organic compounds
Heptane-1,7-diaminium sulfate monohydrate
aDepartment of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: carderne@uj.ac.za
The 7H20N22+·SO42−·H2O, is presented, with particular focus on the packing arrangement in the and selected hydrogen-bonding interactions that the compound forms. The exhibits parallel stacking of the diammonium dication in its packing arrangement, together with inorganic–organic layering that is typical of these n-alkyldiammonium salts. An intricate three-dimensional hydrogen-bonding network exists in the where the hydrogen bonds link the cation and anion layers together through the sulfate anions and the water molecules.
of the title compound, CRelated literature
For related structural studies of n-alkyl-diammonium sulfate salts, see: van Blerk & Kruger (2008). For related literature other n-alkyldiammonium salts, see: Allen (2002).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART-NT (Bruker, 1999); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811030030/zk2015sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811030030/zk2015Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811030030/zk2015Isup3.mol
Supporting information file. DOI: 10.1107/S1600536811030030/zk2015Isup4.cml
Compound (I) was prepared by adding heptane-1,7-diamine (0.50 g, 3.84 mmol) to 33% sulfuric acid (H2SO4, 2 ml, 25.29 mmol, Merck) in a sample vial. The mixture was then refluxed at 363 K for 2 h. The solution was cooled at 2 K h-1 to room temperature. Colourless crystals of heptane-1,7-diammonium sulfate hydrate were collected and a suitable single-crystal was selected for the X-ray diffraction study.
H atoms were geometrically positioned and refined in the riding-model approximation, with C—H = 0.97 Å, N—H = 0.89 Å, and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(N). For (I), the highest peak in the final difference map is 0.87 Å from O4 and the deepest hole is 0.50 Å from S1.
Data collection: SMART (Bruker, 1999); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).Fig. 1. Molecular structure of the title compound, with atomic numbering scheme and displacement ellipsoids drawn at the 50% probability level. | |
Fig. 2. Packing arrangement of the title compound viewed down the a axis. Hydrogen bonds are indicated by red dashed lines. | |
Fig. 3. Close-up view of the title compound clearly showing selected hydrogen-bonding interactions. Hydrogen bonds are indicated by red dashed lines. |
C7H20N22+·SO42−·H2O | F(000) = 536 |
Mr = 246.33 | Dx = 1.266 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 9981 reflections |
a = 5.7527 (1) Å | θ = 2.2–28.2° |
b = 22.3459 (4) Å | µ = 0.26 mm−1 |
c = 10.0908 (2) Å | T = 295 K |
β = 95.180 (1)° | Block, colourless |
V = 1291.87 (4) Å3 | 0.48 × 0.44 × 0.14 mm |
Z = 4 |
Bruker SMART CCD diffractometer | 3220 independent reflections |
Radiation source: fine-focus sealed tube | 2626 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
ϕ and ω scans | θmax = 28.3°, θmin = 1.8° |
Absorption correction: multi-scan (APEX2 AXScale; Bruker, 2008) | h = −7→7 |
Tmin = 0.887, Tmax = 0.965 | k = −29→29 |
33427 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0582P)2 + 0.3142P] where P = (Fo2 + 2Fc2)/3 |
3220 reflections | (Δ/σ)max = 0.001 |
138 parameters | Δρmax = 0.36 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
C7H20N22+·SO42−·H2O | V = 1291.87 (4) Å3 |
Mr = 246.33 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 5.7527 (1) Å | µ = 0.26 mm−1 |
b = 22.3459 (4) Å | T = 295 K |
c = 10.0908 (2) Å | 0.48 × 0.44 × 0.14 mm |
β = 95.180 (1)° |
Bruker SMART CCD diffractometer | 3220 independent reflections |
Absorption correction: multi-scan (APEX2 AXScale; Bruker, 2008) | 2626 reflections with I > 2σ(I) |
Tmin = 0.887, Tmax = 0.965 | Rint = 0.029 |
33427 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.36 e Å−3 |
3220 reflections | Δρmin = −0.34 e Å−3 |
138 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.1381 (3) | 0.61468 (7) | 0.89575 (17) | 0.0465 (4) | |
H1A | 0.0280 | 0.6095 | 0.8180 | 0.056* | |
H1B | 0.0831 | 0.5915 | 0.9679 | 0.056* | |
C2 | 0.3751 (3) | 0.59183 (7) | 0.86564 (17) | 0.0452 (3) | |
H2A | 0.4775 | 0.5908 | 0.9474 | 0.054* | |
H2B | 0.4418 | 0.6194 | 0.8052 | 0.054* | |
C3 | 0.3639 (3) | 0.52966 (7) | 0.80374 (18) | 0.0485 (4) | |
H3A | 0.3229 | 0.5009 | 0.8697 | 0.058* | |
H3B | 0.2420 | 0.5289 | 0.7308 | 0.058* | |
C4 | 0.5934 (3) | 0.51120 (7) | 0.75228 (18) | 0.0491 (4) | |
H4A | 0.7111 | 0.5080 | 0.8271 | 0.059* | |
H4B | 0.6425 | 0.5424 | 0.6941 | 0.059* | |
C5 | 0.5826 (3) | 0.45218 (7) | 0.67668 (17) | 0.0459 (4) | |
H5A | 0.5538 | 0.4199 | 0.7375 | 0.055* | |
H5B | 0.4531 | 0.4534 | 0.6081 | 0.055* | |
C6 | 0.8066 (3) | 0.43935 (6) | 0.61273 (17) | 0.0459 (4) | |
H6A | 0.8377 | 0.4726 | 0.5552 | 0.055* | |
H6B | 0.9344 | 0.4372 | 0.6822 | 0.055* | |
C7 | 0.8037 (3) | 0.38213 (7) | 0.53201 (15) | 0.0447 (3) | |
H7A | 0.6643 | 0.3812 | 0.4703 | 0.054* | |
H7B | 0.9382 | 0.3813 | 0.4806 | 0.054* | |
N1 | 0.1483 (2) | 0.67881 (5) | 0.93356 (12) | 0.0375 (3) | |
H1C | 0.2474 | 0.6836 | 1.0057 | 0.056* | |
H1D | 0.0069 | 0.6911 | 0.9507 | 0.056* | |
H1E | 0.1965 | 0.7002 | 0.8669 | 0.056* | |
N2 | 0.8078 (2) | 0.32888 (5) | 0.61913 (12) | 0.0374 (3) | |
H2C | 0.9337 | 0.3302 | 0.6772 | 0.056* | |
H2D | 0.8121 | 0.2959 | 0.5699 | 0.056* | |
H2E | 0.6801 | 0.3284 | 0.6628 | 0.056* | |
O1 | 0.7918 (3) | 0.18441 (8) | 0.8741 (2) | 0.1013 (6) | |
H1W | 0.9211 | 0.2015 | 0.8472 | 0.152* | |
H2W | 0.7175 | 0.2197 | 0.8606 | 0.152* | |
O2 | 0.29797 (18) | 0.28426 (5) | 1.00281 (10) | 0.0408 (2) | |
O3 | 0.54854 (19) | 0.30097 (6) | 0.82996 (12) | 0.0561 (3) | |
O4 | 0.2061 (2) | 0.23929 (6) | 0.78875 (13) | 0.0647 (4) | |
O5 | 0.1673 (2) | 0.34542 (6) | 0.81662 (12) | 0.0595 (3) | |
S1 | 0.30421 (5) | 0.292599 (15) | 0.85790 (3) | 0.03274 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0453 (8) | 0.0395 (8) | 0.0561 (9) | −0.0027 (6) | 0.0128 (7) | −0.0056 (7) |
C2 | 0.0444 (8) | 0.0367 (8) | 0.0553 (9) | 0.0023 (6) | 0.0080 (7) | −0.0067 (7) |
C3 | 0.0528 (9) | 0.0348 (7) | 0.0592 (10) | −0.0008 (6) | 0.0128 (7) | −0.0063 (7) |
C4 | 0.0505 (9) | 0.0341 (7) | 0.0632 (10) | 0.0009 (6) | 0.0083 (7) | −0.0083 (7) |
C5 | 0.0496 (8) | 0.0318 (7) | 0.0573 (9) | −0.0004 (6) | 0.0112 (7) | −0.0050 (6) |
C6 | 0.0507 (9) | 0.0313 (7) | 0.0571 (9) | −0.0015 (6) | 0.0126 (7) | 0.0019 (6) |
C7 | 0.0583 (9) | 0.0395 (8) | 0.0376 (7) | 0.0048 (7) | 0.0106 (6) | 0.0034 (6) |
N1 | 0.0372 (6) | 0.0388 (6) | 0.0377 (6) | 0.0044 (5) | 0.0095 (5) | −0.0017 (5) |
N2 | 0.0426 (6) | 0.0321 (6) | 0.0383 (6) | 0.0009 (5) | 0.0076 (5) | −0.0027 (5) |
O1 | 0.0804 (11) | 0.0641 (10) | 0.1661 (19) | 0.0094 (8) | 0.0479 (12) | 0.0226 (11) |
O2 | 0.0442 (6) | 0.0449 (6) | 0.0343 (5) | 0.0026 (4) | 0.0096 (4) | 0.0039 (4) |
O3 | 0.0337 (6) | 0.0865 (9) | 0.0501 (7) | −0.0046 (5) | 0.0140 (5) | 0.0090 (6) |
O4 | 0.0763 (9) | 0.0612 (8) | 0.0594 (7) | −0.0209 (6) | 0.0219 (6) | −0.0252 (6) |
O5 | 0.0583 (7) | 0.0599 (7) | 0.0583 (7) | 0.0159 (6) | −0.0055 (6) | 0.0138 (6) |
S1 | 0.02925 (18) | 0.03798 (19) | 0.03160 (18) | −0.00106 (12) | 0.00604 (12) | 0.00133 (12) |
C1—N1 | 1.4829 (19) | C6—H6A | 0.9700 |
C1—C2 | 1.512 (2) | C6—H6B | 0.9700 |
C1—H1A | 0.9700 | C7—N2 | 1.4782 (18) |
C1—H1B | 0.9700 | C7—H7A | 0.9700 |
C2—C3 | 1.522 (2) | C7—H7B | 0.9700 |
C2—H2A | 0.9700 | N1—H1C | 0.8900 |
C2—H2B | 0.9700 | N1—H1D | 0.8900 |
C3—C4 | 1.519 (2) | N1—H1E | 0.8900 |
C3—H3A | 0.9700 | N2—H2C | 0.8900 |
C3—H3B | 0.9700 | N2—H2D | 0.8900 |
C4—C5 | 1.522 (2) | N2—H2E | 0.8900 |
C4—H4A | 0.9700 | O1—H1W | 0.9003 |
C4—H4B | 0.9700 | O1—H2W | 0.9022 |
C5—C6 | 1.520 (2) | O2—S1 | 1.4777 (10) |
C5—H5A | 0.9700 | O3—S1 | 1.4703 (11) |
C5—H5B | 0.9700 | O4—S1 | 1.4674 (12) |
C6—C7 | 1.515 (2) | O5—S1 | 1.4586 (12) |
N1—C1—C2 | 111.28 (12) | C7—C6—H6A | 108.6 |
N1—C1—H1A | 109.4 | C5—C6—H6A | 108.6 |
C2—C1—H1A | 109.4 | C7—C6—H6B | 108.6 |
N1—C1—H1B | 109.4 | C5—C6—H6B | 108.6 |
C2—C1—H1B | 109.4 | H6A—C6—H6B | 107.6 |
H1A—C1—H1B | 108.0 | N2—C7—C6 | 111.14 (12) |
C1—C2—C3 | 112.65 (13) | N2—C7—H7A | 109.4 |
C1—C2—H2A | 109.1 | C6—C7—H7A | 109.4 |
C3—C2—H2A | 109.1 | N2—C7—H7B | 109.4 |
C1—C2—H2B | 109.1 | C6—C7—H7B | 109.4 |
C3—C2—H2B | 109.1 | H7A—C7—H7B | 108.0 |
H2A—C2—H2B | 107.8 | C1—N1—H1C | 109.5 |
C4—C3—C2 | 112.46 (13) | C1—N1—H1D | 109.5 |
C4—C3—H3A | 109.1 | H1C—N1—H1D | 109.5 |
C2—C3—H3A | 109.1 | C1—N1—H1E | 109.5 |
C4—C3—H3B | 109.1 | H1C—N1—H1E | 109.5 |
C2—C3—H3B | 109.1 | H1D—N1—H1E | 109.5 |
H3A—C3—H3B | 107.8 | C7—N2—H2C | 109.5 |
C3—C4—C5 | 114.14 (13) | C7—N2—H2D | 109.5 |
C3—C4—H4A | 108.7 | H2C—N2—H2D | 109.5 |
C5—C4—H4A | 108.7 | C7—N2—H2E | 109.5 |
C3—C4—H4B | 108.7 | H2C—N2—H2E | 109.5 |
C5—C4—H4B | 108.7 | H2D—N2—H2E | 109.5 |
H4A—C4—H4B | 107.6 | H1W—O1—H2W | 88.6 |
C6—C5—C4 | 112.23 (13) | O5—S1—O4 | 110.28 (8) |
C6—C5—H5A | 109.2 | O5—S1—O3 | 110.06 (8) |
C4—C5—H5A | 109.2 | O4—S1—O3 | 110.21 (8) |
C6—C5—H5B | 109.2 | O5—S1—O2 | 108.90 (7) |
C4—C5—H5B | 109.2 | O4—S1—O2 | 109.00 (7) |
H5A—C5—H5B | 107.9 | O3—S1—O2 | 108.35 (6) |
C7—C6—C5 | 114.75 (13) | ||
N1—C1—C2—C3 | −170.09 (14) | C3—C4—C5—C6 | 172.97 (15) |
C1—C2—C3—C4 | 170.28 (15) | C4—C5—C6—C7 | −178.04 (14) |
C2—C3—C4—C5 | −173.90 (15) | C5—C6—C7—N2 | −70.49 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1C···O3i | 0.89 | 1.97 | 2.8617 (17) | 176 |
N1—H1D···O2ii | 0.89 | 1.94 | 2.8250 (15) | 177 |
N1—H1E···O4iii | 0.89 | 1.92 | 2.8106 (17) | 174 |
N2—H2C···O5iv | 0.89 | 1.89 | 2.7643 (17) | 168 |
N2—H2D···O2v | 0.89 | 1.91 | 2.7859 (15) | 166 |
N2—H2E···O3 | 0.89 | 2.01 | 2.7770 (16) | 144 |
O1—H1W···O4iv | 0.90 | 1.98 | 2.880 (2) | 180 |
O1—H2W···O3 | 0.90 | 2.07 | 2.971 (2) | 180 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x, −y+1, −z+2; (iii) −x+1/2, y+1/2, −z+3/2; (iv) x+1, y, z; (v) x+1/2, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C7H20N22+·SO42−·H2O |
Mr | 246.33 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 295 |
a, b, c (Å) | 5.7527 (1), 22.3459 (4), 10.0908 (2) |
β (°) | 95.180 (1) |
V (Å3) | 1291.87 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.26 |
Crystal size (mm) | 0.48 × 0.44 × 0.14 |
Data collection | |
Diffractometer | Bruker SMART CCD diffractometer |
Absorption correction | Multi-scan (APEX2 AXScale; Bruker, 2008) |
Tmin, Tmax | 0.887, 0.965 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 33427, 3220, 2626 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.106, 1.03 |
No. of reflections | 3220 |
No. of parameters | 138 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.36, −0.34 |
Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008), publCIF (Westrip, 2010) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1C···O3i | 0.89 | 1.97 | 2.8617 (17) | 176 |
N1—H1D···O2ii | 0.89 | 1.94 | 2.8250 (15) | 177 |
N1—H1E···O4iii | 0.89 | 1.92 | 2.8106 (17) | 174 |
N2—H2C···O5iv | 0.89 | 1.89 | 2.7643 (17) | 168 |
N2—H2D···O2v | 0.89 | 1.91 | 2.7859 (15) | 166 |
N2—H2E···O3 | 0.89 | 2.01 | 2.7770 (16) | 144 |
O1—H1W···O4iv | 0.90 | 1.98 | 2.880 (2) | 180 |
O1—H2W···O3 | 0.90 | 2.07 | 2.971 (2) | 180 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x, −y+1, −z+2; (iii) −x+1/2, y+1/2, −z+3/2; (iv) x+1, y, z; (v) x+1/2, −y+1/2, z−1/2. |
Acknowledgements
The author acknowledges the National Research Foundation Thuthuka programme (GUN 66314) and the University of Johannesburg for funding for this study. The University of the Witwatersrand is thanked for the use of their facilities and the use of the diffractometer in the Jan Boeyens Structural Chemistry Laboratory.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Blerk, C. van & Kruger, G. J. (2008). J. Chem. Crystallogr. 38, 175–179. Web of Science CSD CrossRef Google Scholar
Bruker (1999). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2008). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The crystal structure of the title compound (I) adds to our current ongoing studies of long-chained diammonium inorganic mineral acid salts. Colourless crystals of heptane-1,7-diammonium sulfate hydrate were obtained from an attempt to synthesize heptane-1,7-diammonium sulfate. This material forms part of our structural chemistry study of the inorganic mineral acid salts of the n-alkyldiamines. A search of the Cambridge Structural Database (Version 5.32, Allen, 2002) revealed that this compound had not previously been determined.
The asymmetric unit of compound (I) contains one diammonium dication, one sulfate anion and one water molecule with all atoms occupying general positions. The hydrocarbon chain is also fully extended from N1 to C7 but then distorts from planarity through N2. This is evident in the C5—C6—C7—N2 torsion angle (-70.49°(18)). The molecular structure of (I) is shown in Fig. 1.
Fig. 2 illustrates the packing arrangement of the title compound (I). Single parallel-stacked layers of dications pack together with sulfate anions and water molecules inserted between the dication chains in line with the ammonium groups showing a distinct inorganic–organic layering effect that is a common feature of these long-chained diammonium salts. An extensive three-dimensional hydrogen-bonding network is formed.
A close-up view of selected hydrogen bonding interactions can be viewed in Fig. 3. The three-dimensional hydrogen bonding network is built and linked through hydrogen bonding interactions between the ammonium groups of the dication and the sulfate anions and water molecules. These extensive interactions are seen to contribute to the distortion from planarity of the ω-end of the diammonium cation. The hydrogen bond distances and angles for the title compound (I) can be found in Table 2.