metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,3,7,8,12,13,17,18-Octa­ethyl-5-phenyl­porphyrinato)platinum(II)

aSchool of Chemistry, SFI Tetrapyrrole Laboratory, Trinity College Dublin, Dublin 2, Ireland
*Correspondence e-mail: sengem@tcd.ie

(Received 11 June 2011; accepted 5 July 2011; online 13 July 2011)

The title compound, [Pt(C42H48N4)], was obtained through metallation of the corresponding free base with PtCl2, followed by crystallization from methyl­ene chloride/methanol. The mol­ecule exhibits an almost planar macrocycle with an average deviation of the 24 macrocyclic atoms from their least-squares plane (Δ24) of 0.04 Å and an average Pt—N bond length of 2.022 Å. Despite the unsymmetrical substitution pattern, there is no significant difference between distortion of the geometry at the phenyl substituted meso position and those of unsubstituted meso positions.

Related literature

For background to the conformation of porphyrins, see: Senge (2006[Senge, M. O. (2006). Chem. Commun. pp. 243-256.]); Senge et al. (1992[Senge, M. O., Liddell, P. A. & Smith, K. M. (1992). Acta Cryst. C48, 581-583.], 2000[Senge, M. O., Renner, M. W., Kalisch, W. W. & Fajer, J. (2000). J. Chem. Soc. Dalton Trans. pp. 381-385.]). For the chemistry of highly substituted platinum(II) porphyrins with mixed meso substituents, see: Senge et al. (2010[Senge, M. O., Richter, J., Bischoff, I. & Ryan, A. (2010). Tetrahedron, 66, 3508-3524.]). For Pt(II) porphyrin structures, see: Hazell (1984[Hazell, A. C. (1984). Acta Cryst. C40, 751-753.]); Milgrom et al. (1988[Milgrom, L. R., Sheppard, R. N., Slawin, A. M. Z. & Williams, D. J. (1988). Polyhedron, 7, 57-61.]); Senge (2000[Senge, M. O. (2000). The Porphyrin Handbook, Vol. 10, edited by K. M. Kadish, K. M. Smith & R. Guilard, pp. 1-218. San Diego: Academic Press.]); Shmilovits et al. (2003[Shmilovits, M., Diskin-Posner, Y., Vinodu, M. & Goldberg, I. (2003). Cryst. Growth Des. 3, 855-863.]); Umemiya et al. (2003[Umemiya, M., Sugiura, K., Miyasaka, H., Ishii, T. & Yamashita, M. (2003). Bull. Chem. Soc. Jpn, 76, 2123-2127.]). For handling of the crystals, see: Hope (1994[Hope, H. (1994). Prog. Inorg. Chem. 41, 1-19.]). For details on normal-coord­i­nate structural decomposition analysis, see Jentzen et al. (1997[Jentzen, W., Song, X.-Z. & Shelnutt, J. A. (1997). J. Phys. Chem. B, 101, 1684-1699.]).

[Scheme 1]

Experimental

Crystal data
  • [Pt(C42H48N4)]

  • Mr = 803.93

  • Monoclinic, P 21 /n

  • a = 17.1661 (6) Å

  • b = 8.9301 (3) Å

  • c = 22.8471 (8) Å

  • β = 99.367 (1)°

  • V = 3455.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.10 mm−1

  • T = 90 K

  • 0.50 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.227, Tmax = 0.664

  • 43758 measured reflections

  • 7989 independent reflections

  • 6809 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.053

  • S = 1.06

  • 7989 reflections

  • 432 parameters

  • H-atom parameters constrained

  • Δρmax = 1.15 e Å−3

  • Δρmin = −0.60 e Å−3

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the context of our ongoing studies on the conformation of sterically hindered porphyrins (Senge, 2006) we have focused on the effect of meso phenyl substitution in the title compound. The compound was prepared through metallation of the corresponding free base and crystallized from CH2Cl2/CH3OH. The structure of the title compound is shown in Fig. 1. The molecule exhibits an almost planar macrocycle with an average deviation of 24 macrocyclic atoms from their least-squares plane (Δ24) of 0.04 Å and an average Pt–N bond length of 2.022 Å. Despite the unsymmetrical substitution pattern, there is no significant difference between distortion of the geometry at the C5 atom (carrying the phenyl residue) and those of the other meso positions. The low degree of conformational distortion is evidenced by a normal-coordinate structural decomposition (NSD) analysis (Jentzen et al., 1997). NSD is a means to deconvolute the individual distortion modes and to evaluate their individual contributions to the macrocycle distortion. Fig. 2 shows the results of the NSD analysis and indicates that the contributions from the invididual distortion modes are minor and comparable to each other. Note, related free base porphyrins typically show evidence of localized distortion as a result of peri-interactions (Senge et al., 1992). The phenyl ring is approximately orthogonal to the mean porphyrin plane forming the dihedral angle of 91.7 (2)° with the plane of the four N atoms.

Related literature top

For background to the conformation of porphyrins, see: Senge (2006); Senge et al. (1992, 2000). For the chemistry of highly substituted platinum(II) porphyrins with mixed meso substituents, see: Senge et al. (2010). For Pt(II) porphyrin structures, see: Hazell (1984); Milgrom et al. (1988); Senge (2000); Shmilovits et al. (2003); Umemiya et al. (2003). For handling of the crystals, see: Hope (1994). For details on normal-coordinate structural decomposition analysis, see Jentzen et al. (1997).

Experimental top

The free base porphyrin (60 mg, 0.098 mmol) and 52 mg PtCl2 (0.196 mmol, 2 equivalents) were refluxed at 188 °C in benzonitrile under an argon atmosphere. Heating was continued for 5 days until TLC monitoring showed a single red-brown product spot. The solvent was evaporated by distillation under reduced pressure (2 to 4 mbar at 120 °C) and the residue dissolved in a small amount of dichloromethane and filtered through a silica gel frit eluting with CH2Cl2/n-hexane (1:2, v/v). Further purification was achieved on a silica gel column with CH2Cl2/n-hexane (1:3, v/v) to yield 60 mg of red-brown crystals after precipitation from dichloromethane/methanol (0.74 mmol, 76%). M. p. 253 °C; 1H NMR (400 MHz, CDCl3): d= 10.02 (s, 2H, 10-H, 20-H), 9.98 (s, 1H, 15-H), 8.19 (d, 2H, J = 6.9 Hz, phenyl-H), 7.80 (t, 1H, J = 7.9 Hz, phenyl-H), 7.67 (t, 1H, J = 7.6 Hz, phenyl-H), 4.01 (q, 8H, J = 7.6 Hz, CH2CH3), 3.93 (q, 4H, J = 7.5 Hz, CH2CH3), 1.91 (m, 12H, CH2CH3), 1.86 (t, 6H, J = 7.6 Hz, CH2CH3), 1.13 p.p.m. (t, 6H, J = 7.5 Hz, CH2CH3); 13C NMR (100 MHz, CDCl3): d= 18.2, 19.5, 21.3, 29.6, 97.9, 99.3, 126.3, 128.4, 133.2, 137.0, 138.0, 139.1, 140.7, 141.6, 141.7, 143.0 p.p.m.; UV/vis (CH2Cl2): λmax (lg ε) = 386 (6.60), 504 (5.28), 539 nm (5.78).

Refinement top

Hydrogen atoms were placed geometrically (C-H 0.95 Å for aromatic, 0.99 Å for methylene, and 0.98 Å for methyl H atoms) and included in the refinement in riding model approximation with U(H) set to 1.2Ueq(C) [1.5Ueq(C) for methyl H atoms]. The highest peak of residual electron density is at the distance of 0.852 Å from the Pt atom.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound. Thermal ellipsoids are drawn at 50% probability level; hydrogen atoms have been omitted.
[Figure 2] Fig. 2. : Graphical representation of the displacements along the lowest-frequency coordinates that best simulate the porphyrin unit.
(2,3,7,8,12,13,17,18-Octaethyl-5-phenyl-porphyrinato)platinum(II) top
Crystal data top
[Pt(C42H48N4)]F(000) = 1624
Mr = 803.93Dx = 1.545 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9498 reflections
a = 17.1661 (6) Åθ = 4.8–55.2°
b = 8.9301 (3) ŵ = 4.10 mm1
c = 22.8471 (8) ÅT = 90 K
β = 99.367 (1)°Needle, red-brown
V = 3455.6 (2) Å30.50 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
7989 independent reflections
Radiation source: sealed tube6809 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
phi and ω scansθmax = 27.6°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2222
Tmin = 0.227, Tmax = 0.664k = 1111
43758 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.053H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0235P)2 + 3.9546P]
where P = (Fo2 + 2Fc2)/3
7989 reflections(Δ/σ)max = 0.006
432 parametersΔρmax = 1.15 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Pt(C42H48N4)]V = 3455.6 (2) Å3
Mr = 803.93Z = 4
Monoclinic, P21/nMo Kα radiation
a = 17.1661 (6) ŵ = 4.10 mm1
b = 8.9301 (3) ÅT = 90 K
c = 22.8471 (8) Å0.50 × 0.10 × 0.10 mm
β = 99.367 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
7989 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
6809 reflections with I > 2σ(I)
Tmin = 0.227, Tmax = 0.664Rint = 0.037
43758 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.053H-atom parameters constrained
S = 1.06Δρmax = 1.15 e Å3
7989 reflectionsΔρmin = 0.60 e Å3
432 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Higher thermal librational movement was observed for some ethyl side chain carbon atoms. The nonstandard crystal setting was choosen on the basis of systematic absences in XPREP.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt0.099751 (5)0.192585 (10)0.898825 (4)0.01038 (4)
N210.07362 (13)0.3564 (2)0.83785 (9)0.0122 (4)
N220.20559 (13)0.2911 (2)0.92502 (10)0.0118 (4)
N230.12560 (13)0.0283 (2)0.95988 (10)0.0132 (4)
N240.00526 (12)0.0906 (2)0.87159 (10)0.0137 (4)
C10.00573 (15)0.3621 (3)0.79639 (12)0.0139 (5)
C20.00634 (16)0.4929 (3)0.75972 (12)0.0150 (5)
C30.07411 (15)0.5693 (3)0.77917 (11)0.0135 (5)
C40.11799 (15)0.4813 (3)0.82804 (11)0.0124 (5)
C50.19422 (15)0.5097 (3)0.85827 (11)0.0122 (5)
C60.23629 (15)0.4187 (3)0.90267 (11)0.0119 (5)
C70.31682 (15)0.4437 (3)0.93470 (11)0.0124 (5)
C80.33098 (16)0.3339 (3)0.97658 (12)0.0141 (5)
C90.26224 (15)0.2396 (3)0.97018 (12)0.0128 (5)
C100.25645 (15)0.1147 (3)1.00507 (12)0.0139 (5)
H100.29990.09541.03550.017*
C110.19446 (15)0.0155 (3)1.00036 (11)0.0136 (5)
C120.19191 (16)0.1167 (3)1.03684 (12)0.0146 (5)
C130.12096 (16)0.1833 (3)1.01810 (12)0.0142 (5)
C140.07986 (15)0.0924 (3)0.97043 (11)0.0132 (5)
C150.00550 (16)0.1219 (3)0.94010 (12)0.0156 (5)
H150.02100.20740.95190.019*
C160.03400 (15)0.0374 (3)0.89372 (12)0.0147 (5)
C170.11039 (15)0.0758 (3)0.85982 (12)0.0169 (6)
C180.12670 (15)0.0298 (3)0.81659 (13)0.0170 (6)
C190.06125 (15)0.1341 (3)0.82456 (12)0.0155 (5)
C200.05565 (16)0.2593 (3)0.79034 (12)0.0159 (5)
H200.09850.27730.75920.019*
C210.05598 (16)0.5299 (3)0.70760 (12)0.0184 (6)
H21A0.05690.63950.70110.022*
H21B0.10830.49970.71660.022*
C220.04139 (19)0.4511 (4)0.65095 (13)0.0296 (7)
H22A0.00950.48340.64110.044*
H22B0.08370.47690.61830.044*
H22C0.04060.34240.65710.044*
C310.09262 (16)0.7167 (3)0.75170 (12)0.0155 (5)
H31A0.07170.71450.70870.019*
H31B0.15060.72920.75650.019*
C320.05705 (17)0.8509 (3)0.77993 (13)0.0199 (6)
H32A0.00030.83810.77600.030*
H32B0.06870.94310.75970.030*
H32C0.08000.85720.82200.030*
C510.23459 (15)0.6497 (3)0.84322 (11)0.0126 (5)
C520.22558 (16)0.7814 (3)0.87416 (12)0.0149 (5)
H520.19250.78290.90370.018*
C530.26508 (16)0.9106 (3)0.86175 (13)0.0192 (6)
H530.25881.00060.88270.023*
C540.31375 (16)0.9082 (3)0.81881 (13)0.0200 (6)
H540.34090.99650.81060.024*
C550.32303 (17)0.7772 (3)0.78763 (13)0.0193 (6)
H550.35640.77600.75830.023*
C560.28319 (16)0.6482 (3)0.79960 (12)0.0151 (5)
H560.28890.55890.77810.018*
C710.37968 (15)0.5560 (3)0.92519 (12)0.0162 (5)
H71A0.41200.58090.96390.019*
H71B0.35400.64920.90840.019*
C720.43370 (16)0.4953 (4)0.88313 (13)0.0216 (6)
H72A0.46490.41150.90220.032*
H72B0.46920.57500.87420.032*
H72C0.40140.46080.84630.032*
C810.40454 (16)0.3068 (3)1.02043 (13)0.0179 (6)
H81A0.38960.28281.05940.022*
H81B0.43610.40011.02510.022*
C820.45590 (17)0.1798 (3)1.00273 (14)0.0247 (7)
H82A0.42540.08660.99860.037*
H82B0.50250.16731.03340.037*
H82C0.47270.20430.96490.037*
C1210.25722 (17)0.1674 (3)1.08425 (12)0.0173 (6)
H12A0.23500.23361.11210.021*
H12B0.28030.07891.10680.021*
C1220.32288 (18)0.2513 (4)1.05987 (14)0.0259 (7)
H12C0.30110.34231.03940.039*
H12D0.36460.27861.09270.039*
H12E0.34480.18681.03190.039*
C1310.08971 (17)0.3261 (3)1.04001 (13)0.0177 (6)
H13A0.03180.31771.03770.021*
H13B0.11310.34091.08220.021*
C1320.10840 (18)0.4624 (3)1.00411 (13)0.0215 (6)
H13C0.08290.45080.96280.032*
H13D0.08860.55321.02080.032*
H13E0.16570.47041.00580.032*
C1710.15641 (16)0.2129 (3)0.87054 (14)0.0209 (6)
H17A0.21230.19910.85220.025*
H17B0.15460.22620.91380.025*
C1720.12383 (18)0.3538 (3)0.84486 (14)0.0236 (6)
H17C0.12850.34360.80170.035*
H17D0.15400.44140.85420.035*
H17E0.06820.36670.86230.035*
C1810.19486 (16)0.0360 (3)0.76589 (13)0.0220 (6)
H18A0.21220.14120.75910.026*
H18B0.23970.02190.77650.026*
C1820.17231 (19)0.0278 (4)0.70848 (14)0.0326 (8)
H18C0.12730.02810.69820.049*
H18D0.21730.01860.67620.049*
H18E0.15800.13360.71430.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt0.00960 (5)0.01056 (5)0.01058 (5)0.00107 (4)0.00043 (3)0.00166 (4)
N210.0124 (10)0.0135 (10)0.0103 (11)0.0002 (9)0.0003 (8)0.0025 (8)
N220.0128 (10)0.0109 (11)0.0112 (11)0.0009 (8)0.0006 (8)0.0008 (8)
N230.0154 (11)0.0126 (11)0.0115 (11)0.0028 (9)0.0019 (9)0.0025 (9)
N240.0121 (10)0.0135 (11)0.0152 (11)0.0010 (9)0.0018 (9)0.0027 (9)
C10.0142 (12)0.0153 (13)0.0116 (13)0.0043 (10)0.0004 (10)0.0027 (10)
C20.0163 (13)0.0171 (13)0.0110 (13)0.0037 (11)0.0004 (10)0.0028 (10)
C30.0144 (12)0.0157 (13)0.0105 (12)0.0036 (10)0.0022 (10)0.0002 (10)
C40.0135 (12)0.0141 (13)0.0098 (12)0.0022 (10)0.0025 (10)0.0034 (10)
C50.0129 (12)0.0124 (12)0.0117 (13)0.0020 (10)0.0034 (10)0.0013 (10)
C60.0133 (12)0.0118 (12)0.0106 (12)0.0012 (10)0.0019 (9)0.0021 (10)
C70.0119 (12)0.0135 (13)0.0114 (12)0.0009 (10)0.0010 (10)0.0034 (10)
C80.0142 (12)0.0131 (13)0.0144 (13)0.0012 (10)0.0005 (10)0.0015 (10)
C90.0119 (12)0.0123 (12)0.0135 (13)0.0016 (10)0.0002 (10)0.0027 (10)
C100.0139 (12)0.0151 (13)0.0116 (13)0.0008 (10)0.0018 (10)0.0005 (10)
C110.0143 (12)0.0149 (13)0.0116 (13)0.0020 (10)0.0024 (10)0.0012 (10)
C120.0196 (13)0.0137 (13)0.0114 (13)0.0000 (10)0.0053 (10)0.0011 (10)
C130.0182 (13)0.0135 (13)0.0121 (13)0.0019 (10)0.0056 (10)0.0017 (10)
C140.0162 (12)0.0112 (12)0.0132 (13)0.0024 (10)0.0051 (10)0.0032 (10)
C150.0183 (13)0.0122 (13)0.0177 (14)0.0036 (10)0.0077 (11)0.0031 (10)
C160.0121 (12)0.0151 (13)0.0175 (14)0.0036 (10)0.0048 (10)0.0062 (10)
C170.0110 (12)0.0208 (14)0.0197 (14)0.0028 (11)0.0053 (10)0.0084 (12)
C180.0105 (12)0.0194 (14)0.0207 (14)0.0007 (10)0.0015 (11)0.0083 (11)
C190.0127 (12)0.0167 (13)0.0165 (14)0.0016 (10)0.0011 (10)0.0063 (11)
C200.0124 (12)0.0187 (13)0.0148 (13)0.0034 (11)0.0029 (10)0.0042 (11)
C210.0189 (14)0.0194 (14)0.0152 (14)0.0020 (11)0.0026 (11)0.0003 (11)
C220.0280 (16)0.0390 (19)0.0177 (15)0.0100 (14)0.0080 (12)0.0062 (14)
C310.0169 (13)0.0149 (14)0.0143 (13)0.0017 (10)0.0014 (10)0.0011 (10)
C320.0214 (14)0.0153 (13)0.0236 (15)0.0024 (11)0.0052 (12)0.0001 (11)
C510.0118 (12)0.0133 (12)0.0119 (13)0.0003 (10)0.0005 (10)0.0021 (10)
C520.0155 (13)0.0159 (14)0.0137 (13)0.0007 (10)0.0030 (10)0.0012 (10)
C530.0215 (14)0.0151 (13)0.0200 (14)0.0007 (11)0.0010 (11)0.0011 (11)
C540.0186 (14)0.0164 (14)0.0250 (15)0.0034 (11)0.0034 (11)0.0068 (12)
C550.0171 (13)0.0229 (15)0.0185 (14)0.0006 (11)0.0049 (11)0.0070 (11)
C560.0175 (13)0.0170 (13)0.0101 (13)0.0012 (11)0.0004 (10)0.0008 (10)
C710.0145 (12)0.0179 (14)0.0155 (13)0.0050 (11)0.0002 (10)0.0024 (11)
C720.0164 (14)0.0274 (16)0.0210 (15)0.0004 (12)0.0031 (11)0.0040 (12)
C810.0151 (13)0.0171 (13)0.0191 (14)0.0027 (11)0.0050 (11)0.0029 (11)
C820.0167 (14)0.0257 (16)0.0309 (17)0.0021 (12)0.0014 (12)0.0079 (13)
C1210.0220 (14)0.0155 (14)0.0138 (13)0.0012 (11)0.0008 (11)0.0018 (10)
C1220.0235 (15)0.0250 (15)0.0284 (17)0.0059 (13)0.0021 (13)0.0009 (13)
C1310.0214 (14)0.0160 (14)0.0166 (14)0.0025 (11)0.0064 (11)0.0010 (11)
C1320.0282 (16)0.0142 (14)0.0239 (16)0.0053 (12)0.0095 (12)0.0022 (12)
C1710.0136 (13)0.0224 (15)0.0269 (16)0.0045 (11)0.0040 (11)0.0041 (12)
C1720.0249 (15)0.0175 (14)0.0282 (17)0.0064 (12)0.0035 (13)0.0046 (12)
C1810.0139 (13)0.0223 (15)0.0267 (16)0.0011 (11)0.0054 (11)0.0046 (12)
C1820.0258 (16)0.041 (2)0.0263 (18)0.0055 (15)0.0095 (13)0.0127 (15)
Geometric parameters (Å, º) top
Pt—N212.019 (2)C31—H31B0.9900
Pt—N222.020 (2)C32—H32A0.9800
Pt—N232.023 (2)C32—H32B0.9800
Pt—N242.025 (2)C32—H32C0.9800
N21—C11.378 (3)C51—C521.394 (4)
N21—C41.390 (3)C51—C561.400 (4)
N22—C91.377 (3)C52—C531.391 (4)
N22—C61.388 (3)C52—H520.9500
N23—C141.378 (3)C53—C541.388 (4)
N23—C111.382 (3)C53—H530.9500
N24—C161.374 (3)C54—C551.392 (4)
N24—C191.376 (3)C54—H540.9500
C1—C201.387 (4)C55—C561.389 (4)
C1—C21.438 (4)C55—H550.9500
C2—C31.359 (4)C56—H560.9500
C2—C211.502 (4)C71—C721.538 (4)
C3—C41.469 (4)C71—H71A0.9900
C3—C311.514 (4)C71—H71B0.9900
C4—C51.400 (4)C72—H72A0.9800
C5—C61.404 (4)C72—H72B0.9800
C5—C511.496 (4)C72—H72C0.9800
C6—C71.472 (3)C81—C821.531 (4)
C7—C81.364 (4)C81—H81A0.9900
C7—C711.515 (4)C81—H81B0.9900
C8—C91.438 (4)C82—H82A0.9800
C8—C811.498 (4)C82—H82B0.9800
C9—C101.384 (4)C82—H82C0.9800
C10—C111.375 (4)C121—C1221.532 (4)
C10—H100.9500C121—H12A0.9900
C11—C121.450 (4)C121—H12B0.9900
C12—C131.360 (4)C122—H12C0.9800
C12—C1211.496 (4)C122—H12D0.9800
C13—C141.447 (4)C122—H12E0.9800
C13—C1311.501 (4)C131—C1321.531 (4)
C14—C151.375 (4)C131—H13A0.9900
C15—C161.385 (4)C131—H13B0.9900
C15—H150.9500C132—H13C0.9800
C16—C171.451 (4)C132—H13D0.9800
C17—C181.361 (4)C132—H13E0.9800
C17—C1711.499 (4)C171—C1721.532 (4)
C18—C191.448 (4)C171—H17A0.9900
C18—C1811.508 (4)C171—H17B0.9900
C19—C201.377 (4)C172—H17C0.9800
C20—H200.9500C172—H17D0.9800
C21—C221.529 (4)C172—H17E0.9800
C21—H21A0.9900C181—C1821.536 (4)
C21—H21B0.9900C181—H18A0.9900
C22—H22A0.9800C181—H18B0.9900
C22—H22B0.9800C182—H18C0.9800
C22—H22C0.9800C182—H18D0.9800
C31—C321.534 (4)C182—H18E0.9800
C31—H31A0.9900
N21—Pt—N2288.69 (9)C31—C32—H32A109.5
N21—Pt—N23179.84 (9)C31—C32—H32B109.5
N22—Pt—N2391.47 (9)H32A—C32—H32B109.5
N21—Pt—N2491.55 (9)C31—C32—H32C109.5
N22—Pt—N24178.79 (9)H32A—C32—H32C109.5
N23—Pt—N2488.29 (9)H32B—C32—H32C109.5
C1—N21—C4106.5 (2)C52—C51—C56119.8 (2)
C1—N21—Pt124.68 (18)C52—C51—C5119.7 (2)
C4—N21—Pt128.82 (17)C56—C51—C5120.5 (2)
C9—N22—C6106.6 (2)C53—C52—C51119.9 (3)
C9—N22—Pt124.63 (17)C53—C52—H52120.0
C6—N22—Pt128.76 (17)C51—C52—H52120.0
C14—N23—C11105.5 (2)C54—C53—C52120.0 (3)
C14—N23—Pt128.36 (17)C54—C53—H53120.0
C11—N23—Pt126.12 (18)C52—C53—H53120.0
C16—N24—C19106.0 (2)C53—C54—C55120.4 (3)
C16—N24—Pt128.04 (18)C53—C54—H54119.8
C19—N24—Pt125.93 (18)C55—C54—H54119.8
N21—C1—C20126.0 (3)C56—C55—C54119.7 (3)
N21—C1—C2110.2 (2)C56—C55—H55120.2
C20—C1—C2123.8 (2)C54—C55—H55120.2
C3—C2—C1107.7 (2)C55—C56—C51120.1 (3)
C3—C2—C21127.6 (3)C55—C56—H56119.9
C1—C2—C21124.7 (2)C51—C56—H56119.9
C2—C3—C4106.6 (2)C7—C71—C72111.9 (2)
C2—C3—C31121.8 (2)C7—C71—H71A109.2
C4—C3—C31131.6 (2)C72—C71—H71A109.2
N21—C4—C5124.0 (2)C7—C71—H71B109.2
N21—C4—C3109.0 (2)C72—C71—H71B109.2
C5—C4—C3126.9 (2)H71A—C71—H71B107.9
C4—C5—C6125.6 (2)C71—C72—H72A109.5
C4—C5—C51117.9 (2)C71—C72—H72B109.5
C6—C5—C51116.5 (2)H72A—C72—H72B109.5
N22—C6—C5124.0 (2)C71—C72—H72C109.5
N22—C6—C7108.9 (2)H72A—C72—H72C109.5
C5—C6—C7127.1 (2)H72B—C72—H72C109.5
C8—C7—C6106.6 (2)C8—C81—C82113.7 (2)
C8—C7—C71121.8 (2)C8—C81—H81A108.8
C6—C7—C71131.5 (2)C82—C81—H81A108.8
C7—C8—C9107.5 (2)C8—C81—H81B108.8
C7—C8—C81128.3 (2)C82—C81—H81B108.8
C9—C8—C81124.2 (2)H81A—C81—H81B107.7
N22—C9—C10126.3 (2)C81—C82—H82A109.5
N22—C9—C8110.4 (2)C81—C82—H82B109.5
C10—C9—C8123.2 (2)H82A—C82—H82B109.5
C11—C10—C9127.0 (2)C81—C82—H82C109.5
C11—C10—H10116.5H82A—C82—H82C109.5
C9—C10—H10116.5H82B—C82—H82C109.5
C10—C11—N23124.4 (2)C12—C121—C122113.2 (2)
C10—C11—C12125.1 (2)C12—C121—H12A108.9
N23—C11—C12110.5 (2)C122—C121—H12A108.9
C13—C12—C11106.5 (2)C12—C121—H12B108.9
C13—C12—C121128.5 (2)C122—C121—H12B108.9
C11—C12—C121125.0 (2)H12A—C121—H12B107.8
C12—C13—C14107.1 (2)C121—C122—H12C109.5
C12—C13—C131128.1 (3)C121—C122—H12D109.5
C14—C13—C131124.8 (2)H12C—C122—H12D109.5
C15—C14—N23124.8 (2)C121—C122—H12E109.5
C15—C14—C13124.8 (2)H12C—C122—H12E109.5
N23—C14—C13110.4 (2)H12D—C122—H12E109.5
C14—C15—C16125.4 (3)C13—C131—C132112.3 (2)
C14—C15—H15117.3C13—C131—H13A109.1
C16—C15—H15117.3C132—C131—H13A109.1
N24—C16—C15125.1 (2)C13—C131—H13B109.1
N24—C16—C17110.3 (2)C132—C131—H13B109.1
C15—C16—C17124.6 (3)H13A—C131—H13B107.9
C18—C17—C16106.6 (2)C131—C132—H13C109.5
C18—C17—C171129.3 (3)C131—C132—H13D109.5
C16—C17—C171124.1 (3)H13C—C132—H13D109.5
C17—C18—C19106.9 (2)C131—C132—H13E109.5
C17—C18—C181128.7 (3)H13C—C132—H13E109.5
C19—C18—C181124.2 (3)H13D—C132—H13E109.5
N24—C19—C20124.6 (2)C17—C171—C172111.9 (2)
N24—C19—C18110.2 (2)C17—C171—H17A109.2
C20—C19—C18125.1 (3)C172—C171—H17A109.2
C19—C20—C1127.1 (3)C17—C171—H17B109.2
C19—C20—H20116.5C172—C171—H17B109.2
C1—C20—H20116.5H17A—C171—H17B107.9
C2—C21—C22112.1 (2)C171—C172—H17C109.5
C2—C21—H21A109.2C171—C172—H17D109.5
C22—C21—H21A109.2H17C—C172—H17D109.5
C2—C21—H21B109.2C171—C172—H17E109.5
C22—C21—H21B109.2H17C—C172—H17E109.5
H21A—C21—H21B107.9H17D—C172—H17E109.5
C21—C22—H22A109.5C18—C181—C182111.8 (2)
C21—C22—H22B109.5C18—C181—H18A109.3
H22A—C22—H22B109.5C182—C181—H18A109.3
C21—C22—H22C109.5C18—C181—H18B109.3
H22A—C22—H22C109.5C182—C181—H18B109.3
H22B—C22—H22C109.5H18A—C181—H18B107.9
C3—C31—C32112.4 (2)C181—C182—H18C109.5
C3—C31—H31A109.1C181—C182—H18D109.5
C32—C31—H31A109.1H18C—C182—H18D109.5
C3—C31—H31B109.1C181—C182—H18E109.5
C32—C31—H31B109.1H18C—C182—H18E109.5
H31A—C31—H31B107.9H18D—C182—H18E109.5
N22—Pt—N21—C1176.0 (2)C10—C11—C12—C13179.9 (3)
N24—Pt—N21—C12.8 (2)N23—C11—C12—C130.1 (3)
N22—Pt—N21—C43.1 (2)C10—C11—C12—C1211.5 (4)
N24—Pt—N21—C4178.1 (2)N23—C11—C12—C121178.4 (2)
N21—Pt—N22—C9179.2 (2)C11—C12—C13—C140.2 (3)
N23—Pt—N22—C90.8 (2)C121—C12—C13—C14178.6 (3)
N21—Pt—N22—C61.1 (2)C11—C12—C13—C131178.1 (3)
N23—Pt—N22—C6179.0 (2)C121—C12—C13—C1310.4 (5)
N22—Pt—N23—C14179.3 (2)C11—N23—C14—C15179.3 (3)
N24—Pt—N23—C140.5 (2)Pt—N23—C14—C150.5 (4)
N22—Pt—N23—C111.0 (2)C11—N23—C14—C130.4 (3)
N24—Pt—N23—C11179.8 (2)Pt—N23—C14—C13179.77 (17)
N21—Pt—N24—C16179.2 (2)C12—C13—C14—C15179.4 (3)
N23—Pt—N24—C160.7 (2)C131—C13—C14—C152.3 (4)
N21—Pt—N24—C193.9 (2)C12—C13—C14—N230.4 (3)
N23—Pt—N24—C19176.2 (2)C131—C13—C14—N23178.0 (2)
C4—N21—C1—C20179.6 (3)N23—C14—C15—C161.5 (4)
Pt—N21—C1—C201.1 (4)C13—C14—C15—C16178.8 (3)
C4—N21—C1—C20.3 (3)C19—N24—C16—C15177.3 (3)
Pt—N21—C1—C2179.58 (17)Pt—N24—C16—C150.1 (4)
N21—C1—C2—C31.0 (3)C19—N24—C16—C170.1 (3)
C20—C1—C2—C3178.3 (3)Pt—N24—C16—C17177.57 (17)
N21—C1—C2—C21176.1 (2)C14—C15—C16—N241.2 (4)
C20—C1—C2—C214.6 (4)C14—C15—C16—C17175.9 (3)
C1—C2—C3—C41.8 (3)N24—C16—C17—C180.8 (3)
C21—C2—C3—C4175.2 (3)C15—C16—C17—C18176.7 (3)
C1—C2—C3—C31177.8 (2)N24—C16—C17—C171177.1 (2)
C21—C2—C3—C315.3 (4)C15—C16—C17—C1710.3 (4)
C1—N21—C4—C5174.8 (2)C16—C17—C18—C191.0 (3)
Pt—N21—C4—C54.4 (4)C171—C17—C18—C19177.1 (3)
C1—N21—C4—C31.4 (3)C16—C17—C18—C181174.1 (3)
Pt—N21—C4—C3179.37 (17)C171—C17—C18—C1812.1 (5)
C2—C3—C4—N212.0 (3)C16—N24—C19—C20179.2 (3)
C31—C3—C4—N21177.4 (2)Pt—N24—C19—C203.3 (4)
C2—C3—C4—C5174.1 (3)C16—N24—C19—C180.5 (3)
C31—C3—C4—C56.5 (4)Pt—N24—C19—C18177.00 (17)
N21—C4—C5—C60.7 (4)C17—C18—C19—N241.0 (3)
C3—C4—C5—C6176.3 (3)C181—C18—C19—N24174.4 (2)
N21—C4—C5—C51179.6 (2)C17—C18—C19—C20178.7 (3)
C3—C4—C5—C514.9 (4)C181—C18—C19—C205.9 (4)
C9—N22—C6—C5175.9 (2)N24—C19—C20—C10.3 (5)
Pt—N22—C6—C54.3 (4)C18—C19—C20—C1179.9 (3)
C9—N22—C6—C71.8 (3)N21—C1—C20—C190.9 (5)
Pt—N22—C6—C7177.95 (17)C2—C1—C20—C19178.3 (3)
C4—C5—C6—N223.7 (4)C3—C2—C21—C2292.3 (3)
C51—C5—C6—N22175.2 (2)C1—C2—C21—C2284.2 (3)
C4—C5—C6—C7179.0 (2)C2—C3—C31—C3286.4 (3)
C51—C5—C6—C72.1 (4)C4—C3—C31—C3293.0 (3)
N22—C6—C7—C82.1 (3)C4—C5—C51—C5289.9 (3)
C5—C6—C7—C8175.5 (3)C6—C5—C51—C5289.1 (3)
N22—C6—C7—C71173.7 (3)C4—C5—C51—C5692.0 (3)
C5—C6—C7—C718.7 (5)C6—C5—C51—C5689.0 (3)
C6—C7—C8—C91.6 (3)C56—C51—C52—C530.2 (4)
C71—C7—C8—C9174.7 (2)C5—C51—C52—C53177.8 (2)
C6—C7—C8—C81179.0 (3)C51—C52—C53—C540.3 (4)
C71—C7—C8—C812.7 (4)C52—C53—C54—C550.4 (4)
C6—N22—C9—C10179.7 (3)C53—C54—C55—C560.1 (4)
Pt—N22—C9—C100.5 (4)C54—C55—C56—C510.6 (4)
C6—N22—C9—C80.9 (3)C52—C51—C56—C550.7 (4)
Pt—N22—C9—C8178.91 (17)C5—C51—C56—C55177.3 (2)
C7—C8—C9—N220.5 (3)C8—C7—C71—C7285.1 (3)
C81—C8—C9—N22178.1 (2)C6—C7—C71—C7290.2 (3)
C7—C8—C9—C10179.0 (3)C7—C8—C81—C82101.4 (3)
C81—C8—C9—C101.4 (4)C9—C8—C81—C8275.6 (3)
N22—C9—C10—C112.2 (5)C13—C12—C121—C12298.1 (3)
C8—C9—C10—C11177.2 (3)C11—C12—C121—C12280.1 (3)
C9—C10—C11—N231.9 (4)C12—C13—C131—C13292.1 (3)
C9—C10—C11—C12178.0 (3)C14—C13—C131—C13285.8 (3)
C14—N23—C11—C10179.7 (2)C18—C17—C171—C17298.0 (3)
Pt—N23—C11—C100.1 (4)C16—C17—C171—C17277.5 (3)
C14—N23—C11—C120.3 (3)C17—C18—C181—C18296.4 (4)
Pt—N23—C11—C12179.86 (17)C19—C18—C181—C18277.9 (4)

Experimental details

Crystal data
Chemical formula[Pt(C42H48N4)]
Mr803.93
Crystal system, space groupMonoclinic, P21/n
Temperature (K)90
a, b, c (Å)17.1661 (6), 8.9301 (3), 22.8471 (8)
β (°) 99.367 (1)
V3)3455.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)4.10
Crystal size (mm)0.50 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.227, 0.664
No. of measured, independent and
observed [I > 2σ(I)] reflections
43758, 7989, 6809
Rint0.037
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.053, 1.06
No. of reflections7989
No. of parameters432
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.15, 0.60

Computer programs: SMART (Bruker, 2004), SAINT-Plus (Bruker, 2004), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by a grant from Science Foundation Ireland (SFI P·I. 09/IN.1/B2650).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHazell, A. C. (1984). Acta Cryst. C40, 751–753.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHope, H. (1994). Prog. Inorg. Chem. 41, 1–19.  CrossRef CAS Web of Science Google Scholar
First citationJentzen, W., Song, X.-Z. & Shelnutt, J. A. (1997). J. Phys. Chem. B, 101, 1684–1699.  CrossRef CAS Web of Science Google Scholar
First citationMilgrom, L. R., Sheppard, R. N., Slawin, A. M. Z. & Williams, D. J. (1988). Polyhedron, 7, 57–61.  CSD CrossRef CAS Web of Science Google Scholar
First citationSenge, M. O. (2000). The Porphyrin Handbook, Vol. 10, edited by K. M. Kadish, K. M. Smith & R. Guilard, pp. 1–218. San Diego: Academic Press.  Google Scholar
First citationSenge, M. O. (2006). Chem. Commun. pp. 243–256.  Web of Science CrossRef Google Scholar
First citationSenge, M. O., Liddell, P. A. & Smith, K. M. (1992). Acta Cryst. C48, 581–583.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSenge, M. O., Renner, M. W., Kalisch, W. W. & Fajer, J. (2000). J. Chem. Soc. Dalton Trans. pp. 381–385.  Web of Science CSD CrossRef Google Scholar
First citationSenge, M. O., Richter, J., Bischoff, I. & Ryan, A. (2010). Tetrahedron, 66, 3508–3524.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShmilovits, M., Diskin-Posner, Y., Vinodu, M. & Goldberg, I. (2003). Cryst. Growth Des. 3, 855–863.  Web of Science CSD CrossRef CAS Google Scholar
First citationUmemiya, M., Sugiura, K., Miyasaka, H., Ishii, T. & Yamashita, M. (2003). Bull. Chem. Soc. Jpn, 76, 2123–2127.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds