14)0.0700 (7)
N70.6718 (2)0.6436 (2)0.34506 (12)0.0451 (5)
N80.5870 (2)0.6937 (2)0.38655 (12)0.0475 (5)
H8N0.60220.69620.43760.057*
C10.8542 (3)0.0416 (2)0.33694 (14)0.0419 (6)
C20.8283 (3)0.0504 (3)0.25545 (16)0.0575 (7)
H20.75320.08620.23310.069*
C31.0097 (3)0.0394 (3)0.24298 (18)0.0623 (8)
H31.06750.06800.21240.075*
C41.0353 (3)0.0503 (3)0.32220 (18)0.0664 (8)
H41.10940.08780.34390.080*
C50.7692 (3)0.0897 (2)0.38862 (14)0.0421 (6)
C60.8013 (3)0.0798 (3)0.47576 (15)0.0646 (8)
H6A0.82970.17520.50260.097*
H6B0.88380.04450.48940.097*
H6C0.71100.01320.49170.097*
C70.4838 (3)0.2402 (2)0.35357 (14)0.0420 (6)
C80.3348 (3)0.3081 (3)0.21370 (14)0.0513 (7)
H8A0.24070.26090.23330.062*
H8B0.37510.41180.23140.062*
C90.3036 (3)0.2880 (2)0.12422 (15)0.0443 (6)
C100.1556 (3)0.2220 (3)0.08232 (16)0.0591 (8)
H100.07490.18830.10950.071*
C110.1261 (4)0.2054 (3)0.00069 (19)0.0731 (9)
H110.02540.16280.02700.088*
C120.2447 (4)0.2513 (3)0.04033 (18)0.0697 (9)
H120.22460.23820.09560.084*
C130.3914 (4)0.3160 (3)0.00040 (18)0.0670 (8)
H130.47200.34700.02710.080*
C140.4215 (3)0.3359 (3)0.08218 (17)0.0590 (8)
H140.52210.38190.10940.071*
C150.8569 (3)0.5450 (2)0.33416 (14)0.0401 (6)
C160.8372 (3)0.5543 (3)0.25265 (15)0.0568 (7)
H160.76760.59540.22890.068*
C171.0091 (3)0.4506 (3)0.24458 (18)0.0620 (8)
H171.06420.41530.21530.074*
C181.0308 (3)0.4415 (3)0.32380 (18)0.0623 (8)
H181.10130.40100.34700.075*
C190.7713 (3)0.5969 (2)0.38395 (14)0.0430 (6)
C200.8037 (3)0.5919 (3)0.47198 (15)0.0620 (8)
H20A0.82940.68810.49720.093*
H20B0.88820.55960.48690.093*
H20C0.71450.52470.48840.093*
C210.4789 (3)0.7394 (2)0.34580 (14)0.0416 (6)
C220.3174 (3)0.7955 (3)0.20720 (14)0.0487 (7)
H22A0.22490.73660.22540.058*
H22B0.34570.89690.22710.058*
C230.2895 (3)0.7829 (3)0.11759 (14)0.0428 (6)
C240.2221 (3)0.6467 (3)0.07488 (16)0.0533 (7)
H240.19380.56210.10180.064*
C250.1965 (3)0.6353 (3)0.00675 (17)0.0605 (8)
H250.15160.54320.03470.073*
C260.2366 (3)0.7584 (3)0.04698 (16)0.0632 (8)
H260.21940.75050.10220.076*
C270.3021 (4)0.8932 (3)0.00586 (17)0.0677 (8)
H270.32830.97750.03310.081*
C280.3295 (3)0.9046 (3)0.07592 (17)0.0599 (8)
H280.37610.99700.10340.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0636 (5)0.0886 (5)0.0419 (4)0.0505 (4)0.0153 (4)0.0049 (4)
S20.0585 (5)0.0617 (4)0.0362 (4)0.0382 (3)0.0076 (3)0.0020 (3)
S30.0596 (5)0.0915 (5)0.0420 (4)0.0499 (4)0.0142 (3)0.0052 (4)
S40.0525 (4)0.0643 (4)0.0365 (4)0.0341 (3)0.0091 (3)0.0026 (3)
N10.0642 (16)0.0921 (16)0.0485 (14)0.0546 (14)0.0094 (12)0.0079 (12)
N20.0755 (18)0.1014 (18)0.0466 (15)0.0511 (15)0.0225 (13)0.0082 (13)
N30.0461 (13)0.0598 (12)0.0379 (12)0.0323 (11)0.0103 (10)0.0047 (10)
N40.0507 (13)0.0675 (13)0.0327 (11)0.0351 (11)0.0105 (10)0.0069 (10)
N50.0585 (15)0.0868 (15)0.0464 (14)0.0465 (13)0.0135 (12)0.0071 (12)
N60.0879 (19)0.0954 (17)0.0469 (15)0.0527 (16)0.0235 (14)0.0005 (13)
N70.0465 (13)0.0607 (12)0.0394 (12)0.0327 (11)0.0092 (10)0.0033 (10)
N80.0505 (13)0.0693 (13)0.0345 (12)0.0355 (11)0.0090 (10)0.0047 (10)
C10.0427 (15)0.0487 (13)0.0382 (15)0.0213 (12)0.0080 (12)0.0037 (11)
C20.065 (2)0.0804 (18)0.0451 (17)0.0451 (16)0.0155 (15)0.0124 (14)
C30.062 (2)0.0807 (19)0.059 (2)0.0377 (16)0.0260 (16)0.0021 (16)
C40.064 (2)0.095 (2)0.063 (2)0.0555 (17)0.0150 (17)0.0080 (17)
C50.0412 (15)0.0532 (14)0.0360 (14)0.0225 (12)0.0064 (12)0.0055 (11)
C60.069 (2)0.107 (2)0.0379 (16)0.0568 (17)0.0089 (14)0.0074 (15)
C70.0450 (15)0.0468 (13)0.0385 (14)0.0217 (12)0.0088 (12)0.0036 (11)
C80.0585 (17)0.0630 (15)0.0456 (16)0.0384 (14)0.0090 (13)0.0040 (12)
C90.0510 (17)0.0437 (14)0.0449 (16)0.0264 (12)0.0065 (13)0.0077 (12)
C100.0509 (18)0.0758 (18)0.0556 (19)0.0294 (15)0.0090 (15)0.0125 (15)
C110.062 (2)0.088 (2)0.058 (2)0.0224 (17)0.0059 (18)0.0055 (17)
C120.090 (3)0.077 (2)0.0420 (18)0.0338 (18)0.0051 (18)0.0095 (15)
C130.069 (2)0.0793 (19)0.056 (2)0.0275 (17)0.0208 (17)0.0164 (16)
C140.0530 (18)0.0644 (17)0.0540 (19)0.0167 (14)0.0058 (15)0.0106 (14)
C150.0398 (15)0.0486 (13)0.0346 (14)0.0195 (12)0.0067 (12)0.0027 (11)
C160.066 (2)0.0785 (18)0.0397 (16)0.0432 (16)0.0096 (14)0.0060 (14)
C170.068 (2)0.0739 (18)0.062 (2)0.0402 (16)0.0272 (16)0.0011 (15)
C180.063 (2)0.090 (2)0.0549 (19)0.0510 (17)0.0162 (15)0.0061 (16)
C190.0440 (16)0.0530 (14)0.0381 (15)0.0243 (12)0.0092 (12)0.0046 (11)
C200.0646 (19)0.101 (2)0.0391 (16)0.0539 (17)0.0077 (14)0.0021 (14)
C210.0421 (15)0.0479 (13)0.0388 (14)0.0217 (11)0.0071 (12)0.0020 (11)
C220.0529 (17)0.0579 (15)0.0446 (16)0.0318 (13)0.0081 (13)0.0048 (12)
C230.0401 (15)0.0526 (15)0.0421 (15)0.0252 (12)0.0065 (12)0.0051 (12)
C240.0583 (18)0.0520 (16)0.0512 (18)0.0229 (13)0.0085 (14)0.0069 (13)
C250.0604 (19)0.0646 (18)0.0541 (19)0.0246 (15)0.0020 (15)0.0082 (15)
C260.071 (2)0.086 (2)0.0405 (17)0.0403 (17)0.0041 (15)0.0041 (16)
C270.085 (2)0.0684 (19)0.055 (2)0.0332 (16)0.0161 (17)0.0223 (16)
C280.073 (2)0.0510 (15)0.0564 (19)0.0264 (14)0.0073 (15)0.0055 (14)
Geometric parameters (Å, º) top
S1—C71.651 (2)C9—C101.376 (3)
S2—C71.745 (2)C9—C141.383 (4)
S2—C81.808 (2)C10—C111.374 (4)
S3—C211.650 (2)C10—H100.9300
S4—C211.743 (3)C11—C121.376 (4)
S4—C221.813 (2)C11—H110.9300
N1—C11.327 (3)C12—C131.360 (4)
N1—C41.335 (3)C12—H120.9300
N2—C21.325 (3)C13—C141.377 (4)
N2—C31.327 (3)C13—H130.9300
N3—C51.284 (3)C14—H140.9300
N3—N41.368 (3)C15—C161.385 (3)
N4—C71.348 (3)C15—C191.477 (3)
N4—H4N0.8600C16—H160.9300
N5—C181.330 (3)C17—C181.346 (4)
N5—C151.333 (3)C17—H170.9300
N6—C161.321 (3)C18—H180.9300
N6—C171.328 (3)C19—C201.491 (3)
N7—C191.282 (3)C20—H20A0.9600
N7—N81.370 (3)C20—H20B0.9600
N8—C211.352 (3)C20—H20C0.9600
N8—H8N0.8600C22—C231.508 (3)
C1—C21.384 (3)C22—H22A0.9700
C1—C51.475 (3)C22—H22B0.9700
C2—H20.9300C23—C281.366 (3)
C3—C41.349 (4)C23—C241.386 (3)
C3—H30.9300C24—C251.374 (4)
C4—H40.9300C24—H240.9300
C5—C61.482 (3)C25—C261.362 (4)
C6—H6A0.9600C25—H250.9300
C6—H6B0.9600C26—C271.363 (3)
C6—H6C0.9600C26—H260.9300
C8—C91.507 (3)C27—C281.376 (4)
C8—H8A0.9700C27—H270.9300
C8—H8B0.9700C28—H280.9300
C7—S2—C8102.79 (11)C11—C12—H12120.2
C21—S4—C22102.13 (11)C12—C13—C14120.3 (3)
C1—N1—C4116.0 (2)C12—C13—H13119.8
C2—N2—C3115.1 (3)C14—C13—H13119.8
C5—N3—N4118.6 (2)C13—C14—C9120.7 (3)
C7—N4—N3117.9 (2)C13—C14—H14119.7
C7—N4—H4N121.0C9—C14—H14119.7
N3—N4—H4N121.0N5—C15—C16120.0 (2)
C18—N5—C15115.9 (2)N5—C15—C19117.5 (2)
C16—N6—C17115.0 (3)C16—C15—C19122.4 (2)
C19—N7—N8118.4 (2)N6—C16—C15123.6 (3)
C21—N8—N7118.8 (2)N6—C16—H16118.2
C21—N8—H8N120.6C15—C16—H16118.2
N7—N8—H8N120.6N6—C17—C18122.3 (3)
N1—C1—C2119.9 (2)N6—C17—H17118.8
N1—C1—C5118.0 (2)C18—C17—H17118.8
C2—C1—C5122.1 (2)N5—C18—C17123.2 (3)
N2—C2—C1123.7 (3)N5—C18—H18118.4
N2—C2—H2118.1C17—C18—H18118.4
C1—C2—H2118.1N7—C19—C15114.5 (2)
N2—C3—C4122.0 (3)N7—C19—C20125.4 (2)
N2—C3—H3119.0C15—C19—C20120.1 (2)
C4—C3—H3119.0C19—C20—H20A109.5
N1—C4—C3123.2 (3)C19—C20—H20B109.5
N1—C4—H4118.4H20A—C20—H20B109.5
C3—C4—H4118.4C19—C20—H20C109.5
N3—C5—C1113.9 (2)H20A—C20—H20C109.5
N3—C5—C6125.6 (2)H20B—C20—H20C109.5
C1—C5—C6120.5 (2)N8—C21—S3120.95 (19)
C5—C6—H6A109.5N8—C21—S4113.05 (18)
C5—C6—H6B109.5S3—C21—S4126.01 (14)
H6A—C6—H6B109.5C23—C22—S4108.01 (16)
C5—C6—H6C109.5C23—C22—H22A110.1
H6A—C6—H6C109.5S4—C22—H22A110.1
H6B—C6—H6C109.5C23—C22—H22B110.1
N4—C7—S1121.67 (19)S4—C22—H22B110.1
N4—C7—S2112.47 (18)H22A—C22—H22B108.4
S1—C7—S2125.85 (14)C28—C23—C24117.9 (2)
C9—C8—S2107.72 (16)C28—C23—C22121.3 (2)
C9—C8—H8A110.2C24—C23—C22120.8 (2)
S2—C8—H8A110.2C25—C24—C23120.8 (2)
C9—C8—H8B110.2C25—C24—H24119.6
S2—C8—H8B110.2C23—C24—H24119.6
H8A—C8—H8B108.5C26—C25—C24120.2 (2)
C10—C9—C14118.4 (2)C26—C25—H25119.9
C10—C9—C8120.3 (3)C24—C25—H25119.9
C14—C9—C8121.3 (2)C25—C26—C27119.7 (3)
C11—C10—C9120.6 (3)C25—C26—H26120.1
C11—C10—H10119.7C27—C26—H26120.1
C9—C10—H10119.7C26—C27—C28120.1 (3)
C10—C11—C12120.4 (3)C26—C27—H27120.0
C10—C11—H11119.8C28—C27—H27120.0
C12—C11—H11119.8C23—C28—C27121.3 (2)
C13—C12—C11119.6 (3)C23—C28—H28119.3
C13—C12—H12120.2C27—C28—H28119.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···S3i0.862.753.611 (2)175
N8—H8N···S1i0.862.773.622 (2)174
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H14N4S2
Mr302.41
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)9.511 (3), 9.786 (3), 17.144 (5)
α, β, γ (°)90.688 (4), 100.178 (6), 111.006 (6)
V3)1461.2 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.45 × 0.23 × 0.22
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.88, 0.90
No. of measured, independent and
observed [I > 2σ(I)] reflections
9171, 5249, 3005
Rint0.027
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.111, 0.94
No. of reflections5249
No. of parameters364
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.22

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···S3i0.862.753.611 (2)175
N8—H8N···S1i0.862.773.622 (2)174
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The work was supported by the Natural Science Foundation of Zhejiang Province, China (No. M203027).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHu, W., Sun, N. & Yang, Z. (2001). Chem. J. Chin. Univ. 22, 2014–2017.  CAS Google Scholar
First citationOkabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationShan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008a). Acta Cryst. E64, o1014.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008b). Acta Cryst. E64, o1024.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShan, S., Zhang, Y.-L. & Xu, D.-J. (2006). Acta Cryst. E62, o1567–o1569.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds