organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Heptane-1,7-diaminium sulfate mono­hydrate

aDepartment of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: carderne@uj.ac.za

(Received 14 July 2011; accepted 25 July 2011; online 30 July 2011)

The crystal structure of the title compound, C7H20N22+·SO42−·H2O, is presented, with particular focus on the packing arrangement in the crystal structure and selected hydrogen-bonding inter­actions that the compound forms. The crystal structure exhibits parallel stacking of the diammonium dication in its packing arrangement, together with inorganic–organic layering that is typical of these n-alkyl­diammonium salts. An intricate three-dimensional hydrogen-bonding network exists in the crystal structure where the hydrogen bonds link the cation and anion layers together through the sulfate anions and the water mol­ecules.

Related literature

For related structural studies of n-alkyl-diammonium sulfate salts, see: van Blerk & Kruger (2008[Blerk, C. van & Kruger, G. J. (2008). J. Chem. Crystallogr. 38, 175-179.]). For related literature other n-alkyldiammonium salts, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C7H20N22+·SO42−·H2O

  • Mr = 246.33

  • Monoclinic, P 21 /n

  • a = 5.7527 (1) Å

  • b = 22.3459 (4) Å

  • c = 10.0908 (2) Å

  • β = 95.180 (1)°

  • V = 1291.87 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 295 K

  • 0.48 × 0.44 × 0.14 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.887, Tmax = 0.965

  • 33427 measured reflections

  • 3220 independent reflections

  • 2626 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.106

  • S = 1.03

  • 3220 reflections

  • 138 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O3i 0.89 1.97 2.8617 (17) 176
N1—H1D⋯O2ii 0.89 1.94 2.8250 (15) 177
N1—H1E⋯O4iii 0.89 1.92 2.8106 (17) 174
N2—H2C⋯O5iv 0.89 1.89 2.7643 (17) 168
N2—H2D⋯O2v 0.89 1.91 2.7859 (15) 166
N2—H2E⋯O3 0.89 2.01 2.7770 (16) 144
O1—H1W⋯O4iv 0.90 1.98 2.880 (2) 180
O1—H2W⋯O3 0.90 2.07 2.971 (2) 180
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x, -y+1, -z+2; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) x+1, y, z; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART-NT (Bruker, 1999[Bruker (1999). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The crystal structure of the title compound (I) adds to our current ongoing studies of long-chained diammonium inorganic mineral acid salts. Colourless crystals of heptane-1,7-diammonium sulfate hydrate were obtained from an attempt to synthesize heptane-1,7-diammonium sulfate. This material forms part of our structural chemistry study of the inorganic mineral acid salts of the n-alkyldiamines. A search of the Cambridge Structural Database (Version 5.32, Allen, 2002) revealed that this compound had not previously been determined.

The asymmetric unit of compound (I) contains one diammonium dication, one sulfate anion and one water molecule with all atoms occupying general positions. The hydrocarbon chain is also fully extended from N1 to C7 but then distorts from planarity through N2. This is evident in the C5—C6—C7—N2 torsion angle (-70.49°(18)). The molecular structure of (I) is shown in Fig. 1.

Fig. 2 illustrates the packing arrangement of the title compound (I). Single parallel-stacked layers of dications pack together with sulfate anions and water molecules inserted between the dication chains in line with the ammonium groups showing a distinct inorganic–organic layering effect that is a common feature of these long-chained diammonium salts. An extensive three-dimensional hydrogen-bonding network is formed.

A close-up view of selected hydrogen bonding interactions can be viewed in Fig. 3. The three-dimensional hydrogen bonding network is built and linked through hydrogen bonding interactions between the ammonium groups of the dication and the sulfate anions and water molecules. These extensive interactions are seen to contribute to the distortion from planarity of the ω-end of the diammonium cation. The hydrogen bond distances and angles for the title compound (I) can be found in Table 2.

Related literature top

For related structural studies of n-alkyl-diammonium sulfate salts, see: van Blerk & Kruger (2008). For other related literature, see: Allen (2002).

Experimental top

Compound (I) was prepared by adding heptane-1,7-diamine (0.50 g, 3.84 mmol) to 33% sulfuric acid (H2SO4, 2 ml, 25.29 mmol, Merck) in a sample vial. The mixture was then refluxed at 363 K for 2 h. The solution was cooled at 2 K h-1 to room temperature. Colourless crystals of heptane-1,7-diammonium sulfate hydrate were collected and a suitable single-crystal was selected for the X-ray diffraction study.

Refinement top

H atoms were geometrically positioned and refined in the riding-model approximation, with C—H = 0.97 Å, N—H = 0.89 Å, and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(N). For (I), the highest peak in the final difference map is 0.87 Å from O4 and the deepest hole is 0.50 Å from S1.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with atomic numbering scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing arrangement of the title compound viewed down the a axis. Hydrogen bonds are indicated by red dashed lines.
[Figure 3] Fig. 3. Close-up view of the title compound clearly showing selected hydrogen-bonding interactions. Hydrogen bonds are indicated by red dashed lines.
Heptane-1,7-diaminium sulfate monohydrate top
Crystal data top
C7H20N22+·SO42·H2OF(000) = 536
Mr = 246.33Dx = 1.266 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9981 reflections
a = 5.7527 (1) Åθ = 2.2–28.2°
b = 22.3459 (4) ŵ = 0.26 mm1
c = 10.0908 (2) ÅT = 295 K
β = 95.180 (1)°Block, colourless
V = 1291.87 (4) Å30.48 × 0.44 × 0.14 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3220 independent reflections
Radiation source: fine-focus sealed tube2626 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(APEX2 AXScale; Bruker, 2008)
h = 77
Tmin = 0.887, Tmax = 0.965k = 2929
33427 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0582P)2 + 0.3142P]
where P = (Fo2 + 2Fc2)/3
3220 reflections(Δ/σ)max = 0.001
138 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C7H20N22+·SO42·H2OV = 1291.87 (4) Å3
Mr = 246.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.7527 (1) ŵ = 0.26 mm1
b = 22.3459 (4) ÅT = 295 K
c = 10.0908 (2) Å0.48 × 0.44 × 0.14 mm
β = 95.180 (1)°
Data collection top
Bruker SMART CCD
diffractometer
3220 independent reflections
Absorption correction: multi-scan
(APEX2 AXScale; Bruker, 2008)
2626 reflections with I > 2σ(I)
Tmin = 0.887, Tmax = 0.965Rint = 0.029
33427 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.03Δρmax = 0.36 e Å3
3220 reflectionsΔρmin = 0.34 e Å3
138 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1381 (3)0.61468 (7)0.89575 (17)0.0465 (4)
H1A0.02800.60950.81800.056*
H1B0.08310.59150.96790.056*
C20.3751 (3)0.59183 (7)0.86564 (17)0.0452 (3)
H2A0.47750.59080.94740.054*
H2B0.44180.61940.80520.054*
C30.3639 (3)0.52966 (7)0.80374 (18)0.0485 (4)
H3A0.32290.50090.86970.058*
H3B0.24200.52890.73080.058*
C40.5934 (3)0.51120 (7)0.75228 (18)0.0491 (4)
H4A0.71110.50800.82710.059*
H4B0.64250.54240.69410.059*
C50.5826 (3)0.45218 (7)0.67668 (17)0.0459 (4)
H5A0.55380.41990.73750.055*
H5B0.45310.45340.60810.055*
C60.8066 (3)0.43935 (6)0.61273 (17)0.0459 (4)
H6A0.83770.47260.55520.055*
H6B0.93440.43720.68220.055*
C70.8037 (3)0.38213 (7)0.53201 (15)0.0447 (3)
H7A0.66430.38120.47030.054*
H7B0.93820.38130.48060.054*
N10.1483 (2)0.67881 (5)0.93356 (12)0.0375 (3)
H1C0.24740.68361.00570.056*
H1D0.00690.69110.95070.056*
H1E0.19650.70020.86690.056*
N20.8078 (2)0.32888 (5)0.61913 (12)0.0374 (3)
H2C0.93370.33020.67720.056*
H2D0.81210.29590.56990.056*
H2E0.68010.32840.66280.056*
O10.7918 (3)0.18441 (8)0.8741 (2)0.1013 (6)
H1W0.92110.20150.84720.152*
H2W0.71750.21970.86060.152*
O20.29797 (18)0.28426 (5)1.00281 (10)0.0408 (2)
O30.54854 (19)0.30097 (6)0.82996 (12)0.0561 (3)
O40.2061 (2)0.23929 (6)0.78875 (13)0.0647 (4)
O50.1673 (2)0.34542 (6)0.81662 (12)0.0595 (3)
S10.30421 (5)0.292599 (15)0.85790 (3)0.03274 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0453 (8)0.0395 (8)0.0561 (9)0.0027 (6)0.0128 (7)0.0056 (7)
C20.0444 (8)0.0367 (8)0.0553 (9)0.0023 (6)0.0080 (7)0.0067 (7)
C30.0528 (9)0.0348 (7)0.0592 (10)0.0008 (6)0.0128 (7)0.0063 (7)
C40.0505 (9)0.0341 (7)0.0632 (10)0.0009 (6)0.0083 (7)0.0083 (7)
C50.0496 (8)0.0318 (7)0.0573 (9)0.0004 (6)0.0112 (7)0.0050 (6)
C60.0507 (9)0.0313 (7)0.0571 (9)0.0015 (6)0.0126 (7)0.0019 (6)
C70.0583 (9)0.0395 (8)0.0376 (7)0.0048 (7)0.0106 (6)0.0034 (6)
N10.0372 (6)0.0388 (6)0.0377 (6)0.0044 (5)0.0095 (5)0.0017 (5)
N20.0426 (6)0.0321 (6)0.0383 (6)0.0009 (5)0.0076 (5)0.0027 (5)
O10.0804 (11)0.0641 (10)0.1661 (19)0.0094 (8)0.0479 (12)0.0226 (11)
O20.0442 (6)0.0449 (6)0.0343 (5)0.0026 (4)0.0096 (4)0.0039 (4)
O30.0337 (6)0.0865 (9)0.0501 (7)0.0046 (5)0.0140 (5)0.0090 (6)
O40.0763 (9)0.0612 (8)0.0594 (7)0.0209 (6)0.0219 (6)0.0252 (6)
O50.0583 (7)0.0599 (7)0.0583 (7)0.0159 (6)0.0055 (6)0.0138 (6)
S10.02925 (18)0.03798 (19)0.03160 (18)0.00106 (12)0.00604 (12)0.00133 (12)
Geometric parameters (Å, º) top
C1—N11.4829 (19)C6—H6A0.9700
C1—C21.512 (2)C6—H6B0.9700
C1—H1A0.9700C7—N21.4782 (18)
C1—H1B0.9700C7—H7A0.9700
C2—C31.522 (2)C7—H7B0.9700
C2—H2A0.9700N1—H1C0.8900
C2—H2B0.9700N1—H1D0.8900
C3—C41.519 (2)N1—H1E0.8900
C3—H3A0.9700N2—H2C0.8900
C3—H3B0.9700N2—H2D0.8900
C4—C51.522 (2)N2—H2E0.8900
C4—H4A0.9700O1—H1W0.9003
C4—H4B0.9700O1—H2W0.9022
C5—C61.520 (2)O2—S11.4777 (10)
C5—H5A0.9700O3—S11.4703 (11)
C5—H5B0.9700O4—S11.4674 (12)
C6—C71.515 (2)O5—S11.4586 (12)
N1—C1—C2111.28 (12)C7—C6—H6A108.6
N1—C1—H1A109.4C5—C6—H6A108.6
C2—C1—H1A109.4C7—C6—H6B108.6
N1—C1—H1B109.4C5—C6—H6B108.6
C2—C1—H1B109.4H6A—C6—H6B107.6
H1A—C1—H1B108.0N2—C7—C6111.14 (12)
C1—C2—C3112.65 (13)N2—C7—H7A109.4
C1—C2—H2A109.1C6—C7—H7A109.4
C3—C2—H2A109.1N2—C7—H7B109.4
C1—C2—H2B109.1C6—C7—H7B109.4
C3—C2—H2B109.1H7A—C7—H7B108.0
H2A—C2—H2B107.8C1—N1—H1C109.5
C4—C3—C2112.46 (13)C1—N1—H1D109.5
C4—C3—H3A109.1H1C—N1—H1D109.5
C2—C3—H3A109.1C1—N1—H1E109.5
C4—C3—H3B109.1H1C—N1—H1E109.5
C2—C3—H3B109.1H1D—N1—H1E109.5
H3A—C3—H3B107.8C7—N2—H2C109.5
C3—C4—C5114.14 (13)C7—N2—H2D109.5
C3—C4—H4A108.7H2C—N2—H2D109.5
C5—C4—H4A108.7C7—N2—H2E109.5
C3—C4—H4B108.7H2C—N2—H2E109.5
C5—C4—H4B108.7H2D—N2—H2E109.5
H4A—C4—H4B107.6H1W—O1—H2W88.6
C6—C5—C4112.23 (13)O5—S1—O4110.28 (8)
C6—C5—H5A109.2O5—S1—O3110.06 (8)
C4—C5—H5A109.2O4—S1—O3110.21 (8)
C6—C5—H5B109.2O5—S1—O2108.90 (7)
C4—C5—H5B109.2O4—S1—O2109.00 (7)
H5A—C5—H5B107.9O3—S1—O2108.35 (6)
C7—C6—C5114.75 (13)
N1—C1—C2—C3170.09 (14)C3—C4—C5—C6172.97 (15)
C1—C2—C3—C4170.28 (15)C4—C5—C6—C7178.04 (14)
C2—C3—C4—C5173.90 (15)C5—C6—C7—N270.49 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O3i0.891.972.8617 (17)176
N1—H1D···O2ii0.891.942.8250 (15)177
N1—H1E···O4iii0.891.922.8106 (17)174
N2—H2C···O5iv0.891.892.7643 (17)168
N2—H2D···O2v0.891.912.7859 (15)166
N2—H2E···O30.892.012.7770 (16)144
O1—H1W···O4iv0.901.982.880 (2)180
O1—H2W···O30.902.072.971 (2)180
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+2; (iii) x+1/2, y+1/2, z+3/2; (iv) x+1, y, z; (v) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC7H20N22+·SO42·H2O
Mr246.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)5.7527 (1), 22.3459 (4), 10.0908 (2)
β (°) 95.180 (1)
V3)1291.87 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.48 × 0.44 × 0.14
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(APEX2 AXScale; Bruker, 2008)
Tmin, Tmax0.887, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
33427, 3220, 2626
Rint0.029
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.106, 1.03
No. of reflections3220
No. of parameters138
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.34

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Selected torsion angles (º) top
C5—C6—C7—N270.49 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O3i0.891.972.8617 (17)176
N1—H1D···O2ii0.891.942.8250 (15)177
N1—H1E···O4iii0.891.922.8106 (17)174
N2—H2C···O5iv0.891.892.7643 (17)168
N2—H2D···O2v0.891.912.7859 (15)166
N2—H2E···O30.892.012.7770 (16)144
O1—H1W···O4iv0.901.982.880 (2)180
O1—H2W···O30.902.072.971 (2)180
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+2; (iii) x+1/2, y+1/2, z+3/2; (iv) x+1, y, z; (v) x+1/2, y+1/2, z1/2.
 

Acknowledgements

The author acknowledges the National Research Foundation Thuthuka programme (GUN 66314) and the University of Johannesburg for funding for this study. The University of the Witwatersrand is thanked for the use of their facilities and the use of the diffractometer in the Jan Boeyens Structural Chemistry Laboratory.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlerk, C. van & Kruger, G. J. (2008). J. Chem. Crystallogr. 38, 175–179.  Web of Science CSD CrossRef Google Scholar
First citationBruker (1999). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds