organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(4-Meth­­oxy­phen­yl)-3-(3,4,5-trimeth­­oxy­phen­yl)prop-2-en-1-one

aDepartment of Chemistry, State University of Goias, Anapolis, Brazil
*Correspondence e-mail: paulo.junior@ueg.br

(Received 2 June 2011; accepted 18 July 2011; online 23 July 2011)

The title compound, C19H20O5, was synthesized by reaction of 4-meth­oxy­acetophenone and 3,4,5-trimeth­oxy-benzaldehyde. The aromatic rings form a dihedral angle of 36.39 (7)°. Two intramolecular C—H⋯O hydrogen bonds occur. The crystal packing features weak C—H⋯O inter­actions.

Related literature

For background to chalcones and the biological activity and derivatives, see: Dhar (1981[Dhar, D. N. (1981). The Chemistry of Chalcones and Related Compounds, p. 213. New York: Wiley-Interscience.]); Dimmock et al. (1999[Dimmock, J. R., Raghavan, S. K., Logan, B. M. & Bigam, G. E. (1999). Curr. Med. Chem. 6, 1125-1149.]). For their applications as organic non-linear optical materials, see: Sarojini et al. (2006[Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54-59.]) and for their choleretic and hepatoprotective activity, see: Ni et al. (2004[Ni, L., Meng, Q. M. & Siroski, J. (2004). Exp. Opin. 14, 1669-1691.]). For the synthesis of chalcones, see: Patil et al. (2009[Patil, C. B., Mahajan, S. K. & katti, S. A. (2009). J. Pharm. Sci. Res. 3, 11-22.]). For the potential use of these compounds or chalcone-rich plant extracts as drugs or food preservatives, see: Di Carlo et al. (1999[Di Carlo, G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci. 65, 337-353.]). For related structures, see: Sathiya Moorthi et al. (2005[Sathiya Moorthi, S., Chinnakali, K., Nanjundan, S., Selvam, P., Fun, H.-K. & Yu, X.-L. (2005). Acta Cryst. E61, o743-o745.]); Cai et al. (2011[Cai, Y., Wang, Z., Li, Z., Zhang, M. & Wu, J. (2011). Acta Cryst. E67, o1432.]); Vijay Kumar et al. (2011[Vijay Kumar, D., Thippeswamy, G. B., Jayashree, B. S. & Sridhar, M. A. (2011). Acta Cryst. E67, o1492.]); Bibila Mayaya Bisseyou et al. (2007[Bibila Mayaya Bisseyou, Y., Soro, A. P., Sissouma, D., Giorgi, M. & Ebby, N. (2007). Acta Cryst. E63, o4758-o4759.]). The title compound wss prepared by an aldol Claisen–Schmidt condensation reaction, see: Bandgar et al. (2009[Bandgar, B. P., Gawande, S. S., Bodade, R. G., Gawande, N. M. & Khobragade, C. N. (2009). Bioorg. Med. Chem. 17, 8168-8173.], 2010[Bandgar, B. P., Gawande, S. S., Bodade, R. G., Totre, J. V. & Khobragade, C. N. (2010). Bioorg. Med. Chem. 18, 1364-1370.]); Hathaway (1987[Hathaway, B. A. (1987). J. Chem. Educ. 64, 367-368.]).

[Scheme 1]

Experimental

Crystal data
  • C19H20O5

  • Mr = 328.35

  • Monoclinic, P 21 /c

  • a = 7.5770 (1) Å

  • b = 16.2530 (3) Å

  • c = 14.0850 (3) Å

  • β = 107.528 (1)°

  • V = 1654.02 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.2 × 0.1 × 0.1 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 27371 measured reflections

  • 3733 independent reflections

  • 2907 reflections with I > 2σ(I)

  • Rint = 0.130

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.174

  • S = 1.02

  • 3733 reflections

  • 222 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O2 0.93 2.51 3.415 (2) 165
C16—H16A⋯O2 0.96 2.55 3.484 (2) 165
C18—H18C⋯O1i 0.96 2.53 3.332 (2) 142
Symmetry code: (i) x, y, z-1.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Chalcones are a medicinally important class of compounds and are known for possessing various biological activities such as antibacterial, antiviral, anthelmintic, amoebicidal, antiulcer, insecticidal, antiprotozoal, anticancer, cytotoxic, immunosuppressive activities and other bioactivities (Dhar, 1981; Dimmock et al., 1999). Recently, some chalcones were approved for therapeutical use, such as methoxychalcone (E)-3-(4-methoxyphenyl)-1-(2,4-methoxyphenyl)prop-2-en-1-one, marketed in France and Italy, with choleretic and hepatoprotective activities (Ni et al., 2004). Moreover, a literature survey showed dimethoxy and trimethoxychalcone derivatives as effective anti-inflammatory agents (Bandgar et al., 2010).

The (E)-3-(3,4,5-trimethoxyphenyl)-1-(4-methoxyphenyl)prop-2-en-1-one is a methoxychalcone which the structure shows two aromatic rings linked by prop-2-en-1-one group. The refined molecular structure is shown in Fig. 1. Due to p-π conjugation, the Csp2—O bonds [O2—C7 = 1.2249 (2) Å] are significantly shorter than the Csp3—O bonds [O1—C19 = 1.4240 (2) Å; O3—C18 = 1.415 (2) Å; O4—C17 = 1.413 (2) Å and O5—C16 = 1.4294 (2) Å]. The methoxy substituted groups around the benzene rings are almost planar and the dihedral angles C5—C6—C7—C8, C6—C7—C8—C9, C7—C8—C9—C10 and C8—C9—C10—C11 are -23.0 (2)°, 169.3 (2)°, 177.7 (2)° and -4.4 (2)°, respectively, indicating the molecule has a non-planar conformation.

The crystal structure is stabilized by C—H···O contacts (Table 1). There is intermolecular hydrogen bonding involving C9 acting as H-bond donor, via H9, to O2 in the adjacent molecules at -x+1, -y+1, -z resulting in a dimer.

Related literature top

For background to chalcones and the biological activity and derivatives, see: Dhar (1981); Dimmock et al. (1999). For their applications as organic non-linear optical materials, see: Sarojini et al. (2006) and for their choleretic and hepatoprotective activity, see: Ni et al. (2004). For the synthesis of chalcones, see: Patil et al. (2009). For the potential use of these compounds or chalcone-rich plant extracts as drugs or food preservatives, see: Di Carlo et al. (1999). For related structures, see: Sathiya Moorthi et al. (2005); Cai et al.(2011); Vijay Kumar et al. (2011); Bibila Mayaya Bisseyou et al. (2007). The title compound wss prepared by the aldol Claisen–Schmidt condensation, see: Bandgar et al. (2009, 2010); Hathaway (1987).

Experimental top

The title compound, C19H20O5, has been prepared by the aldol Claisen-Schmidt condensation (Hathaway, 1987; Bandgar et al., 2009) by the reaction of a mixture of 4-methoxy-acetophenone (0,3 mg; 2 mmol) and 3,4,5-trimethoxy-benzaldehyde (0,39 mg; 2 mmol) and NaOH (50% p/v) at 257 K for 24 h. The light yellow solid (m.p. 404.25 - 405.65 K) thus obtained was filtered, washed with water and dried. Crystals of suitable quality for single crystal X-ray diffraction were grown in methanol.

Refinement top

The space group P21/c was uniquely assigned from the systematic absences. All the H-atoms were placed in calculated positions and treated as riding atoms [Caro—H = 0.93 Å and Csp3—H = 0.96 Å), with a displacement parameter Uiso set equal to 1.2 times Ueq that of the parent atom, and Csp3 and aromatic H.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structre showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing viewed along c axis with C—H···O interactions, indicating the dimer
(E)-1-(4-Methoxyphenyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one top
Crystal data top
C19H20O5F(000) = 696
Mr = 328.35Dx = 1.319 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.5770 (1) ÅCell parameters from 14574 reflections
b = 16.2530 (3) Åθ = 2.6–27.5°
c = 14.0850 (3) ŵ = 0.10 mm1
β = 107.528 (1)°T = 293 K
V = 1654.02 (5) Å3Prism, pale yellow
Z = 40.2 × 0.1 × 0.1 mm
Data collection top
Nonius KappaCCD
diffractometer
2907 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.130
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.8°
CCD scansh = 98
27371 measured reflectionsk = 2021
3733 independent reflectionsl = 1817
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.174 w = 1/[σ2(Fo2) + (0.115P)2 + 0.1311P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
3733 reflectionsΔρmax = 0.27 e Å3
222 parametersΔρmin = 0.27 e Å3
0 restraintsExtinction correction: SHELXL
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.085 (10)
Crystal data top
C19H20O5V = 1654.02 (5) Å3
Mr = 328.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5770 (1) ŵ = 0.10 mm1
b = 16.2530 (3) ÅT = 293 K
c = 14.0850 (3) Å0.2 × 0.1 × 0.1 mm
β = 107.528 (1)°
Data collection top
Nonius KappaCCD
diffractometer
2907 reflections with I > 2σ(I)
27371 measured reflectionsRint = 0.130
3733 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.174H-atom parameters constrained
S = 1.02Δρmax = 0.27 e Å3
3733 reflectionsΔρmin = 0.27 e Å3
222 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C60.28843 (19)0.01968 (8)0.72913 (10)0.0440 (3)
C30.2444 (2)0.01579 (9)0.91868 (10)0.0478 (4)
O50.33915 (16)0.26263 (7)0.32667 (8)0.0592 (3)
C70.3073 (2)0.01831 (8)0.62695 (11)0.0465 (3)
O10.21258 (17)0.01994 (7)1.00875 (8)0.0613 (3)
O30.06505 (17)0.22341 (7)0.13696 (8)0.0594 (3)
C130.1306 (2)0.24141 (9)0.23514 (10)0.0496 (4)
O20.41266 (17)0.03016 (7)0.60508 (9)0.0623 (3)
C140.0304 (2)0.20629 (8)0.22489 (9)0.0472 (3)
C110.0614 (2)0.18197 (9)0.39957 (10)0.0478 (3)
H110.08960.17570.4590.057*
C10.3390 (2)0.04924 (8)0.78977 (11)0.0475 (3)
H10.39010.09430.76690.057*
C90.21256 (19)0.09013 (9)0.46478 (10)0.0464 (3)
H90.31050.06380.45040.056*
C150.1421 (2)0.15689 (9)0.29994 (10)0.0471 (3)
H150.24740.13240.29170.057*
C100.09579 (19)0.14423 (8)0.38773 (9)0.0451 (3)
C50.2205 (2)0.08797 (9)0.76692 (11)0.0501 (4)
H50.18810.13510.7280.06*
O40.24822 (19)0.28028 (7)0.15454 (8)0.0700 (4)
C120.1763 (2)0.22889 (9)0.32326 (10)0.0475 (4)
C40.2007 (2)0.08672 (9)0.86115 (11)0.0528 (4)
H40.15830.13320.88610.063*
C20.3152 (2)0.05237 (9)0.88338 (10)0.0502 (4)
H20.34630.09960.92210.06*
C80.1902 (2)0.07561 (9)0.55307 (10)0.0503 (4)
H80.09550.1030.56940.06*
C170.2865 (3)0.36460 (11)0.16310 (12)0.0693 (5)
H17A0.36210.37080.20640.104*
H17B0.35080.38630.09850.104*
H17C0.17240.3940.19020.104*
C160.3984 (2)0.24404 (11)0.41148 (12)0.0602 (4)
H16A0.41860.18590.41410.09*
H16B0.51160.27280.40640.09*
H16C0.30490.2610.47090.09*
C180.2381 (3)0.19903 (12)0.12726 (13)0.0702 (5)
H18A0.33580.220.18250.105*
H18B0.25130.22050.06630.105*
H18C0.24460.14010.12650.105*
C190.2388 (3)0.05277 (12)1.06778 (12)0.0666 (5)
H19A0.16210.0961.03060.1*
H19B0.20580.04211.12730.1*
H19C0.36630.06921.08520.1*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C60.0425 (7)0.0436 (7)0.0430 (7)0.0002 (5)0.0086 (5)0.0042 (5)
C30.0491 (8)0.0517 (8)0.0401 (7)0.0033 (6)0.0098 (6)0.0043 (5)
O50.0536 (7)0.0738 (7)0.0466 (6)0.0147 (5)0.0095 (5)0.0039 (5)
C70.0463 (7)0.0433 (7)0.0502 (8)0.0004 (6)0.0150 (6)0.0046 (5)
O10.0772 (8)0.0628 (7)0.0459 (6)0.0058 (5)0.0215 (5)0.0096 (4)
O30.0722 (8)0.0672 (7)0.0393 (5)0.0078 (5)0.0175 (5)0.0058 (4)
C130.0562 (9)0.0490 (7)0.0348 (7)0.0022 (6)0.0006 (6)0.0041 (5)
O20.0736 (8)0.0566 (6)0.0648 (7)0.0189 (5)0.0331 (6)0.0119 (5)
C140.0581 (8)0.0468 (7)0.0336 (6)0.0044 (6)0.0090 (6)0.0039 (5)
C110.0491 (8)0.0547 (8)0.0367 (6)0.0003 (6)0.0087 (5)0.0003 (5)
C10.0497 (8)0.0413 (7)0.0470 (7)0.0024 (6)0.0078 (6)0.0017 (5)
C90.0444 (7)0.0478 (7)0.0452 (7)0.0016 (5)0.0109 (6)0.0023 (5)
C150.0495 (7)0.0492 (7)0.0409 (7)0.0006 (6)0.0112 (6)0.0008 (5)
C100.0459 (7)0.0467 (7)0.0382 (6)0.0028 (6)0.0057 (5)0.0002 (5)
C50.0577 (8)0.0432 (7)0.0489 (7)0.0076 (6)0.0152 (6)0.0092 (6)
O40.0862 (9)0.0722 (8)0.0379 (6)0.0246 (6)0.0021 (5)0.0010 (5)
C120.0463 (8)0.0503 (8)0.0407 (7)0.0023 (6)0.0050 (6)0.0043 (5)
C40.0623 (9)0.0463 (7)0.0494 (8)0.0075 (6)0.0163 (7)0.0041 (6)
C20.0556 (8)0.0428 (7)0.0462 (7)0.0006 (6)0.0062 (6)0.0096 (5)
C80.0484 (8)0.0562 (8)0.0453 (7)0.0087 (6)0.0125 (6)0.0053 (6)
C170.0765 (11)0.0667 (10)0.0584 (9)0.0204 (9)0.0110 (8)0.0105 (8)
C160.0577 (9)0.0657 (10)0.0594 (9)0.0082 (7)0.0210 (8)0.0027 (7)
C180.0911 (13)0.0769 (11)0.0506 (9)0.0143 (9)0.0333 (9)0.0034 (7)
C190.0736 (11)0.0730 (11)0.0529 (9)0.0016 (8)0.0188 (8)0.0205 (7)
Geometric parameters (Å, º) top
C6—C11.3906 (19)C9—C101.4682 (19)
C6—C51.395 (2)C9—H90.93
C6—C71.4889 (19)C15—C101.3986 (19)
C3—O11.3626 (17)C15—H150.93
C3—C21.387 (2)C5—C41.380 (2)
C3—C41.3906 (19)C5—H50.93
O5—C121.3645 (18)O4—C171.413 (2)
O5—C161.4294 (19)C4—H40.93
C7—O21.2249 (18)C2—H20.93
C7—C81.4771 (19)C8—H80.93
O1—C191.4240 (19)C17—H17A0.96
O3—C141.3699 (16)C17—H17B0.96
O3—C181.415 (2)C17—H17C0.96
C13—O41.3685 (17)C16—H16A0.96
C13—C141.393 (2)C16—H16B0.96
C13—C121.400 (2)C16—H16C0.96
C14—C151.393 (2)C18—H18A0.96
C11—C121.390 (2)C18—H18B0.96
C11—C101.394 (2)C18—H18C0.96
C11—H110.93C19—H19A0.96
C1—C21.384 (2)C19—H19B0.96
C1—H10.93C19—H19C0.96
C9—C81.326 (2)
C1—C6—C5118.15 (13)O5—C12—C11123.77 (13)
C1—C6—C7119.52 (12)O5—C12—C13116.13 (12)
C5—C6—C7122.33 (12)C11—C12—C13120.06 (13)
O1—C3—C2124.72 (12)C5—C4—C3119.79 (13)
O1—C3—C4115.06 (13)C5—C4—H4120.1
C2—C3—C4120.22 (13)C3—C4—H4120.1
C12—O5—C16117.36 (12)C1—C2—C3119.18 (12)
O2—C7—C8121.82 (14)C1—C2—H2120.4
O2—C7—C6120.82 (12)C3—C2—H2120.4
C8—C7—C6117.33 (12)C9—C8—C7123.60 (13)
C3—O1—C19118.02 (13)C9—C8—H8118.2
C14—O3—C18117.77 (12)C7—C8—H8118.2
O4—C13—C14118.37 (13)O4—C17—H17A109.5
O4—C13—C12121.95 (14)O4—C17—H17B109.5
C14—C13—C12119.36 (12)H17A—C17—H17B109.5
O3—C14—C15124.40 (13)O4—C17—H17C109.5
O3—C14—C13115.01 (12)H17A—C17—H17C109.5
C15—C14—C13120.59 (13)H17B—C17—H17C109.5
C12—C11—C10120.51 (12)O5—C16—H16A109.5
C12—C11—H11119.7O5—C16—H16B109.5
C10—C11—H11119.7H16A—C16—H16B109.5
C2—C1—C6121.57 (13)O5—C16—H16C109.5
C2—C1—H1119.2H16A—C16—H16C109.5
C6—C1—H1119.2H16B—C16—H16C109.5
C8—C9—C10125.52 (13)O3—C18—H18A109.5
C8—C9—H9117.2O3—C18—H18B109.5
C10—C9—H9117.2H18A—C18—H18B109.5
C14—C15—C10119.90 (13)O3—C18—H18C109.5
C14—C15—H15120H18A—C18—H18C109.5
C10—C15—H15120H18B—C18—H18C109.5
C11—C10—C15119.49 (12)O1—C19—H19A109.5
C11—C10—C9121.44 (12)O1—C19—H19B109.5
C15—C10—C9119.06 (13)H19A—C19—H19B109.5
C4—C5—C6120.99 (12)O1—C19—H19C109.5
C4—C5—H5119.5H19A—C19—H19C109.5
C6—C5—H5119.5H19B—C19—H19C109.5
C13—O4—C17118.42 (12)
C1—C6—C7—O221.4 (2)C1—C6—C5—C41.2 (2)
C5—C6—C7—O2158.90 (15)C7—C6—C5—C4178.5 (2)
C1—C6—C7—C8156.7 (2)C14—C13—O4—C17120.1 (2)
C5—C6—C7—C823.0 (2)C12—C13—O4—C1766.4 (2)
C2—C3—O1—C195.5 (2)C16—O5—C12—C113.9 (2)
C4—C3—O1—C19174.5 (2)C16—O5—C12—C13173.9 (2)
C18—O3—C14—C159.2 (2)C10—C11—C12—O5175.0 (2)
C18—O3—C14—C13171.6 (2)C10—C11—C12—C132.6 (2)
O4—C13—C14—O37.7 (2)O4—C13—C12—O54.4 (2)
C12—C13—C14—O3178.7 (2)C14—C13—C12—O5177.7 (2)
O4—C13—C14—C15171.4 (2)O4—C13—C12—C11173.5 (2)
C12—C13—C14—C152.1 (2)C14—C13—C12—C110.1 (2)
C5—C6—C1—C23.0 (2)C6—C5—C4—C31.7 (2)
C7—C6—C1—C2176.6 (2)O1—C3—C4—C5177.3 (2)
O3—C14—C15—C10179.0 (2)C2—C3—C4—C52.8 (2)
C13—C14—C15—C101.9 (2)C6—C1—C2—C32.0 (2)
C12—C11—C10—C152.9 (2)O1—C3—C2—C1179.1 (2)
C12—C11—C10—C9176.0 (2)C4—C3—C2—C11.0 (2)
C14—C15—C10—C110.6 (2)C10—C9—C8—C7177.7 (2)
C14—C15—C10—C9178.3 (2)O2—C7—C8—C912.8 (2)
C8—C9—C10—C114.4 (2)C6—C7—C8—C9169.1 (2)
C8—C9—C10—C15176.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O20.932.513.415 (2)165
C16—H16A···O20.962.553.484 (2)165
C18—H18C···O1i0.962.533.332 (2)142
Symmetry code: (i) x, y, z1.

Experimental details

Crystal data
Chemical formulaC19H20O5
Mr328.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.5770 (1), 16.2530 (3), 14.0850 (3)
β (°) 107.528 (1)
V3)1654.02 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.2 × 0.1 × 0.1
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
27371, 3733, 2907
Rint0.130
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.174, 1.02
No. of reflections3733
No. of parameters222
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.27

Computer programs: COLLECT (Hooft, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O20.932.513.415 (2)165
C16—H16A···O20.962.553.484 (2)165
C18—H18C···O1i0.962.533.332 (2)142
Symmetry code: (i) x, y, z1.
 

Acknowledgements

The authors thank the Brazilian Federal Agency CAPES.

References

First citationBandgar, B. P., Gawande, S. S., Bodade, R. G., Gawande, N. M. & Khobragade, C. N. (2009). Bioorg. Med. Chem. 17, 8168–8173.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBandgar, B. P., Gawande, S. S., Bodade, R. G., Totre, J. V. & Khobragade, C. N. (2010). Bioorg. Med. Chem. 18, 1364–1370.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBibila Mayaya Bisseyou, Y., Soro, A. P., Sissouma, D., Giorgi, M. & Ebby, N. (2007). Acta Cryst. E63, o4758–o4759.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCai, Y., Wang, Z., Li, Z., Zhang, M. & Wu, J. (2011). Acta Cryst. E67, o1432.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDhar, D. N. (1981). The Chemistry of Chalcones and Related Compounds, p. 213. New York: Wiley-Interscience.  Google Scholar
First citationDi Carlo, G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci. 65, 337–353.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDimmock, J. R., Raghavan, S. K., Logan, B. M. & Bigam, G. E. (1999). Curr. Med. Chem. 6, 1125–1149.  PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHathaway, B. A. (1987). J. Chem. Educ. 64, 367–368.  CrossRef CAS Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationNi, L., Meng, Q. M. & Siroski, J. (2004). Exp. Opin. 14, 1669–1691.  Web of Science CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPatil, C. B., Mahajan, S. K. & katti, S. A. (2009). J. Pharm. Sci. Res. 3, 11–22.  CAS Google Scholar
First citationSarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54–59.  Web of Science CrossRef CAS Google Scholar
First citationSathiya Moorthi, S., Chinnakali, K., Nanjundan, S., Selvam, P., Fun, H.-K. & Yu, X.-L. (2005). Acta Cryst. E61, o743–o745.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVijay Kumar, D., Thippeswamy, G. B., Jayashree, B. S. & Sridhar, M. A. (2011). Acta Cryst. E67, o1492.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds