organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o1981-o1982

2-(Pyridin-2-yl­amino)­pyridinium thio­cyanate aceto­nitrile monosolvate

aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 25 May 2011; accepted 5 July 2011; online 9 July 2011)

The title compound, C10H10N3+·NCS·CH3CN, is the acetonitrile solvate of the thio­cyanate salt of protonated dipyridin-2-yl­amine. Protonation occurs at one of the pyridine N atoms. The mol­ecular geometry around the central N atom is essentially planar (sum of angles = 359.89°). In the crystal, N—H⋯N hydrogen bonds, as well as C—H⋯S contacts link the different residues into chains along the c-axis direction. Inter­action between aromatic systems gives rise to π-stacking, the shortest distance between two π-systems being 3.6902 (6) Å. Both the protonated and the non-protonated pyridyl groups are involved in the latter inter­action.

Related literature

For the crystal structure of dipyridin-2-yl­amine, see for example: Johnson & Jacobson (1973[Johnson, J. E. & Jacobson, R. A. (1973). Acta Cryst. B29, 1669-1674.]); Pyrka & Pinkerton (1992[Pyrka, G. J. & Pinkerton, A. A. (1992). Acta Cryst. C48, 91-94.]); Schödel et al. (1996)[Schödel, H., Näther, C., Bock, H. & Butenschön, F. (1996). Acta Cryst. B52, 842-853.]. For the crystal structures of comparable chloride, bromide and nitrate salts, see: Bock et al. (1998[Bock, H., Schödel, H., Van, T. T. H., Dienelt, R. & Gluth, M. (1998). J. Prakt. Chem. Chem. Zeitung, 340, 722-732.]); Junk et al. (2006[Junk, P. C., Wei-Min, L., Semenova, L. I., Skelton, B. W. & White, A. H. (2006). Z. Anorg. Allg. Chem. 632, 1303-1311.]); Du & Zhao (2004[Du, M. & Zhao, X.-J. (2004). Acta Cryst. E60, o439-o441.]). For the use of chelating ligands in coordination chemistry, see: Gade (1998[Gade, L. H. (1998). Koordinationschemie, 1. Auflage. Weinheim: Wiley-VCH.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10N3+·CNS·C2H3N

  • Mr = 271.34

  • Triclinic, [P \overline 1]

  • a = 7.5450 (3) Å

  • b = 7.8790 (3) Å

  • c = 11.9900 (4) Å

  • α = 76.849 (1)°

  • β = 75.211 (1)°

  • γ = 81.371 (1)°

  • V = 667.88 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 100 K

  • 0.54 × 0.40 × 0.34 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.899, Tmax = 1.000

  • 11528 measured reflections

  • 3313 independent reflections

  • 3113 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.082

  • S = 1.07

  • 3313 reflections

  • 181 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H71⋯N10 0.903 (15) 1.901 (15) 2.8020 (11) 176.4 (13)
N3—H73⋯N2 0.926 (15) 1.861 (15) 2.6068 (11) 135.9 (12)
N3—H73⋯N20i 0.926 (15) 2.456 (15) 3.1199 (12) 128.7 (11)
C25—H25⋯S1i 0.95 2.83 3.5192 (9) 130
Symmetry code: (i) x, y, z-1.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chelate ligands have found widespread use in coordination chemistry due to the enhanced thermodynamic stability of resulting coordination compounds as compared to that of the complexes with exclusively monodentate ligands (Gade, 1998). Combining different sets of donor atoms in one chelate ligand molecule, allows to construct a probe for testing and accommodating metal centers of different Lewis acidities. In our efforts to synthesize a chelate ligand featuring a set of oxygen, sulfur and nitrogen as possible donor atoms, a crystalline reaction product was obtained whose crystal structure analysis revealed the unintentional synthesis of a salt of the starting material, dipyridin-2-ylamine. The crystal structure of free dipyridin-2-ylamine has been reported earlier (e.g. Johnson & Jacobson, 1973; Pyrka & Pinkerton, 1992; Schödel et al., 1996).

The studied compound was proved to be the thiocyanate salt of protonated dipyridin-2-ylamine (Fig. 1). Protonation occurs at one of the pyridine nitrogen atoms. The central nitrogen atom has a nearly trigonal-planar molecular geometry with H-N-C angles of 115.3 (9) °, 117.0 (9) ° and C-N-C angle of 127.59 (8) °. The aromatic systems are nearly coplanar, the least-squares planes defined by their respective atoms form very small dihedral angle of 1.99 (4) °. These observations are in good agreement with the geometrical parameters reported for similar compounds such as the chloride (Bock et al., 1998), the bromide (Junk et al., 2006) or the nitrate (Du & Zhao, 2004). In contrast to unprotonated dipyridine-2-ylamine, the title compound features the aromatic-ring-containing entity in a conformation with the pyridine nitrogen atoms facing each other. In addition, the pyridine moieties in neutral dipyridine-2-ylamine usually form dihedral angles well above 20 ° (Johnson & Jacobson, 1973); this difference is most probably due to the formation of an intramolecular hydrogen bond in the molecule of the title compound (Fig. 2; vide infra).

In the crystal structure, both nitrogen-bound hydrogen atoms take part in hydrogen bonds. While the nitrogen atom of the acetonitrile molecule serves as acceptor for the hydrogen bond originating from the protonated pyridyl moiety, the nitrogen atom of the thiocyanate anion serves as acceptor for the hydrogen bond involving the central NH group. Apart from these hydrogen bonds, the C-H···S contact, which is about 0.10 Å shorter than the sum of van-der-Waals radii of the corresponding atoms, exists in the crystal. These contacts originate from the H atom in ortho-position to the nitrogen atom in the protonated pyridyl moiety. As a result, all chemical residues of the crystal structure end up being linked into the infinite chains running along the crystallographic c axis (Fig. 2). In terms of graph-set analysis, (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the hydrogen bonding system on the unitary level is DD while the C-H···S contacts necessitate a D descriptor on the same level. Interaction between aromatic systems gives rise to π-stacking. The shortest intercentroid distance between two π-systems was measured at 3.6902 (6) Å and involves the protonated as well as the non-protonated pyridyl moiety. These connect the molecules into stacks along the a axis. The packing of the cystal of the title compound is shown in Fig. 3.

Related literature top

For the crystal structure of dipyridin-2-ylamine, see for example: Johnson & Jacobson (1973); Pyrka & Pinkerton (1992); Schödel et al. (1996). For the crystal structures of comparable chloride, bromide and nitrate salts, see: Bock et al. (1998); Junk et al. (2006); Du & Zhao (2004). For the use of chelate ligands in coordination chemistry, see: Gade (1998). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

The compound was prepared upon reacting of 4-bromobenzyl chloride (2.5 mmol) with potassium thiocyanate (2.5 mmol) and dipyridin-2-ylamine (2.5 mmol) in refluxing acetonitrile (15 mL) under nitrogen for two hours. Crystals suitable for the X-ray diffraction study were obtained upon free evaporation of the reaction mixture.

Refinement top

Carbon-bound H atoms were placed in calculated positions (C-H 0.95 Å, for methyl H atoms 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C) [1.5Ueq(C) for methyl H atoms]. Both nitrogen-bound H atoms were located in a difference Fourier map and refined isotropically, N(pyr)-H 0.926 (15) Å; N(amine)-H 0.903 (15) Å.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound; displacement ellipsoids are drawn at 50% probability level.
[Figure 2] Fig. 2. Intra- and intermolecular contacts, viewed along the a-axis. Symmetry operators: (i) x, y, z + 1; (ii) x, y, z - 1. Hydrogen bonds are indicated with green dashed lines, the C-H···S contacts are drawn as red dashed lines.
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along the a-axis (anisotropic displacement ellipsoids drawn at 50% probability level).
2-(Pyridin-2-ylamino)pyridinium thiocyanate acetonitrile monosolvate top
Crystal data top
C10H10N3+·CNS·C2H3NZ = 2
Mr = 271.34F(000) = 284
Triclinic, P1Dx = 1.349 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 7.5450 (3) ÅCell parameters from 9959 reflections
b = 7.8790 (3) Åθ = 2.7–28.3°
c = 11.9900 (4) ŵ = 0.24 mm1
α = 76.849 (1)°T = 100 K
β = 75.211 (1)°Block, colourless
γ = 81.371 (1)°0.54 × 0.40 × 0.34 mm
V = 667.88 (4) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3313 independent reflections
Radiation source: fine-focus sealed tube3113 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 28.3°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1010
Tmin = 0.899, Tmax = 1.000k = 1010
11528 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0442P)2 + 0.184P]
where P = (Fo2 + 2Fc2)/3
3313 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C10H10N3+·CNS·C2H3Nγ = 81.371 (1)°
Mr = 271.34V = 667.88 (4) Å3
Triclinic, P1Z = 2
a = 7.5450 (3) ÅMo Kα radiation
b = 7.8790 (3) ŵ = 0.24 mm1
c = 11.9900 (4) ÅT = 100 K
α = 76.849 (1)°0.54 × 0.40 × 0.34 mm
β = 75.211 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3313 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3113 reflections with I > 2σ(I)
Tmin = 0.899, Tmax = 1.000Rint = 0.016
11528 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.43 e Å3
3313 reflectionsΔρmin = 0.20 e Å3
181 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.29241 (3)0.79739 (3)0.47166 (2)0.02280 (9)
N10.25212 (11)0.56147 (10)0.07444 (7)0.01647 (16)
H710.265 (2)0.6054 (19)0.1350 (13)0.031 (3)*
N20.17025 (10)0.32447 (10)0.01896 (7)0.01588 (16)
N30.31181 (10)0.59208 (10)0.13124 (7)0.01503 (15)
H730.267 (2)0.484 (2)0.1156 (13)0.034 (4)*
N100.30552 (13)0.68937 (12)0.26202 (8)0.02613 (19)
N200.20385 (13)0.32594 (13)0.74643 (8)0.0283 (2)
C10.30149 (12)0.73414 (12)0.34893 (8)0.01752 (18)
C20.20307 (13)0.31158 (12)0.65393 (9)0.02028 (19)
C30.19939 (15)0.29362 (15)0.53641 (9)0.0254 (2)
H310.07130.30140.53010.038*
H320.26240.17990.52190.038*
H330.26200.38750.47810.038*
C110.18123 (12)0.39962 (11)0.10570 (8)0.01469 (17)
C120.12748 (12)0.32258 (12)0.22524 (8)0.01750 (18)
H120.13300.38170.28490.021*
C130.06646 (13)0.15854 (13)0.25345 (8)0.01970 (19)
H130.03150.10120.33340.024*
C140.05640 (13)0.07707 (12)0.16347 (9)0.01948 (18)
H140.01560.03640.18090.023*
C150.10734 (12)0.16579 (12)0.04863 (8)0.01750 (18)
H150.09740.11190.01250.021*
C210.31450 (11)0.65375 (11)0.03559 (8)0.01480 (17)
C220.38354 (12)0.81677 (12)0.05213 (8)0.01729 (18)
H220.38940.86180.01380.021*
C230.44192 (12)0.90943 (12)0.16401 (9)0.01963 (19)
H230.48631.02030.17570.024*
C240.43654 (13)0.84134 (12)0.26181 (8)0.01979 (19)
H240.47700.90510.33960.024*
C250.37210 (12)0.68195 (12)0.24274 (8)0.01763 (18)
H250.36930.63340.30780.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02876 (14)0.02784 (14)0.01436 (12)0.00606 (10)0.00536 (9)0.00676 (9)
N10.0214 (4)0.0168 (4)0.0133 (3)0.0032 (3)0.0052 (3)0.0050 (3)
N20.0180 (3)0.0152 (3)0.0151 (3)0.0011 (3)0.0045 (3)0.0040 (3)
N30.0161 (3)0.0148 (3)0.0147 (4)0.0021 (3)0.0037 (3)0.0034 (3)
N100.0339 (5)0.0271 (4)0.0221 (4)0.0047 (4)0.0103 (4)0.0089 (3)
N200.0331 (5)0.0306 (5)0.0226 (4)0.0048 (4)0.0063 (4)0.0072 (4)
C10.0191 (4)0.0165 (4)0.0173 (4)0.0043 (3)0.0055 (3)0.0011 (3)
C20.0209 (4)0.0174 (4)0.0225 (5)0.0040 (3)0.0042 (3)0.0034 (3)
C30.0267 (5)0.0310 (5)0.0208 (5)0.0050 (4)0.0058 (4)0.0081 (4)
C110.0143 (4)0.0150 (4)0.0149 (4)0.0006 (3)0.0045 (3)0.0033 (3)
C120.0184 (4)0.0208 (4)0.0133 (4)0.0005 (3)0.0045 (3)0.0041 (3)
C130.0188 (4)0.0211 (4)0.0158 (4)0.0002 (3)0.0027 (3)0.0006 (3)
C140.0190 (4)0.0153 (4)0.0227 (5)0.0020 (3)0.0043 (3)0.0012 (3)
C150.0188 (4)0.0160 (4)0.0187 (4)0.0012 (3)0.0049 (3)0.0053 (3)
C210.0135 (4)0.0156 (4)0.0158 (4)0.0007 (3)0.0043 (3)0.0042 (3)
C220.0165 (4)0.0170 (4)0.0205 (4)0.0019 (3)0.0054 (3)0.0065 (3)
C230.0166 (4)0.0170 (4)0.0255 (5)0.0039 (3)0.0047 (3)0.0034 (3)
C240.0178 (4)0.0211 (4)0.0183 (4)0.0041 (3)0.0021 (3)0.0004 (3)
C250.0174 (4)0.0205 (4)0.0148 (4)0.0020 (3)0.0033 (3)0.0035 (3)
Geometric parameters (Å, º) top
S1—C11.6403 (10)C12—C131.3773 (13)
N1—C211.3564 (11)C12—H120.9500
N1—C111.3920 (11)C13—C141.3976 (13)
N1—H710.903 (15)C13—H130.9500
N2—C111.3334 (11)C14—C151.3802 (13)
N2—C151.3433 (11)C14—H140.9500
N3—C211.3492 (11)C15—H150.9500
N3—C251.3606 (11)C21—C221.4116 (12)
N3—H730.926 (15)C22—C231.3696 (13)
N10—C11.1659 (13)C22—H220.9500
N20—C21.1418 (14)C23—C241.4077 (13)
C2—C31.4553 (13)C23—H230.9500
C3—H310.9800C24—C251.3644 (13)
C3—H320.9800C24—H240.9500
C3—H330.9800C25—H250.9500
C11—C121.4029 (12)
C21—N1—C11127.59 (8)C14—C13—H13120.3
C21—N1—H71117.0 (9)C15—C14—C13118.25 (8)
C11—N1—H71115.3 (9)C15—C14—H14120.9
C11—N2—C15117.74 (8)C13—C14—H14120.9
C21—N3—C25122.32 (8)N2—C15—C14123.30 (8)
C21—N3—H73115.2 (9)N2—C15—H15118.3
C25—N3—H73122.5 (9)C14—C15—H15118.3
N10—C1—S1179.13 (9)N3—C21—N1120.87 (8)
N20—C2—C3179.23 (11)N3—C21—C22118.67 (8)
C2—C3—H31109.5N1—C21—C22120.46 (8)
C2—C3—H32109.5C23—C22—C21119.42 (8)
H31—C3—H32109.5C23—C22—H22120.3
C2—C3—H33109.5C21—C22—H22120.3
H31—C3—H33109.5C22—C23—C24120.36 (8)
H32—C3—H33109.5C22—C23—H23119.8
N2—C11—N1117.54 (8)C24—C23—H23119.8
N2—C11—C12123.26 (8)C25—C24—C23118.70 (8)
N1—C11—C12119.19 (8)C25—C24—H24120.6
C13—C12—C11117.93 (8)C23—C24—H24120.6
C13—C12—H12121.0N3—C25—C24120.50 (8)
C11—C12—H12121.0N3—C25—H25119.7
C12—C13—C14119.46 (8)C24—C25—H25119.7
C12—C13—H13120.3
C15—N2—C11—N1177.96 (8)C25—N3—C21—N1179.52 (8)
C15—N2—C11—C121.17 (13)C25—N3—C21—C220.43 (12)
C21—N1—C11—N20.70 (13)C11—N1—C21—N30.43 (14)
C21—N1—C11—C12178.47 (8)C11—N1—C21—C22179.63 (8)
N2—C11—C12—C132.30 (13)N3—C21—C22—C231.40 (13)
N1—C11—C12—C13176.82 (8)N1—C21—C22—C23178.54 (8)
C11—C12—C13—C141.38 (13)C21—C22—C23—C241.21 (13)
C12—C13—C14—C150.47 (13)C22—C23—C24—C250.04 (14)
C11—N2—C15—C140.87 (13)C21—N3—C25—C240.76 (13)
C13—C14—C15—N21.68 (14)C23—C24—C25—N30.95 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H71···N100.903 (15)1.901 (15)2.8020 (11)176.4 (13)
N3—H73···N20.926 (15)1.861 (15)2.6068 (11)135.9 (12)
N3—H73···N20i0.926 (15)2.456 (15)3.1199 (12)128.7 (11)
C25—H25···S1i0.952.833.5192 (9)130
Symmetry code: (i) x, y, z1.

Experimental details

Crystal data
Chemical formulaC10H10N3+·CNS·C2H3N
Mr271.34
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.5450 (3), 7.8790 (3), 11.9900 (4)
α, β, γ (°)76.849 (1), 75.211 (1), 81.371 (1)
V3)667.88 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.54 × 0.40 × 0.34
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.899, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11528, 3313, 3113
Rint0.016
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.082, 1.07
No. of reflections3313
No. of parameters181
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.20

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H71···N100.903 (15)1.901 (15)2.8020 (11)176.4 (13)
N3—H73···N20.926 (15)1.861 (15)2.6068 (11)135.9 (12)
N3—H73···N20i0.926 (15)2.456 (15)3.1199 (12)128.7 (11)
C25—H25···S1i0.952.833.5192 (9)130
Symmetry code: (i) x, y, z1.
 

Acknowledgements

The authors thank Mr David Neil-Schutte for helpful discussions.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBock, H., Schödel, H., Van, T. T. H., Dienelt, R. & Gluth, M. (1998). J. Prakt. Chem. Chem. Zeitung, 340, 722–732.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDu, M. & Zhao, X.-J. (2004). Acta Cryst. E60, o439–o441.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGade, L. H. (1998). Koordinationschemie, 1. Auflage. Weinheim: Wiley-VCH.  Google Scholar
First citationJohnson, J. E. & Jacobson, R. A. (1973). Acta Cryst. B29, 1669–1674.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationJunk, P. C., Wei-Min, L., Semenova, L. I., Skelton, B. W. & White, A. H. (2006). Z. Anorg. Allg. Chem. 632, 1303–1311.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPyrka, G. J. & Pinkerton, A. A. (1992). Acta Cryst. C48, 91–94.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSchödel, H., Näther, C., Bock, H. & Butenschön, F. (1996). Acta Cryst. B52, 842–853.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o1981-o1982
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds