metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1128-m1129

Di-μ-nicotinamide-κ2N1:O;κ2O:N1-bis­­[aqua­bis­­(4-bromo­benzoato)-κO;κ2O,O′-manganese(II)]

aKafkas University, Department of Chemistry, 36100 Kars, Turkey, and bHacettepe University, Department of Physics, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 14 July 2011; accepted 15 July 2011; online 23 July 2011)

In the centrosymmetric dinuclear title compound, [Mn2(C7H4BrO2)4(C6H6N2O)2(H2O)2], the MnII atom is coordinated by one N atom from one bridging nicotinamide ligand and one O atom from another symmetry-related bridging nicotinamide ligand, three O atoms from two 4-bromo­benzoate ligands and one water mol­ecule in a distorted octa­hedral geometry. The dihedral angles between the carboxyl­ate groups and the adjacent benzene rings are 10.89 (16) and 8.4 (2)°, while the benzene rings are oriented at a dihedral angle of 6.09 (13)°. Inter­molecular O—H⋯O, N—H⋯O and weak C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network. ππ inter­actions, indicated by short centroid–centroid distances [3.845 (2) Å between the benzene rings, 3.650 (2) Å between the pyridine rings and 3.700 (3) Å between the benzene and pyridine rings] further stabilize the structure.

Related literature

For niacin, see: Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]). For information on the nicotinic acid derivative N,N-diethyl­nicotinamide, see: Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). For related structures, see: Hökelek et al. (2009a[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009a). Acta Cryst. E65, m1365-m1366.],b[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m651-m652.]); Hökelek et al. (2010a[Hökelek, T., Süzen, Y., Tercan, B., Tenlik, E. & Necefoğlu, H. (2010a). Acta Cryst. E66, m784-m785.],b[Hökelek, T., Saka, G., Tercan, B., Tenlik, E. & Necefoğlu, H. (2010b). Acta Cryst. E66, m1135-m1136.]); Necefoğlu et al. (2011[Necefoğlu, H., Özbek, F. E., Öztürk, V., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, m887-m888.]); Greenaway et al. (1984[Greenaway, F. T., Pazeshk, A., Cordes, A. W., Noble, M. C. & Sorenson, J. R. J. (1984). Inorg. Chim. Acta, 93, 67-71.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn2(C7H4BrO2)4(C6H6N2O)2(H2O)2]

  • Mr = 1190.18

  • Triclinic, [P \overline 1]

  • a = 7.2213 (2) Å

  • b = 12.1782 (3) Å

  • c = 13.4931 (4) Å

  • α = 110.038 (3)°

  • β = 91.206 (2)°

  • γ = 103.653 (2)°

  • V = 1076.51 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 4.37 mm−1

  • T = 294 K

  • 0.29 × 0.22 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.329, Tmax = 0.418

  • 18469 measured reflections

  • 5394 independent reflections

  • 4298 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.126

  • S = 1.05

  • 5394 reflections

  • 297 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.03 e Å−3

  • Δρmin = −1.76 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O1 2.316 (2)
Mn1—O2 2.237 (2)
Mn1—O3 2.025 (3)
Mn1—O5 2.217 (2)
Mn1—O6 2.170 (2)
Mn1—N1 2.272 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.85 (3) 2.02 (3) 2.856 (4) 168 (5)
O6—H6A⋯O1ii 0.84 (5) 1.96 (6) 2.771 (4) 162 (5)
O6—H6B⋯O4ii 0.84 (4) 1.83 (4) 2.670 (4) 175 (4)
C17—H17⋯O2iii 0.93 2.27 3.125 (5) 152
Symmetry codes: (i) x-1, y, z; (ii) -x, -y, -z+1; (iii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As a part of our ongoing investigations of transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The title compound, (I), consists of dimeric units located around a crystallographic symmetry centre and made up of two Mn cations, four 4-bromobenzoate (PBB) anions, which act in different modes-monodentate, bidentate and bidentate, monodentate, respectively, two nicotinamide (NA) ligands and two water molecules (Fig. 1). Both of the MnII centres are six-coordinated, and the two monomeric units are bridged through the two nicotinamide (NA) ligands about an inversion center. The Mn1···Mn1i [symmetry code: (i) -x, -y, -z] distance is 7.180 (2) Å. In the molecule, one Mn—O bond distance [2.316 (2) Å] is significantly longer than the other four, and the average Mn—O bond length is 2.193 (2) Å (Table 1). The Mn atom is displaced out of the least-squares planes of the carboxylate groups (O1/C1/O2) and (O3/C8/O4) by -0.0925 (5) and -0.5744 (5) Å, respectively.

The dihedral angles between the planar carboxylate groups and the adjacent benzene rings A (C2—C7) and B (C9—C14) are 10.89 (16) and 8.37 (20) °, respectively, while those between rings A, B and C (N1/C15—C19) are A/B = 6.09 (13), A/C = 85.37 (11), B/C = 86.41 (13) °.

In (I), the O1-Mn1-O2 angle is 57.61 (8)°. The corresponding O—M—O (where M is a metal) angles are 57.75 (2)° in [Cu(C7H5O2F)(C7H4O2F)2(C6H6N2O)2], (II) (Necefoğlu et al., 2011), 60.32 (4)° in [Co(C8H7O3)2(C6H6N2O)(H2O)2], (III) (Hökelek et al., 2010a), 59.02 (8)° in [Zn(C8H8NO2)2(C6H6N2O)2].H2O, (IV) (Hökelek et al., 2009a), 60.03 (6)° in [Zn(C9H10NO2)2(C6H6N2O)2(H2O)2], (V) (Hökelek et al., 2009b), 57.53 (5)°, 56.19 (5)° and 59.04 (4)° in [Zn(C8H7O3)2(C6H6N2O)2], (VI) (Hökelek et al., 2010b) and 55.2 (1)° in [Cu(Asp)2(py)2] (where Asp is acetylsalicylate and py is pyridine) [(VII); Greenaway et al., 1984].

In the crystal structure, intermolecular O—H···O, N—H···O and C—H···O hydrogen bonds link the molecules into a three dimensional network (Table 2, Fig. 2), in which they may be effective in the stabilization of the structure. The ππ contacts between the benzene rings, between the pyridine rings and the benzene and pyridine rings Cg1—Cg1i, Cg3—Cg3ii and Cg1—Cg2iii [symmetry codes: (i) 2 - x, -y, -z; (ii) 3 - x, 1 - y, 1 - z; (iii) 2 - x, -y, 1 - z, where Cg1, Cg2 and Cg3 are the centroids of the rings A (C2—C7), B (C9—C14) and C (N1/C15—C19), respectively] may further stabilize the structure, with centroid-centroid distances of 3.845 (2), 3.650 (2) and 3.700 (3) Å, respectively.

Related literature top

For niacin, see: Krishnamachari (1974). For information on the nicotinic acid derivative N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Hökelek et al. (2009a,b); Hökelek et al. (2010a,b); Necefoğlu et al. (2011); Greenaway et al. (1984).

Experimental top

The title compound was prepared by the reaction of MnSO4.H2O (0.85 g, 10 mmol) in H2O (25 ml) and nicotinamide (1.22 g, 20 mmol) in H2O (25 ml) with sodium 4-bromobenzoate (2.23 g, 20 mmol) in H2O (100 ml) at room temperature. The mixture was filtered and set aside to crystallize at ambient temperature for a few days, giving colorless single crystals.

Refinement top

Atoms H6A, H6B (for H2O) and H2A, H2B (for NH2) were located in a difference Fourier map and were freely refined. The C-bound H-atoms were positioned geometrically with C—H = 0.93 Å for aromatic H-atoms, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (') -x, -y, -z].
[Figure 2] Fig. 2. A view of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines. [H-atoms not involved in hydrogen bonding have been omitted for clarity].
Di-µ-nicotinamide-κ2N1:O;κ2O:N1- bis[aquabis(4-bromobenzoato)-κO;κ2O,O'-manganese(II)] top
Crystal data top
[Mn2(C7H4BrO2)4(C6H6N2O)2(H2O)2]Z = 1
Mr = 1190.18F(000) = 586
Triclinic, P1Dx = 1.836 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2213 (2) ÅCell parameters from 7870 reflections
b = 12.1782 (3) Åθ = 2.9–28.1°
c = 13.4931 (4) ŵ = 4.37 mm1
α = 110.038 (3)°T = 294 K
β = 91.206 (2)°Block, colorless
γ = 103.653 (2)°0.29 × 0.22 × 0.20 mm
V = 1076.51 (6) Å3
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
5394 independent reflections
Radiation source: fine-focus sealed tube4298 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 28.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 99
Tmin = 0.329, Tmax = 0.418k = 1616
18469 measured reflectionsl = 1817
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0463P)2 + 2.4514P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
5394 reflectionsΔρmax = 2.03 e Å3
297 parametersΔρmin = 1.76 e Å3
4 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0235 (13)
Crystal data top
[Mn2(C7H4BrO2)4(C6H6N2O)2(H2O)2]γ = 103.653 (2)°
Mr = 1190.18V = 1076.51 (6) Å3
Triclinic, P1Z = 1
a = 7.2213 (2) ÅMo Kα radiation
b = 12.1782 (3) ŵ = 4.37 mm1
c = 13.4931 (4) ÅT = 294 K
α = 110.038 (3)°0.29 × 0.22 × 0.20 mm
β = 91.206 (2)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
5394 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4298 reflections with I > 2σ(I)
Tmin = 0.329, Tmax = 0.418Rint = 0.039
18469 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0494 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 2.03 e Å3
5394 reflectionsΔρmin = 1.76 e Å3
297 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.03281 (7)0.20681 (4)0.48986 (4)0.02469 (14)
Br10.08035 (10)0.25888 (5)0.16236 (4)0.0704 (2)
Br20.35117 (11)0.46846 (7)1.09799 (4)0.0875 (3)
O10.0971 (3)0.0349 (2)0.34227 (19)0.0305 (5)
O20.1724 (3)0.1626 (2)0.33974 (19)0.0294 (5)
O30.1656 (5)0.1988 (3)0.5927 (3)0.0537 (8)
O40.3453 (4)0.0368 (2)0.6157 (2)0.0470 (7)
O50.1222 (3)0.3095 (2)0.4261 (2)0.0320 (5)
O60.2150 (4)0.1154 (2)0.5439 (2)0.0326 (5)
H6A0.174 (7)0.083 (5)0.588 (3)0.068 (17)*
H6B0.259 (6)0.066 (3)0.496 (3)0.042 (12)*
N10.2516 (4)0.3847 (2)0.5796 (2)0.0291 (6)
N20.4244 (4)0.1935 (3)0.3759 (3)0.0369 (7)
H2A0.541 (3)0.187 (4)0.357 (4)0.054 (14)*
H2B0.394 (7)0.133 (3)0.384 (4)0.053 (13)*
C10.0442 (4)0.0650 (3)0.2952 (2)0.0243 (6)
C20.0602 (5)0.0145 (3)0.1855 (3)0.0281 (7)
C30.0629 (5)0.1295 (3)0.1423 (3)0.0358 (8)
H30.15230.15710.18270.043*
C40.0537 (6)0.2035 (4)0.0392 (3)0.0439 (9)
H40.13490.28110.01060.053*
C50.0761 (6)0.1610 (4)0.0197 (3)0.0433 (9)
C60.2021 (6)0.0479 (4)0.0219 (3)0.0453 (9)
H60.29150.02120.01900.054*
C70.1942 (5)0.0256 (3)0.1250 (3)0.0354 (8)
H70.27890.10210.15380.043*
C80.2679 (5)0.1464 (3)0.6458 (3)0.0318 (7)
C90.2941 (5)0.2254 (3)0.7544 (3)0.0314 (7)
C100.1872 (6)0.3452 (3)0.7977 (3)0.0412 (9)
H100.10260.37690.75740.049*
C110.2037 (7)0.4181 (4)0.8993 (4)0.0515 (11)
H110.13320.49860.92730.062*
C120.3271 (7)0.3688 (4)0.9580 (3)0.0512 (11)
C130.4343 (6)0.2518 (5)0.9188 (4)0.0522 (11)
H130.51710.22070.96020.063*
C140.4181 (6)0.1794 (4)0.8158 (3)0.0425 (9)
H140.49110.09950.78810.051*
C150.2168 (5)0.4876 (3)0.5798 (3)0.0291 (7)
H150.09450.48450.55390.035*
C160.3514 (4)0.5991 (3)0.6163 (2)0.0235 (6)
C170.5302 (5)0.6036 (3)0.6579 (3)0.0313 (7)
H170.62490.67620.68340.038*
C180.5661 (5)0.4984 (3)0.6609 (3)0.0373 (8)
H180.68520.49980.68970.045*
C190.4250 (5)0.3911 (3)0.6212 (3)0.0325 (7)
H190.45150.32080.62340.039*
C200.2925 (4)0.2957 (3)0.3966 (3)0.0252 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0273 (2)0.0187 (2)0.0281 (3)0.00505 (17)0.00231 (18)0.00905 (18)
Br10.1104 (5)0.0750 (4)0.0318 (2)0.0543 (3)0.0100 (2)0.0063 (2)
Br20.1231 (6)0.1180 (5)0.0361 (3)0.0877 (5)0.0081 (3)0.0083 (3)
O10.0304 (12)0.0269 (11)0.0325 (12)0.0038 (9)0.0061 (10)0.0109 (9)
O20.0269 (11)0.0266 (11)0.0337 (12)0.0043 (9)0.0009 (9)0.0114 (9)
O30.0640 (19)0.0517 (17)0.0500 (18)0.0148 (15)0.0300 (15)0.0226 (14)
O40.0580 (18)0.0320 (13)0.0502 (17)0.0133 (12)0.0130 (14)0.0123 (12)
O50.0243 (11)0.0230 (10)0.0482 (15)0.0044 (9)0.0054 (10)0.0138 (10)
O60.0429 (14)0.0239 (11)0.0354 (14)0.0116 (10)0.0044 (11)0.0141 (10)
N10.0297 (14)0.0208 (12)0.0361 (15)0.0041 (10)0.0034 (11)0.0113 (11)
N20.0276 (15)0.0221 (13)0.060 (2)0.0016 (11)0.0041 (14)0.0175 (14)
C10.0263 (15)0.0230 (13)0.0264 (15)0.0076 (11)0.0012 (12)0.0116 (12)
C20.0300 (16)0.0301 (15)0.0274 (16)0.0121 (13)0.0007 (13)0.0117 (13)
C30.0403 (19)0.0303 (16)0.0323 (18)0.0080 (14)0.0012 (15)0.0065 (14)
C40.054 (2)0.0332 (18)0.038 (2)0.0134 (17)0.0039 (17)0.0047 (16)
C50.060 (2)0.047 (2)0.0288 (18)0.034 (2)0.0022 (17)0.0079 (16)
C60.050 (2)0.060 (3)0.039 (2)0.027 (2)0.0165 (18)0.0250 (19)
C70.0354 (18)0.0396 (18)0.0342 (19)0.0113 (15)0.0048 (14)0.0157 (15)
C80.0300 (16)0.0357 (17)0.0366 (18)0.0163 (14)0.0073 (14)0.0161 (14)
C90.0319 (17)0.0359 (17)0.0351 (18)0.0183 (14)0.0065 (14)0.0171 (14)
C100.049 (2)0.0363 (19)0.042 (2)0.0151 (16)0.0051 (17)0.0163 (16)
C110.070 (3)0.040 (2)0.044 (2)0.025 (2)0.003 (2)0.0081 (18)
C120.064 (3)0.064 (3)0.033 (2)0.046 (2)0.0022 (19)0.0071 (19)
C130.045 (2)0.079 (3)0.047 (2)0.031 (2)0.0176 (19)0.030 (2)
C140.038 (2)0.050 (2)0.045 (2)0.0143 (17)0.0127 (17)0.0219 (18)
C150.0259 (15)0.0221 (14)0.0378 (18)0.0033 (12)0.0062 (13)0.0112 (13)
C160.0248 (14)0.0196 (13)0.0263 (15)0.0047 (11)0.0018 (11)0.0092 (11)
C170.0259 (15)0.0255 (15)0.0408 (19)0.0019 (12)0.0053 (13)0.0134 (14)
C180.0289 (17)0.0336 (17)0.051 (2)0.0064 (14)0.0079 (15)0.0190 (16)
C190.0361 (18)0.0255 (15)0.0391 (19)0.0096 (13)0.0021 (14)0.0148 (14)
C200.0262 (15)0.0196 (13)0.0278 (15)0.0053 (11)0.0008 (12)0.0064 (11)
Geometric parameters (Å, º) top
Mn1—O12.316 (2)C6—C51.377 (6)
Mn1—O22.237 (2)C6—H60.9300
Mn1—O32.025 (3)C7—C61.384 (6)
Mn1—C12.619 (3)C7—H70.9300
Br1—C51.891 (4)C9—C81.497 (5)
Br2—C121.901 (4)C9—C101.389 (5)
O1—C11.260 (4)C9—C141.384 (5)
O2—C11.265 (4)C10—C111.380 (6)
O3—C81.257 (4)C10—H100.9300
O4—C81.235 (4)C11—H110.9300
Mn1—O52.217 (2)C12—C131.362 (7)
O5—C201.239 (4)C12—C111.373 (7)
Mn1—O62.170 (2)C13—H130.9300
O6—H6A0.845 (19)C14—C131.392 (6)
O6—H6B0.847 (19)C14—H140.9300
Mn1—N12.272 (3)C15—C161.389 (4)
N1—C151.334 (4)C15—H150.9300
N1—C191.335 (4)C16—C171.378 (4)
N2—H2A0.853 (19)C16—C20i1.503 (4)
N2—H2B0.857 (19)C17—H170.9300
C1—C21.490 (5)C18—C171.380 (5)
C2—C31.386 (5)C18—H180.9300
C2—C71.388 (5)C19—C181.379 (5)
C3—C41.388 (5)C19—H190.9300
C3—H30.9300C20—N21.314 (4)
C4—H40.9300C20—C16i1.503 (4)
C5—C41.364 (6)
O1—Mn1—C128.77 (9)C4—C5—Br1119.1 (3)
O2—Mn1—O157.61 (8)C4—C5—C6121.6 (4)
O2—Mn1—N196.47 (10)C6—C5—Br1119.3 (3)
O2—Mn1—C128.85 (9)C5—C6—C7119.3 (4)
O3—Mn1—O1102.93 (11)C5—C6—H6120.3
O3—Mn1—O2160.32 (12)C7—C6—H6120.3
O3—Mn1—O589.12 (12)C2—C7—H7120.0
O3—Mn1—O697.50 (12)C6—C7—C2120.1 (4)
O3—Mn1—N1102.86 (12)C6—C7—H7120.0
O3—Mn1—C1131.68 (12)O3—C8—C9116.0 (3)
O5—Mn1—O189.54 (9)O4—C8—O3125.3 (4)
O5—Mn1—O287.89 (9)O4—C8—C9118.7 (3)
O5—Mn1—N187.93 (9)C10—C9—C8120.6 (3)
O5—Mn1—C189.17 (9)C14—C9—C8120.8 (3)
O6—Mn1—O191.37 (9)C14—C9—C10118.5 (4)
O6—Mn1—O286.68 (9)C9—C10—H10119.3
O6—Mn1—O5172.93 (10)C11—C10—C9121.4 (4)
O6—Mn1—N188.18 (10)C11—C10—H10119.3
O6—Mn1—C188.26 (10)C10—C11—H11120.9
N1—Mn1—O1154.04 (10)C12—C11—C10118.2 (4)
N1—Mn1—C1125.32 (10)C12—C11—H11120.9
C1—O1—Mn189.05 (18)C11—C12—Br2118.6 (4)
C1—O2—Mn192.58 (19)C13—C12—Br2119.1 (4)
C8—O3—Mn1152.3 (3)C13—C12—C11122.3 (4)
C20—O5—Mn1134.3 (2)C12—C13—C14119.0 (4)
Mn1—O6—H6B116 (3)C12—C13—H13120.5
Mn1—O6—H6A117 (4)C14—C13—H13120.5
H6B—O6—H6A108 (5)C9—C14—C13120.5 (4)
C15—N1—Mn1118.9 (2)C9—C14—H14119.7
C15—N1—C19117.4 (3)C13—C14—H14119.7
C19—N1—Mn1123.1 (2)N1—C15—C16124.2 (3)
C20—N2—H2A121 (3)N1—C15—H15117.9
C20—N2—H2B120 (3)C16—C15—H15117.9
H2A—N2—H2B119 (5)C15—C16—C20i117.2 (3)
O1—C1—Mn162.18 (17)C17—C16—C15117.5 (3)
O1—C1—O2120.7 (3)C17—C16—C20i125.2 (3)
O1—C1—C2119.9 (3)C16—C17—C18118.8 (3)
O2—C1—Mn158.57 (17)C16—C17—H17120.6
O2—C1—C2119.4 (3)C18—C17—H17120.6
C2—C1—Mn1177.4 (2)C17—C18—H18120.1
C3—C2—C1119.6 (3)C19—C18—C17119.9 (3)
C3—C2—C7119.4 (3)C19—C18—H18120.1
C7—C2—C1121.0 (3)N1—C19—C18122.2 (3)
C2—C3—C4120.4 (4)N1—C19—H19118.9
C2—C3—H3119.8C18—C19—H19118.9
C4—C3—H3119.8O5—C20—N2123.2 (3)
C3—C4—H4120.4O5—C20—C16i118.5 (3)
C5—C4—C3119.1 (4)N2—C20—C16i118.3 (3)
C5—C4—H4120.4
O2—Mn1—O1—C11.32 (17)C19—N1—Mn1—O178.8 (4)
O3—Mn1—O1—C1178.1 (2)C19—N1—Mn1—O275.9 (3)
O3—Mn1—O2—C110.6 (4)C19—N1—Mn1—O3107.9 (3)
O5—Mn1—O1—C189.11 (19)C19—N1—Mn1—O5163.5 (3)
O6—Mn1—O1—C183.88 (19)C19—N1—Mn1—O610.6 (3)
N1—Mn1—O1—C14.8 (3)C19—N1—Mn1—C176.0 (3)
O1—Mn1—O2—C11.31 (17)Mn1—N1—C15—C16168.9 (3)
O5—Mn1—O2—C192.11 (18)C19—N1—C15—C162.8 (5)
O6—Mn1—O2—C192.42 (18)Mn1—N1—C19—C18169.8 (3)
N1—Mn1—O2—C1179.79 (18)C15—N1—C19—C181.5 (6)
O1—Mn1—O3—C856.2 (7)O1—C1—C2—C310.1 (5)
O2—Mn1—O3—C864.3 (8)O2—C1—C2—C3170.3 (3)
O5—Mn1—O3—C8145.5 (7)O1—C1—C2—C7168.6 (3)
O6—Mn1—O3—C837.0 (7)O2—C1—C2—C710.9 (5)
N1—Mn1—O3—C8126.8 (6)C1—C2—C3—C4178.2 (3)
C1—Mn1—O3—C857.4 (7)C7—C2—C3—C40.6 (5)
O1—Mn1—C1—O2177.7 (3)C1—C2—C7—C6177.6 (3)
O2—Mn1—C1—O1177.7 (3)C3—C2—C7—C61.2 (5)
O3—Mn1—C1—O12.5 (3)C2—C3—C4—C51.0 (6)
O3—Mn1—C1—O2175.22 (19)Br1—C5—C4—C3177.0 (3)
O5—Mn1—C1—O190.56 (18)C6—C5—C4—C32.0 (6)
O5—Mn1—C1—O287.14 (18)C7—C6—C5—Br1177.6 (3)
O6—Mn1—C1—O196.03 (19)C7—C6—C5—C41.5 (6)
O6—Mn1—C1—O286.28 (18)C2—C7—C6—C50.2 (6)
N1—Mn1—C1—O1177.43 (17)C10—C9—C8—O39.3 (5)
N1—Mn1—C1—O20.3 (2)C10—C9—C8—O4170.2 (3)
Mn1—O1—C1—O22.3 (3)C14—C9—C8—O3173.9 (4)
Mn1—O1—C1—C2178.2 (3)C14—C9—C8—O46.5 (5)
Mn1—O2—C1—O12.4 (3)C8—C9—C10—C11177.4 (4)
Mn1—O2—C1—C2178.1 (2)C14—C9—C10—C110.6 (6)
Mn1—O3—C8—O437.6 (9)C8—C9—C14—C13176.7 (4)
Mn1—O3—C8—C9142.0 (5)C10—C9—C14—C130.2 (6)
C20—O5—Mn1—O155.0 (3)C9—C10—C11—C121.1 (6)
C20—O5—Mn1—O2112.6 (3)Br2—C12—C11—C10180.0 (3)
C20—O5—Mn1—O347.9 (3)C13—C12—C11—C100.9 (7)
C20—O5—Mn1—N1150.8 (3)Br2—C12—C13—C14179.2 (3)
C20—O5—Mn1—C183.8 (3)C11—C12—C13—C140.2 (7)
Mn1—O5—C20—N215.3 (5)C9—C14—C13—C120.3 (6)
Mn1—O5—C20—C16i164.6 (2)N1—C15—C16—C172.1 (5)
C15—N1—Mn1—O192.4 (3)N1—C15—C16—C20i175.6 (3)
C15—N1—Mn1—O295.3 (3)C15—C16—C17—C180.2 (5)
C15—N1—Mn1—O380.9 (3)C20i—C16—C17—C18177.4 (3)
C15—N1—Mn1—O57.7 (3)C19—C18—C17—C161.0 (6)
C15—N1—Mn1—O6178.2 (3)N1—C19—C18—C170.3 (6)
C15—N1—Mn1—C195.2 (3)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2ii0.85 (3)2.02 (3)2.856 (4)168 (5)
O6—H6A···O1iii0.84 (5)1.96 (6)2.771 (4)162 (5)
O6—H6B···O4iii0.84 (4)1.83 (4)2.670 (4)175 (4)
C15—H15···O50.932.403.032 (4)125
C17—H17···O2iv0.932.273.125 (5)152
C19—H19···O60.932.533.129 (5)123
Symmetry codes: (ii) x1, y, z; (iii) x, y, z+1; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Mn2(C7H4BrO2)4(C6H6N2O)2(H2O)2]
Mr1190.18
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)7.2213 (2), 12.1782 (3), 13.4931 (4)
α, β, γ (°)110.038 (3), 91.206 (2), 103.653 (2)
V3)1076.51 (6)
Z1
Radiation typeMo Kα
µ (mm1)4.37
Crystal size (mm)0.29 × 0.22 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.329, 0.418
No. of measured, independent and
observed [I > 2σ(I)] reflections
18469, 5394, 4298
Rint0.039
(sin θ/λ)max1)0.673
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.126, 1.05
No. of reflections5394
No. of parameters297
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)2.03, 1.76

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Mn1—O12.316 (2)Mn1—O52.217 (2)
Mn1—O22.237 (2)Mn1—O62.170 (2)
Mn1—O32.025 (3)Mn1—N12.272 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.85 (3)2.02 (3)2.856 (4)168 (5)
O6—H6A···O1ii0.84 (5)1.96 (6)2.771 (4)162 (5)
O6—H6B···O4ii0.84 (4)1.83 (4)2.670 (4)175 (4)
C17—H17···O2iii0.932.273.125 (5)152
Symmetry codes: (i) x1, y, z; (ii) x, y, z+1; (iii) x+1, y+1, z+1.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of the X-ray diffractometer. This work was supported financially by the Scientific and Technological Research Council of Turkey (grant No. 106 T472).

References

First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGreenaway, F. T., Pazeshk, A., Cordes, A. W., Noble, M. C. & Sorenson, J. R. J. (1984). Inorg. Chim. Acta, 93, 67–71.  CSD CrossRef CAS Web of Science Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009a). Acta Cryst. E65, m1365–m1366.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m651–m652.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Saka, G., Tercan, B., Tenlik, E. & Necefoğlu, H. (2010b). Acta Cryst. E66, m1135–m1136.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Süzen, Y., Tercan, B., Tenlik, E. & Necefoğlu, H. (2010a). Acta Cryst. E66, m784–m785.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationNecefoğlu, H., Özbek, F. E., Öztürk, V., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, m887–m888.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1128-m1129
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds