organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Meth­yl(phen­yl)phosphinic acid

aLaboratório de Materiais Inorgânicos, Universidade Federal de Santa Maria, Av. Roraima, 1000 - Camobi, 97105-900 Santa Maria, RS, Brazil
*Correspondence e-mail: rburrow@ewald.base.ufsm.br

(Received 18 January 2011; accepted 28 June 2011; online 9 July 2011)

The crystal structure of the title compound, C7H9O2P, displays O—H⋯O hydrogen bonding , which links individual mol­ecules related via the c-glide plane and translational symmetry along the crystallographic b-axis direction into continuous chains.

Related literature

For background to phosphinic acids and their applications, see: Beckmann et al. (2009[Beckmann, J., Duthie, A., Rüttinger, R. & Schwich, T. (2009). Z. Anorg. Allg. Chem. 635, 1412-1419.]); Burrow et al. (2000[Burrow, R. A., Farrar, D. H., Lough, A. J., Siqueira, M. R. & Squizani, F. (2000). Acta Cryst. C56, e357-e358.]); Burrow & Siqueira da Silva (2011[Burrow, R. A. & Siqueira da Silva, R. M. (2011). Acta Cryst. E67, o1045.]); Chen & Suslick (1993[Chen, C.-T. & Suslick, K. S. (1993). Coord. Chem. Rev. 128, 293-322.]); Siqueira et al. (2006[Siqueira, M. R., Tonetto, T. C., Rizzatti, M. R., Lang, E. S., Ellena, J. & Burrow, R. A. (2006). Inorg. Chem. Commun. 9, 536-540.]); Vioux et al. (2004[Vioux, A., Le Bideau, J., Hubert Mutin, P. & Leclerq, D. (2004). Top. Curr. Chem. 232, 145-174.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) and for geometrical analysis using Mogul, see: Bruno et al. (2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]).

[Scheme 1]

Experimental

Crystal data
  • C7H9O2P

  • Mr = 156.11

  • Orthorhombic, P b c a

  • a = 12.4231 (8) Å

  • b = 7.8464 (5) Å

  • c = 15.9801 (10) Å

  • V = 1557.69 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 296 K

  • 0.34 × 0.34 × 0.18 mm

Data collection
  • Bruker X8 Kappa APEXII diffractometer

  • Absorption correction: Gaussian (SADABS; Bruker 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.668, Tmax = 0.950

  • 19802 measured reflections

  • 2342 independent reflections

  • 1506 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.145

  • S = 1.04

  • 2342 reflections

  • 95 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.89 (3) 1.62 (3) 2.494 (2) 168 (3)
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2008[Brandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Phosphinic acids have been used for the synthesis of coordination polymers [Siqueira et al., 2006; Beckmann et al.,2009] which have the potential for a wide range of applications [Vioux et al., 2004; Chen & Suslick, 1993]. As part of our ongoing research on phosphinic acids [Burrow et al., 2000; Burrow & Siqueira da Silva, 2011], we report the synthesis and crystal structure of the title compound, C7H9O2P, (I).

The title compound, Fig. 1, crystallizes as a racemic mixture of enantiomers in the centrosymmetric space group Pbca. An analysis of the geometry of (I) by Mogul [Bruno et al., 2004] using the Cambridge Structural Database [CSD, Allen, 2002] shows no unusual features; all absolute values of the z scores were below 1.0. An enhanced figure is provided, Fig. 2.

The crystal structure of (I) shows hydrogen bonding between the phosphinic acid moieties of the type OH···O=P—OH···O=P related by the c glide plane and translational symmetry along the crystallographic b direction to form continuous chains, Table 1. The very short P—O···O=P distance of 2.494 (2) Å indicates a strong hydrogen bond. This is very slightly shorter than the average O···O interaction distance in the CSD of 2.51 (5) Å for 45 observations for other phosphinic acids.

The packing diagram, Fig. 3, shows that the hydrogen bonded chains of (I) pack together in a head-to-head fashion in the crystallographic b direction to form columns. Neighboring columns in the crystallographic a direction run in the opposite direction with the neighboring methyl groups packing together. The effect creates a pseudo-lamellar structure parallel to the crystallographic ab plane where the phosphinate groups and methyl groups are in a plane surrounded by phenyl groups on either side. There are no phenyl-phenyl interactions. The distance between layers is half the c axis distance, 7.9900 (5) Å.

Related literature top

For background to phosphinic acids and their applications, see: Beckmann et al. (2009); Burrow et al. (2000); Burrow & Siqueira da Silva (2011); Chen & Suslick (1993); Siqueira et al. (2006); Vioux et al. (2004). For a description of the Cambridge Structural Database, see: Allen (2002) and for geometrical analysis using Mogul, see: Bruno et al. (2004).

Experimental top

To a solution of phenylphosphinic acid (2.0 g, 14.1 mmol) in dichloromethane, 30 ml diisopropylethylamine (5.16 ml, 29.6 mmol) and trimethylsilyl chloride (3.74 ml, 29.6 mmol) were separately added at 0 °C under argon. The reaction mixture was stirred at room temperature for 2–3 h, cooled to 0 °C and iodomethane (0.97 ml, 15.6 mmol) was added. After further stirring at room temperature for 24 h, the solvent was removed under vacuum. The residue was suspended in hydrochloric acid (2 M, 20 ml) and filtered on a glass frit under vacuum. The white solid was washed with acetone and dried giving a yield of 1.60 g (66%) of pure product. Crystals were obtained by slow evaporation from a methanol solution. IR (KBr): 1439 (s), 1304 (w), 1266 (m), 1171 (s), 1134 (s), 1049 (m, br), 1026 (m), 982 (versus), 881 (s), 779 (s), 745 (s), 700 (m), 512 (m), 482 (m), 439 (w) cm-1. C7H9O2P (156.12): calc.: C 53.85, H 5.81; found: C 52.77, H 6.01%.

Refinement top

The H atom on O1 was found in the difference Fourier map and its position was allowed to refine freely while its isotropic displacement parameter was set to 1.5 times Ueq of O1. H atoms were positioned geometrically and allowed to ride on their parent atoms with C—H bond lengths of 0.93 Å (aromatic CH) and 0.96 Å (methyl CH3) and isotropic displacement parameters equal to 1.2 times Ueq of the parent atom.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic labelling scheme. The anisotropic displacement parameters are at the 30% level; H atoms are represented by circles of arbitrary size.
[Figure 2] Fig. 2. The packing diagram of (I) looking down the crystallographic a direction with the crystallographic b axis up. The H bonding are shown as red dashed lines and phenyl (C6H5) groups shown as sticks for clarity.
Methyl(phenyl)phosphinic acid top
Crystal data top
C7H9O2PDx = 1.331 Mg m3
Mr = 156.11Melting point = 402–408 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
a = 12.4231 (8) ÅCell parameters from 788 reflections
b = 7.8464 (5) Åθ = 2.5–22.7°
c = 15.9801 (10) ŵ = 0.29 mm1
V = 1557.69 (17) Å3T = 296 K
Z = 8Irregular block, colourless
F(000) = 6560.34 × 0.34 × 0.18 mm
Data collection top
Bruker X8 Kappa APEXII
diffractometer
2342 independent reflections
Radiation source: fine focus ceramic X-ray tube1506 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
Detector resolution: 8.3333 pixels mm-1θmax = 30.5°, θmin = 3.0°
0.5° ϕ and ω scansh = 1716
Absorption correction: gaussian
(SADABS; Bruker 2009)
k = 1111
Tmin = 0.668, Tmax = 0.950l = 2222
19802 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0622P)2 + 0.898P]
where P = (Fo2 + 2Fc2)/3
2342 reflections(Δ/σ)max < 0.001
95 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C7H9O2PV = 1557.69 (17) Å3
Mr = 156.11Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.4231 (8) ŵ = 0.29 mm1
b = 7.8464 (5) ÅT = 296 K
c = 15.9801 (10) Å0.34 × 0.34 × 0.18 mm
Data collection top
Bruker X8 Kappa APEXII
diffractometer
2342 independent reflections
Absorption correction: gaussian
(SADABS; Bruker 2009)
1506 reflections with I > 2σ(I)
Tmin = 0.668, Tmax = 0.950Rint = 0.057
19802 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.35 e Å3
2342 reflectionsΔρmin = 0.39 e Å3
95 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.82414 (4)0.86402 (6)0.46093 (3)0.03532 (18)
O10.85676 (12)1.0170 (2)0.51708 (10)0.0413 (4)
H10.823 (2)1.114 (4)0.504 (2)0.062*
O20.71118 (12)0.8030 (2)0.47403 (10)0.0456 (4)
C10.9197 (2)0.7033 (2)0.48579 (17)0.0505 (5)
H1A0.91540.67710.54440.076*
H1B0.99070.74330.47270.076*
H1C0.90440.60260.45370.076*
C110.84247 (18)0.9303 (2)0.35447 (12)0.0384 (5)
C120.9378 (2)1.0107 (2)0.32936 (16)0.0503 (5)
H120.99331.02670.36760.06*
C130.9496 (2)1.0661 (4)0.24804 (17)0.0626 (7)
H131.01281.12010.23170.075*
C140.8681 (2)1.0420 (4)0.19095 (17)0.0684 (8)
H140.87621.08040.13630.082*
C150.7754 (2)0.9616 (4)0.21438 (17)0.0735 (9)
H150.72110.94470.17520.088*
C160.7612 (2)0.9050 (2)0.29563 (17)0.0559 (7)
H160.69770.85040.31090.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0314 (2)0.0321 (2)0.0425 (2)0.0001 (2)0.0008 (2)0.0015 (2)
O10.0458 (9)0.0356 (8)0.0426 (9)0.0015 (7)0.0052 (7)0.0003 (7)
O20.0328 (8)0.0381 (8)0.0660 (11)0.0008 (7)0.0059 (7)0.0031 (7)
C10.0406 (13)0.0406 (13)0.0703 (16)0.0049 (10)0.0013 (11)0.0057 (11)
C110.0404 (11)0.0356 (11)0.0391 (11)0.0005 (9)0.0005 (9)0.0028 (9)
C120.0444 (13)0.0555 (15)0.0511 (14)0.0032 (11)0.0031 (11)0.0012 (11)
C130.0661 (18)0.0662 (17)0.0555 (16)0.0018 (15)0.0193 (14)0.0039 (14)
C140.100 (3)0.0658 (18)0.0395 (14)0.0060 (18)0.0101 (15)0.0029 (13)
C150.095 (2)0.078 (2)0.0473 (16)0.007 (2)0.0204 (15)0.0019 (15)
C160.0537 (16)0.0614 (16)0.0525 (14)0.0097 (13)0.0108 (11)0.0034 (11)
Geometric parameters (Å, º) top
P1—O21.4976 (16)C12—C131.378 (4)
P1—O11.5526 (16)C12—H120.93
P1—C11.777 (2)C13—C141.375 (4)
P1—C111.794 (2)C13—H130.93
O1—H10.89 (3)C14—C151.366 (5)
C1—H1A0.96C14—H140.93
C1—H1B0.96C15—C161.383 (4)
C1—H1C0.96C15—H150.93
C11—C161.394 (3)C16—H160.93
C11—C121.401 (3)
O2—P1—O1114.29 (9)C13—C12—C11120.1 (2)
O2—P1—C1111.56 (10)C13—C12—H12119.9
O1—P1—C1104.21 (11)C11—C12—H12119.9
O2—P1—C11110.13 (10)C14—C13—C12120.3 (3)
O1—P1—C11106.92 (10)C14—C13—H13119.9
C1—P1—C11109.45 (11)C12—C13—H13119.9
P1—O1—H1114 (2)C15—C14—C13120.1 (3)
P1—C1—H1A109.5C15—C14—H14119.9
P1—C1—H1B109.5C13—C14—H14119.9
H1A—C1—H1B109.5C14—C15—C16120.9 (3)
P1—C1—H1C109.5C14—C15—H15119.6
H1A—C1—H1C109.5C16—C15—H15119.6
H1B—C1—H1C109.5C15—C16—C11119.7 (3)
C16—C11—C12118.9 (2)C15—C16—H16120.2
C16—C11—P1120.4 (2)C11—C16—H16120.2
C12—C11—P1120.63 (17)
O2—P1—C11—C166.3 (2)P1—C11—C12—C13177.8 (2)
O1—P1—C11—C16131.0 (2)C11—C12—C13—C140.4 (4)
C1—P1—C11—C16116.7 (2)C12—C13—C14—C150.5 (5)
O2—P1—C11—C12172.62 (18)C13—C14—C15—C160.7 (5)
O1—P1—C11—C1247.9 (2)C14—C15—C16—C110.0 (5)
C1—P1—C11—C1264.4 (2)C12—C11—C16—C150.9 (4)
C16—C11—C12—C131.1 (4)P1—C11—C16—C15178.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.89 (3)1.62 (3)2.494 (2)168 (3)
Symmetry code: (i) x+3/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC7H9O2P
Mr156.11
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)12.4231 (8), 7.8464 (5), 15.9801 (10)
V3)1557.69 (17)
Z8
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.34 × 0.34 × 0.18
Data collection
DiffractometerBruker X8 Kappa APEXII
diffractometer
Absorption correctionGaussian
(SADABS; Bruker 2009)
Tmin, Tmax0.668, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
19802, 2342, 1506
Rint0.057
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.145, 1.04
No. of reflections2342
No. of parameters95
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.39

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.89 (3)1.62 (3)2.494 (2)168 (3)
Symmetry code: (i) x+3/2, y+1/2, z.
 

Acknowledgements

Financial support from the Conselho Nacional de Desenvolvimento Científico (CNPq, Brazil; grants 485245/2007–8 and 479747/2009–1) and the Fundação de Amparo à Pesquisa (FAPERGS, Rio Grande do Sul) is gratefully acknowledged, as are fellowships from CNPq (RAB) and the Coordenação de Aperfeiçoamento de Pessoas de Nível Superior (CAPES, Brazil; RMSS). The diffractometer was funded by a CT-INFRA grant from the Financiadora de Estrutos e Projetos (FINEP, Brazil).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBeckmann, J., Duthie, A., Rüttinger, R. & Schwich, T. (2009). Z. Anorg. Allg. Chem. 635, 1412–1419.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBurrow, R. A., Farrar, D. H., Lough, A. J., Siqueira, M. R. & Squizani, F. (2000). Acta Cryst. C56, e357–e358.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBurrow, R. A. & Siqueira da Silva, R. M. (2011). Acta Cryst. E67, o1045.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, C.-T. & Suslick, K. S. (1993). Coord. Chem. Rev. 128, 293–322.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiqueira, M. R., Tonetto, T. C., Rizzatti, M. R., Lang, E. S., Ellena, J. & Burrow, R. A. (2006). Inorg. Chem. Commun. 9, 536–540.  Web of Science CSD CrossRef Google Scholar
First citationVioux, A., Le Bideau, J., Hubert Mutin, P. & Leclerq, D. (2004). Top. Curr. Chem. 232, 145–174.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds