organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o1952-o1953

Clostebol acetate

aDepartment of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Via Mancinelli 7, I-20131 Milano, Italy
*Correspondence e-mail: luciana.malpezzi@polimi.it

(Received 13 June 2011; accepted 4 July 2011; online 9 July 2011)

The title compound, C21H29ClO3 [systematic name (8R,9S,10R,13S,14S,17S)-4-chloro-3-oxoandrost-4-en-17β-yl acetate], is a 4-chloro derivative of testosterone, used as an anabolic androgenic agent or applied topically in ophthalmological and dermatological treatments. The absolute configurations at positions 8, 9, 10, 13, 14 and 17 were established by refinement of the Flack parameter as R, S, R, S, S, and S, respectively. Rings B and C of the steroid ring system adopt chair conformations, ring A has a half-chair conformation, while ring D is in a C13 envelope conformation. Ring B and C, and C and D are trans fused. In the crystal, molecules are linked by a weak C—H⋯O interaction.

Related literature

For the characterization of related structures, see Duax et al. (1971[Duax, W. L., Cooper, A. & Norton, D. A. (1971). Acta Cryst. B27, 1-6.]); Böcskei et al. (1996[Böcskei, Z., Gérczei, T., Bodor, A., Schwartz, R. & Náray-Szabó, G. (1996). Acta Cryst. C52, 2899-2903.]); Verma et al. (2006[Verma, R., Jasrotia, D. & Bhat, M. (2006). J. Chem. Crystallogr. 36, 283-287.]). For the synthesis by direct (or via epoxide) chlorination of the 4 carbon atom of the testosterone mol­ecule, see: Camerino et al. (1956[Camerino, B., Patelli, B. & Vercellone, A. (1956). J. Am. Chem. Soc. 78, 3540-3541.]); Julian Laboratories Inc. Illinois (1960[Julian Laboratories Inc. Illinois (1960). US Patent 2933510.]); Società Farmaceutici Italia (1960[Società Farmaceutici Italia (1960). US Patent 2953582.]). For physiological properties when used topically in dermatological and ophthalmological treatments and by application of an anabolic drug, see: Sweetman (2009[Sweetman, S. C. (2009). Editor. Martindale: The Complete Drug Reference, 36th ed. London: The Pharmaceutical Press.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]) and for ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C21H29ClO3

  • Mr = 364.89

  • Orthorhombic, P 21 21 21

  • a = 7.740 (1) Å

  • b = 12.631 (2) Å

  • c = 19.275 (2) Å

  • V = 1884.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 295 K

  • 0.26 × 0.11 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.945, Tmax = 0.978

  • 8471 measured reflections

  • 3325 independent reflections

  • 2586 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.079

  • S = 0.97

  • 3325 reflections

  • 242 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1392 Friedel pairs

  • Flack parameter: −0.02 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6B⋯O1i 0.97 2.62 3.565 (3) 166
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/NT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Clostebol acetate (Fig. 1), systematic name: (8R,9S,10R,13S,14S,17S)-4-chloro-3-oxoandrost-4-en-17β-yl acetate, is a 4-chloro derivative of testosterone, used as an anabolic androgenic agent or applied topically in ophthalmological and dermatological treatments (Sweetman, 2009). The dermal preparations of this steroid are usually used in the treatment of wounds and ulcers. The absolute configuration has been determined by refinement of the Flack parameter (Flack, 1983) which converged to -0.02 (6). Ring B and C, and C and D are trans fused. Ring A (C1—C5, C10) of the steroid ring system adopts a half chair conformation with puckering parameters (Cremer and Pople, 1975) of Q (total puckering amplitude) = 0.466 (3) Å, θ (azimuthal angle) = 56.4 (4)°, ϕ (phase angle) = 20.0 (4)°. Ring B (C5—C10) and C (C8, C9, C11—C14) are in chair conformations [ring B: Q = 0.543 (2) Å, θ = 2.0 (2)°, ϕ = 150 (6)°; ring C: Q = 0.575 (2) Å, θ = 3.4 (2)°, ϕ = 295 (3)°]. The five-membered ring D (C13—C17) is in a C13 envelope conformation with puckering amplitude q2 =0.455 (2)Å and phase angle ϕ2 = 189.0 (3)°. Bond lengths and valency angles are within the range of expected values for these types of compounds (Allen et al., 1987, Böcskei et al., 1996, Duax et al., 1971, Verma et al., 2006). The acetate group is equatorially attached to the D ring and its orientation may be described by the torsion angle C17—O2—C20—O3 (0.1 (3)°).

In the crystal the molecules are linked by C—H···O weak interactions [C6—H6B···O1 = 166°; C6···O1 = 3.565 (3) Å; H6B···O1= 2.62 Å] to form chains in a herringbone arrangement running parallel to the b axis (Fig. 2).

Related literature top

For the characterization of related structures, see Duax et al. (1971); Böcskei et al. (1996); Verma et al. (2006). For the synthesis by direct (or via epoxide) chlorination of the 4 carbon atom of the testosterone molecule, see: Camerino et al. (1956); Julian Laboratories Inc. Illinois (1960); Società Farmaceutici Italia (1960). For physiological properties when used topically in dermatological and ophthalmological treatments and by application of an anabolic drug, see: Sweetman (2009). For standard bond lengths, see: Allen et al. (1987) and for ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

The title compound was obtained by direct or via epoxide chlorination on the carbon atom in the 4 position of the testosterone acetate (Camerino et al., 1956, Julian Laboratories, 1960, Società Farmaceutici Italia, 1960). The purification of the crude product was carried out by selective crystallization. Single crystals were obtained from a methanol supersaturated solution at ambient temperature.

Refinement top

H atoms were positioned geometrically and refined in a riding model, except those bonded to the asymmetric carbon atoms, whose positions were freely refined. All H atoms were refined with Uiso(H) values equal to 1.5 Ueq of the carrier atom for methyl groups and 1.2 Ueq for all remaining C atoms.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/NT (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of clostebol acetate with the atomic numbering. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of clostebol acetate viewed along the a axis. Intermolecular C—H···O weak interactions are shown by dashed lines.
[Figure 3] Fig. 3. Crystal packing of clostebol acetate viewed along the b axis.
(8R,9S,10R,13S,14S,17S)-4-chloro- 3-oxoandrost-4-en-17β-yl acetate top
Crystal data top
C21H29ClO3Dx = 1.286 Mg m3
Mr = 364.89Mo Kα radiation, λ = 0.71069 Å
Orthorhombic, P212121Cell parameters from 3284 reflections
a = 7.740 (1) Åθ = 2.7–24°
b = 12.631 (2) ŵ = 0.22 mm1
c = 19.275 (2) ÅT = 295 K
V = 1884.4 (4) Å3Prism, colourless
Z = 40.26 × 0.11 × 0.10 mm
F(000) = 784
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3325 independent reflections
Radiation source: fine-focus sealed tube2586 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 25.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 79
Tmin = 0.945, Tmax = 0.978k = 1314
8471 measured reflectionsl = 2317
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0396P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.079(Δ/σ)max = 0.035
S = 0.97Δρmax = 0.17 e Å3
3325 reflectionsΔρmin = 0.15 e Å3
242 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0024 (7)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1392 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.02 (6)
Crystal data top
C21H29ClO3V = 1884.4 (4) Å3
Mr = 364.89Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.740 (1) ŵ = 0.22 mm1
b = 12.631 (2) ÅT = 295 K
c = 19.275 (2) Å0.26 × 0.11 × 0.10 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3325 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2586 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 0.978Rint = 0.032
8471 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079Δρmax = 0.17 e Å3
S = 0.97Δρmin = 0.15 e Å3
3325 reflectionsAbsolute structure: Flack (1983), 1392 Friedel pairs
242 parametersAbsolute structure parameter: 0.02 (6)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.18920 (8)0.39038 (5)0.85472 (3)0.0597 (2)
O10.1184 (2)0.26483 (14)0.84059 (11)0.0792 (6)
O20.39800 (19)1.08493 (11)0.95249 (8)0.0469 (4)
O30.6176 (2)1.00534 (15)1.00740 (9)0.0630 (5)
C10.3598 (3)0.50564 (17)0.83239 (14)0.0493 (7)
H1A0.47140.52830.81500.059*
H1B0.36710.50250.88260.059*
C20.3202 (3)0.39468 (18)0.80438 (14)0.0568 (7)
H2A0.32190.39610.75410.068*
H2B0.40880.34580.81980.068*
C30.1487 (3)0.35718 (19)0.82862 (13)0.0521 (7)
C40.0152 (3)0.43994 (17)0.83408 (11)0.0392 (6)
C50.0422 (3)0.54305 (17)0.82283 (12)0.0386 (6)
C60.1033 (3)0.62146 (17)0.81864 (13)0.0486 (6)
H6A0.21120.58630.82980.058*
H6B0.11180.64830.77160.058*
C70.0757 (3)0.71354 (17)0.86839 (14)0.0471 (6)
H7A0.16740.76500.86200.057*
H7B0.08200.68780.91570.057*
C80.0979 (2)0.76714 (16)0.85698 (12)0.0341 (5)
H80.101 (3)0.7987 (16)0.8113 (11)0.041*
C90.2445 (2)0.68539 (16)0.86173 (12)0.0343 (5)
H90.240 (2)0.6573 (16)0.9119 (11)0.041*
C100.2233 (2)0.58776 (17)0.81189 (11)0.0368 (5)
C110.4216 (3)0.73900 (17)0.85446 (14)0.0517 (7)
H11A0.43370.76540.80750.062*
H11B0.51120.68650.86190.062*
C120.4487 (3)0.83096 (17)0.90544 (14)0.0490 (7)
H12A0.45360.80350.95240.059*
H12B0.55810.86530.89560.059*
C130.3036 (3)0.91174 (16)0.90011 (10)0.0342 (5)
C140.1318 (3)0.85315 (16)0.91032 (12)0.0354 (5)
H140.140 (3)0.8154 (16)0.9553 (12)0.043*
C150.0001 (3)0.94195 (17)0.92036 (15)0.0553 (7)
H15A0.09700.91780.94800.066*
H15B0.04250.96720.87600.066*
C160.1004 (3)1.02920 (19)0.95832 (15)0.0545 (7)
H16A0.09021.09600.93390.065*
H16B0.05691.03821.00510.065*
C170.2886 (3)0.99196 (17)0.95951 (12)0.0395 (5)
H170.325 (3)0.9551 (17)1.0049 (11)0.047*
C180.3114 (4)0.97189 (19)0.83157 (12)0.0572 (7)
H18A0.21941.02280.82990.086*
H18B0.29920.92300.79380.086*
H18C0.42031.00770.82790.086*
C190.2448 (3)0.6192 (2)0.73547 (11)0.0513 (7)
H19A0.22990.55790.70670.077*
H19B0.35820.64800.72840.077*
H19C0.15970.67140.72350.077*
C200.5581 (3)1.0808 (2)0.97850 (13)0.0477 (6)
C210.6504 (4)1.1833 (2)0.96711 (16)0.0741 (9)
H21A0.70831.20391.00910.111*
H21B0.56851.23700.95430.111*
H21C0.73371.17500.93060.111*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0606 (4)0.0525 (4)0.0660 (4)0.0228 (3)0.0059 (3)0.0004 (3)
O10.0913 (14)0.0317 (10)0.1147 (17)0.0053 (9)0.0191 (12)0.0070 (11)
O20.0526 (10)0.0304 (9)0.0577 (10)0.0054 (8)0.0080 (8)0.0005 (8)
O30.0560 (11)0.0604 (12)0.0725 (13)0.0045 (10)0.0090 (9)0.0027 (10)
C10.0381 (13)0.0344 (13)0.0755 (18)0.0063 (10)0.0005 (11)0.0100 (13)
C20.0511 (14)0.0368 (13)0.0826 (19)0.0094 (13)0.0048 (14)0.0104 (14)
C30.0690 (18)0.0332 (15)0.0541 (16)0.0028 (12)0.0187 (13)0.0016 (12)
C40.0418 (13)0.0367 (14)0.0392 (14)0.0070 (11)0.0041 (11)0.0010 (11)
C50.0404 (13)0.0350 (13)0.0403 (14)0.0021 (10)0.0017 (10)0.0045 (11)
C60.0339 (13)0.0388 (13)0.0732 (17)0.0040 (11)0.0038 (11)0.0058 (13)
C70.0307 (12)0.0381 (13)0.0725 (18)0.0016 (10)0.0041 (11)0.0075 (13)
C80.0298 (11)0.0317 (12)0.0407 (13)0.0015 (9)0.0011 (10)0.0009 (11)
C90.0313 (11)0.0316 (12)0.0401 (13)0.0004 (9)0.0021 (9)0.0031 (11)
C100.0351 (12)0.0303 (12)0.0449 (13)0.0025 (10)0.0030 (9)0.0032 (11)
C110.0336 (12)0.0412 (13)0.0804 (19)0.0008 (10)0.0076 (13)0.0216 (15)
C120.0325 (13)0.0431 (14)0.0714 (18)0.0014 (11)0.0006 (12)0.0172 (14)
C130.0355 (11)0.0323 (12)0.0348 (12)0.0028 (10)0.0041 (10)0.0037 (10)
C140.0348 (13)0.0325 (12)0.0390 (13)0.0012 (9)0.0060 (10)0.0002 (11)
C150.0391 (14)0.0436 (15)0.083 (2)0.0051 (11)0.0043 (13)0.0157 (14)
C160.0546 (16)0.0423 (14)0.0667 (17)0.0055 (12)0.0074 (14)0.0140 (14)
C170.0456 (14)0.0302 (12)0.0426 (14)0.0028 (11)0.0017 (11)0.0030 (11)
C180.0751 (17)0.0528 (15)0.0436 (14)0.0181 (14)0.0089 (14)0.0012 (12)
C190.0582 (15)0.0452 (16)0.0506 (15)0.0037 (12)0.0074 (11)0.0088 (13)
C200.0523 (16)0.0449 (16)0.0460 (15)0.0017 (13)0.0035 (12)0.0119 (13)
C210.073 (2)0.0543 (17)0.095 (2)0.0212 (15)0.0063 (17)0.0127 (16)
Geometric parameters (Å, º) top
Cl1—C41.747 (2)C11—C121.536 (3)
O1—C31.212 (3)C11—H11A0.9700
O2—C201.338 (3)C11—H11B0.9700
O2—C171.454 (3)C12—C131.521 (3)
O3—C201.196 (3)C12—H12A0.9700
C1—C21.533 (3)C12—H12B0.9700
C1—C101.532 (3)C13—C181.525 (3)
C1—H1A0.9700C13—C171.533 (3)
C1—H1B0.9700C13—C141.534 (3)
C2—C31.485 (4)C14—C151.528 (3)
C2—H2A0.9700C14—H140.99 (2)
C2—H2B0.9700C15—C161.534 (3)
C3—C41.473 (3)C15—H15A0.9700
C4—C51.337 (3)C15—H15B0.9700
C5—C61.502 (3)C16—C171.531 (3)
C5—C101.526 (3)C16—H16A0.9700
C6—C71.522 (3)C16—H16B0.9700
C6—H6A0.9700C17—H171.03 (2)
C6—H6B0.9700C18—H18A0.9600
C7—C81.521 (3)C18—H18B0.9600
C7—H7A0.9700C18—H18C0.9600
C7—H7B0.9700C19—H19A0.9600
C8—C141.519 (3)C19—H19B0.9600
C8—C91.537 (3)C19—H19C0.9600
C8—H80.97 (2)C20—C211.496 (3)
C9—C111.535 (3)C21—H21A0.9600
C9—C101.572 (3)C21—H21B0.9600
C9—H91.03 (2)C21—H21C0.9600
C10—C191.535 (3)
C20—O2—C17118.21 (18)C13—C12—C11111.29 (19)
C2—C1—C10112.97 (19)C13—C12—H12A109.4
C2—C1—H1A109.0C11—C12—H12A109.4
C10—C1—H1A109.0C13—C12—H12B109.4
C2—C1—H1B109.0C11—C12—H12B109.4
C10—C1—H1B109.0H12A—C12—H12B108.0
H1A—C1—H1B107.8C12—C13—C18111.31 (18)
C3—C2—C1111.1 (2)C12—C13—C17116.67 (18)
C3—C2—H2A109.4C18—C13—C17108.70 (18)
C1—C2—H2A109.4C12—C13—C14107.93 (16)
C3—C2—H2B109.4C18—C13—C14112.67 (19)
C1—C2—H2B109.4C17—C13—C1499.06 (16)
H2A—C2—H2B108.0C8—C14—C15119.71 (19)
O1—C3—C4122.3 (2)C8—C14—C13114.07 (16)
O1—C3—C2122.6 (2)C15—C14—C13103.92 (17)
C4—C3—C2115.0 (2)C8—C14—H14105.0 (12)
C5—C4—C3124.8 (2)C15—C14—H14106.5 (12)
C5—C4—Cl1121.81 (18)C13—C14—H14106.8 (12)
C3—C4—Cl1113.38 (16)C14—C15—C16104.47 (19)
C4—C5—C6122.3 (2)C14—C15—H15A110.9
C4—C5—C10121.8 (2)C16—C15—H15A110.9
C6—C5—C10115.94 (18)C14—C15—H15B110.9
C5—C6—C7111.39 (18)C16—C15—H15B110.9
C5—C6—H6A109.4H15A—C15—H15B108.9
C7—C6—H6A109.4C17—C16—C15105.55 (18)
C5—C6—H6B109.4C17—C16—H16A110.6
C7—C6—H6B109.4C15—C16—H16A110.6
H6A—C6—H6B108.0C17—C16—H16B110.6
C8—C7—C6111.90 (19)C15—C16—H16B110.6
C8—C7—H7A109.2H16A—C16—H16B108.8
C6—C7—H7A109.2O2—C17—C16107.73 (18)
C8—C7—H7B109.2O2—C17—C13114.86 (17)
C6—C7—H7B109.2C16—C17—C13105.30 (19)
H7A—C7—H7B107.9O2—C17—H17106.4 (12)
C14—C8—C7111.91 (18)C16—C17—H17114.5 (12)
C14—C8—C9108.23 (17)C13—C17—H17108.3 (11)
C7—C8—C9110.17 (17)C13—C18—H18A109.5
C14—C8—H8108.5 (12)C13—C18—H18B109.5
C7—C8—H8109.9 (12)H18A—C18—H18B109.5
C9—C8—H8108.1 (12)C13—C18—H18C109.5
C11—C9—C8110.94 (17)H18A—C18—H18C109.5
C11—C9—C10112.56 (17)H18B—C18—H18C109.5
C8—C9—C10114.42 (17)C10—C19—H19A109.5
C11—C9—H9105.5 (11)C10—C19—H19B109.5
C8—C9—H9105.2 (11)H19A—C19—H19B109.5
C10—C9—H9107.5 (11)C10—C19—H19C109.5
C5—C10—C1110.32 (17)H19A—C19—H19C109.5
C5—C10—C19109.15 (17)H19B—C19—H19C109.5
C1—C10—C19110.36 (18)O3—C20—O2124.3 (2)
C5—C10—C9107.58 (16)O3—C20—C21125.0 (2)
C1—C10—C9107.54 (16)O2—C20—C21110.7 (2)
C19—C10—C9111.85 (18)C20—C21—H21A109.5
C9—C11—C12113.41 (19)C20—C21—H21B109.5
C9—C11—H11A108.9H21A—C21—H21B109.5
C12—C11—H11A108.9C20—C21—H21C109.5
C9—C11—H11B108.9H21A—C21—H21C109.5
C12—C11—H11B108.9H21B—C21—H21C109.5
H11A—C11—H11B107.7
C10—C1—C2—C357.7 (3)C11—C9—C10—C1959.0 (2)
C1—C2—C3—O1146.8 (2)C8—C9—C10—C1968.8 (2)
C1—C2—C3—C435.8 (3)C8—C9—C11—C1253.4 (3)
O1—C3—C4—C5178.6 (2)C10—C9—C11—C12176.93 (19)
C2—C3—C4—C54.0 (3)C9—C11—C12—C1354.1 (3)
O1—C3—C4—Cl13.1 (3)C11—C12—C13—C1869.5 (2)
C2—C3—C4—Cl1174.23 (17)C11—C12—C13—C17164.98 (19)
C3—C4—C5—C6170.6 (2)C11—C12—C13—C1454.6 (2)
Cl1—C4—C5—C67.5 (3)C7—C8—C14—C1554.6 (3)
C3—C4—C5—C108.1 (4)C9—C8—C14—C15176.23 (19)
Cl1—C4—C5—C10173.84 (16)C7—C8—C14—C13178.57 (18)
C4—C5—C6—C7126.6 (2)C9—C8—C14—C1359.8 (2)
C10—C5—C6—C754.7 (3)C12—C13—C14—C860.2 (2)
C5—C6—C7—C854.8 (3)C18—C13—C14—C863.1 (2)
C6—C7—C8—C14175.36 (19)C17—C13—C14—C8177.88 (18)
C6—C7—C8—C954.9 (3)C12—C13—C14—C15167.8 (2)
C14—C8—C9—C1154.1 (2)C18—C13—C14—C1568.9 (2)
C7—C8—C9—C11176.8 (2)C17—C13—C14—C1545.8 (2)
C14—C8—C9—C10177.19 (17)C8—C14—C15—C16162.1 (2)
C7—C8—C9—C1054.5 (3)C13—C14—C15—C1633.5 (2)
C4—C5—C10—C113.1 (3)C14—C15—C16—C177.2 (3)
C6—C5—C10—C1168.1 (2)C20—O2—C17—C16154.1 (2)
C4—C5—C10—C19108.3 (2)C20—O2—C17—C1388.9 (2)
C6—C5—C10—C1970.4 (2)C15—C16—C17—O2144.7 (2)
C4—C5—C10—C9130.1 (2)C15—C16—C17—C1321.7 (3)
C6—C5—C10—C951.1 (2)C12—C13—C17—O285.0 (2)
C2—C1—C10—C545.1 (3)C18—C13—C17—O241.8 (2)
C2—C1—C10—C1975.5 (2)C14—C13—C17—O2159.60 (18)
C2—C1—C10—C9162.20 (19)C12—C13—C17—C16156.7 (2)
C11—C9—C10—C5178.85 (19)C18—C13—C17—C1676.5 (2)
C8—C9—C10—C551.0 (2)C14—C13—C17—C1641.3 (2)
C11—C9—C10—C162.3 (2)C17—O2—C20—O30.1 (3)
C8—C9—C10—C1169.83 (18)C17—O2—C20—C21179.48 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···O1i0.972.623.565 (3)166
Symmetry code: (i) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC21H29ClO3
Mr364.89
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)7.740 (1), 12.631 (2), 19.275 (2)
V3)1884.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.26 × 0.11 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.945, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
8471, 3325, 2586
Rint0.032
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.079, 0.97
No. of reflections3325
No. of parameters242
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.15
Absolute structureFlack (1983), 1392 Friedel pairs
Absolute structure parameter0.02 (6)

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), SHELXTL/NT (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···O1i0.972.623.565 (3)166.0
Symmetry code: (i) x, y+1/2, z+3/2.
 

Acknowledgements

Samples of the title compound were kindly provided by Steroid SPA (Via Spagna 156, 20093 Cologno Monzese, Milano, Italy).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBöcskei, Z., Gérczei, T., Bodor, A., Schwartz, R. & Náray-Szabó, G. (1996). Acta Cryst. C52, 2899–2903.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCamerino, B., Patelli, B. & Vercellone, A. (1956). J. Am. Chem. Soc. 78, 3540–3541.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDuax, W. L., Cooper, A. & Norton, D. A. (1971). Acta Cryst. B27, 1–6.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJulian Laboratories Inc. Illinois (1960). US Patent 2933510.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSocietà Farmaceutici Italia (1960). US Patent 2953582.  Google Scholar
First citationSweetman, S. C. (2009). Editor. Martindale: The Complete Drug Reference, 36th ed. London: The Pharmaceutical Press.  Google Scholar
First citationVerma, R., Jasrotia, D. & Bhat, M. (2006). J. Chem. Crystallogr. 36, 283–287.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o1952-o1953
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds