metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1100-m1101

Bis(μ-3,5-di­methyl-4H-1,2,4-triazol-4-amine-κ2N1:N2)bis­­[bis­­(thio­cyanato-κN)zinc]–bis­­(3,5-di­methyl-4H-1,2,4-triazol-4-amine-κN1)bis­­(thio­cyanato-κN)zinc (1/2)

aCollege of Chemical Engineering, Taishan Medical College, Taian 271016, People's Republic of China, and bCollege of Chemistry, Chemical Engineering and Materials Science, The Key Laboratory of Organic Synthesis of Jiangsu Province, Soochow University, Suzhou 215123, People's Republic of China
*Correspondence e-mail: libaolong@suda.edu.cn

(Received 17 June 2011; accepted 12 July 2011; online 16 July 2011)

In the crystal structure of the title 1:2 adduct, [Zn2(NCS)4(C4H8N4)2]·2[Zn(NCS)2(C4H8N4)2] or (Ia)·2(Ib), each ZnII atom is coordinated in a distorted tetra­hedral geometry by four N atoms from two triazole rings of two 4-amino-3,5-dimethyl-1,2,4-triazole (admt) ligands and two NCS ligands. In (Ia), double N1:N2-bridging admt ligands connect two ZnII atoms, forming a dimer with a Zn2(admt)2 six-membered metallacycle located on a crystallographic inversion center. In (Ib), the admt ligands exhibit monodentate N1-coordination modes. Weak N—H⋯N, N—H⋯S and C—H⋯S hydrogen bonds play an important role in the inter­molecular packing. The S and C atoms of two thiocyanato ligands are disordered over two sets of sites in ratios of 0.57 (3):0.43 (3) and 0.63 (3):0.37 (3), respectively.

Related literature

For background to transition metal complexes of 1,2,4-triazole derivatives, see: Haasnoot (2000[Haasnoot, J. G. (2000). Coord. Chem. Rev. 200-202, 131-185.]); Liu et al. (1999[Liu, J. C., Xu, Y., Duan, C. Y., Wang, S. L., Liao, F. L., Zhuang, J. Z. & You, X. Z. (1999). Inorg. Chim. Acta, 295, 229-233.], 2003[Liu, J. C., Guo, G. C., Huang, J. S. & You, X. Z. (2003). Inorg. Chem. 42, 235-243.]); Zhao et al. (2002[Zhao, Q. H., Li, H. F., Chen, Z. D. & Fang, R. B. (2002). Inorg. Chim. Acta, 36, 142-146.]); Yi et al. (2004[Yi, L., Ding, B., Zhao, B., Cheng, P., Liao, D. Z., Yan, S. P. & Jiang, Z. H. (2004). Inorg. Chem. 43, 33-43.]); Lavrenova et al. (1992[Lavrenova, L. G., Baidina, I. A., Ikorskii, V. N., Sheludjkova, L. A. & Larionov, S. V. (1992). Zh. Neorg. Khim. 37, 630-634.]); Zhang et al. (2007[Zhang, Y.-M., Zhang, Y.-P., Li, B.-L. & Zhang, Y. (2007). Acta Cryst. C63, m120-m122.], 2011[Zhang, R., Chen, Q., Yang, X. & Wu, X. (2011). Acta Cryst. E67, m26.]). For related structures, see: Lavrenova et al. (1992[Lavrenova, L. G., Baidina, I. A., Ikorskii, V. N., Sheludjkova, L. A. & Larionov, S. V. (1992). Zh. Neorg. Khim. 37, 630-634.]); Zhang et al. (2007[Zhang, Y.-M., Zhang, Y.-P., Li, B.-L. & Zhang, Y. (2007). Acta Cryst. C63, m120-m122.], 2011[Zhang, R., Chen, Q., Yang, X. & Wu, X. (2011). Acta Cryst. E67, m26.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(NCS)4(C4H8N4)2]·2[Zn(NCS)2(C4H8N4)2]

  • Mr = 1399.08

  • Triclinic, [P \overline 1]

  • a = 8.7665 (8) Å

  • b = 9.3100 (5) Å

  • c = 20.661 (3) Å

  • α = 92.560 (9)°

  • β = 95.926 (2)°

  • γ = 115.427 (6)°

  • V = 1507.3 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.91 mm−1

  • T = 223 K

  • 0.34 × 0.30 × 0.14 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.564, Tmax = 0.776

  • 14831 measured reflections

  • 5484 independent reflections

  • 4550 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.090

  • S = 1.04

  • 5484 reflections

  • 387 parameters

  • 30 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—N5 1.914 (3)
Zn1—N6 1.954 (3)
Zn1—N2i 2.011 (3)
Zn1—N1 2.012 (3)
Zn2—N16 1.926 (3)
Zn2—N15 1.962 (3)
Zn2—N7 1.990 (3)
Zn2—N11 2.000 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—HW1⋯S2ii 0.89 (2) 2.83 (3) 3.495 (3) 133 (3)
N4—HW2⋯N12 0.88 (2) 2.31 (2) 3.157 (4) 162 (3)
N10—HW3⋯N12iii 0.85 (2) 2.47 (2) 3.251 (4) 152 (3)
N10—HW4⋯S4iii 0.87 (2) 2.80 (2) 3.641 (4) 163 (3)
N14—HW5⋯N8iv 0.88 (2) 2.20 (2) 3.061 (4) 167 (3)
N14—HW6⋯S3Av 0.87 (2) 2.83 (3) 3.617 (9) 151 (3)
N14—HW6⋯S3Bv 0.87 (2) 2.83 (3) 3.542 (18) 140 (3)
C13—H13B⋯S3Av 0.97 2.82 3.458 (7) 124
Symmetry codes: (ii) x-1, y-1, z; (iii) x, y-1, z; (iv) x-1, y, z; (v) -x+1, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

A large number of mononuclear, oligonuclear and polynuclear transition metal complexes of 1,2,4-triazole derivatives have been synthesized and characterized due to their magnetic properties and novel topologies (Haasnoot, 2000). For 4-amino-3,5-dimethyl-1,2,4-triazole (admt), several MnII (Liu et al., 1999), CoII, NiII (Zhao et al., 2002), CuII (Liu et al., 2003) and CdII compounds (Yi et al., 2004) were synthesized. Two ZnII-admt compounds [Zn2(admt)2Cl4] (Lavrenova et al., 1992) and [Zn2(admt)2I4] (Zhang et al., 2011) were previously synthesized. Here we report the preparation and crystal structure of the title ZnII adduct [Zn2(admt)2(NCS)4].2[Zn(admt)2(NCS)2] (I), containing a dimer [Zn2(admt)2(NCS)4] (Ia) and two mononuclear [Zn(admt)2(NCS)2] (Ib) species in the same crystal structure (Fig. 1).

The molecular structure of the neutral dimer (Ia) is similar to [Zn2(admt)2Cl4] (Lavrenova, et al., 1992) and [Zn2(admt)2I4] (Zhang et al., 2011). Two ZnII centers are connected by two admt ligands, resulting in a discrete Zn2(admt)2 six-membered metallacycle (geometric center located on a crystallographic inversion center) which represents the smallest closed cyclic structure with a 1:1 metal-to-ligand ratio (Fig. 2). One thiocyanate ligand is partially disordered over two sets of positions with site-occupancy factors of 0.57 (3) and 0.43 (3). Each ZnII center is four-coordinated by two nitrogen donors of two admt ligands with Zn1—N1 = 2.012 (3) Å and Zn1—N2i = 2.011 (3) Å (symmetry code i: -x + 1,-y + 1,-z) and two nitrogen atoms of two thyocyanate ligands with Zn1—N5 = 1.914 (3) Å and Zn1—N6 = 1.954 (3) Å, forming a distorted tetrahedral geometry.

In the molecular structure of (Ib), a mononuclear species, the ZnII atom is also four-coordinated by two nitrogen donors of two admt ligands with Zn2—N7 = 1.990 (3) Å and Zn2—N11 = 2.000 (3) Å and two nitrogen atoms of two thyocyante ligands with Zn2—N15 = 1.962 (3) Å and Zn2—N16 = 1.926 (3)Å, forming a distorted tetrahedral geometry. One thiocyanate ligand is also partially disordered over two sets of positions with site-occupancy factors of 0.63 (3) and 0.37 (3).

The Zn—N (triazole) and Zn—N (NCS) bond lengths in the dimer (Ia) are similar to the values in the mononuclear (Ib) and other Zn-triazole complexes (Zhang, et al., 2007 and 2011; Lavrenova, et al., 1992). The N—Zn—N bond angles in (Ia) are in the range of 103.49 (12) to 115.06 (13)°, and in the range of 103.14 (13) to 115.73 (12)° in (Ib). In comparison, the Zn/admt ratio is 1:1 in (Ia), but 1:2 in (Ib). The ligand admt, a 4-substituted 1,2,4-triazole, exhibits a N1,N2-bidentate bridging coordination mode in (Ia), two admt ligands bridging two ZnII atoms to form a dimer with a Zn···Zn distance of 3.6708 (8) Å. However, in the mononuclear species (Ib), admt shows a N1 monodentate coordination mode. For a 4-substituted 1,2,4-triazole, blocking the N4 donor position through substitution, only the N1 monodentate and N1,N2-bidentate coordination modes are possible.

In the crystal structure of the title compound, there are hydrogen bonding interactions between amino groups NH2 and S atoms [N4···S2ii (ii = x-1, y-1, z) = 3.495 (4) Å; N10···S4iii (iii = x, y-1, z) = 3.641 (4) Å; N14···S3Av (v = -x+1, -y+1, -z+1) = 3.617 (9) Å; N14···S3Bv = 3.542 (18) Å], and between amino groups NH2 and the 2-position triazole N atom of (Ib) [N4···N12 = 3.157 (4) Å; N10···N12iii = 3.251 (4) Å; N14···N8iv (iv = x-1, y, z) = 3.061 (4) Å]. There are also weak hydrogen bonding interactions between methyl hydrogen atoms and S atoms [C13···S3Av = 3.458 (7) Å]. No obviously π-π stacking interactions between the triazole rings were observed. These hydrogen bonding interaction stabilize the crystal structure of the title adduct (Fig. 3).

Related literature top

For background to transition metal complexes of 1,2,4-triazole derivatives, see: Haasnoot (2000); Liu et al. (1999, 2003); Zhao et al. (2002); Yi et al. (2004); Lavrenova et al. (1992); Zhang et al. (2007, 2011). For related structures, see: Lavrenova et al. (1992); Zhang et al. (2007, 2011).

Experimental top

A 15 ml aqueaous solution of 4-amino-3,5-dimethyl-1,2,4-triazole (admt) (1.0 mmol) was added to 10 ml aqueous solution Zn(NO3)2.6H2O (1.0 mmol) and KSCN (2.0 mmol) with stirring. The result solution was placed at room temperature. Colourless crystals were obtained after about one month. Anal. Calcd. for C32H48N32S8Zn4: C, 27.47; H, 3.46; N, 32.05%. Found: C, 27.39; H, 3.41; N, 31.87%.

Refinement top

The methyl H atoms were placed in idealized positions and refined as riding, with C—H distances of 0.97Å and Uiso(H) = 1.5Ueq(C). H atoms bonded to N atoms were located in a difference map and refined with distance restraints of N—H = 0.87 (2) Å, and with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title adduct. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius. Symmetry code (i): -x+1, -y+1, -z.
[Figure 2] Fig. 2. The dimeric structure of (Ia) with displacement ellipsoids drawn at the 30% probability level. Symmetry code (i): -x+1, -y+1, -z.
[Figure 3] Fig. 3. The mononuclear structure of (Ib) with displacement ellipsoids drawn at the 30% probability level.
[Figure 4] Fig. 4. A view of the hydrogen bond interactions (dashed lines) in the crystal structure pf the title compound. Symmetry codes: (ii) x-1, y-1, z; (iii) x, y-1, z; (iv) x-1, y, z; (v) -x+1, -y+1, -z+1.
Bis(µ-3,5-dimethyl-4H-1,2,4-triazol-4-amine- κ2N1:N2)bis[bis(thiocyanato-κN)zinc]– bis(3,5-dimethyl-4H-1,2,4-triazol-4-amine- κN1)bis(thiocyanato-κN)zinc (1/2) top
Crystal data top
[Zn2(NCS)4(C4H8N4)2]·2[Zn(NCS)2(C4H8N4)2]Z = 1
Mr = 1399.08F(000) = 712
Triclinic, P1Dx = 1.541 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 8.7665 (8) ÅCell parameters from 5140 reflections
b = 9.3100 (5) Åθ = 3.1–25.4°
c = 20.661 (3) ŵ = 1.91 mm1
α = 92.560 (9)°T = 223 K
β = 95.926 (2)°Block, colourless
γ = 115.427 (6)°0.34 × 0.30 × 0.14 mm
V = 1507.3 (3) Å3
Data collection top
Rigaku Mercury CCD
diffractometer
5484 independent reflections
Radiation source: fine-focus sealed tube4550 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 7.31 pixels mm-1θmax = 25.4°, θmin = 3.1°
ω scansh = 1010
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1111
Tmin = 0.564, Tmax = 0.776l = 2224
14831 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0309P)2 + 1.5778P]
where P = (Fo2 + 2Fc2)/3
5484 reflections(Δ/σ)max < 0.001
387 parametersΔρmax = 0.55 e Å3
30 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Zn2(NCS)4(C4H8N4)2]·2[Zn(NCS)2(C4H8N4)2]γ = 115.427 (6)°
Mr = 1399.08V = 1507.3 (3) Å3
Triclinic, P1Z = 1
a = 8.7665 (8) ÅMo Kα radiation
b = 9.3100 (5) ŵ = 1.91 mm1
c = 20.661 (3) ÅT = 223 K
α = 92.560 (9)°0.34 × 0.30 × 0.14 mm
β = 95.926 (2)°
Data collection top
Rigaku Mercury CCD
diffractometer
5484 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
4550 reflections with I > 2σ(I)
Tmin = 0.564, Tmax = 0.776Rint = 0.034
14831 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04230 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.55 e Å3
5484 reflectionsΔρmin = 0.36 e Å3
387 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.41245 (5)0.63167 (5)0.031974 (19)0.03212 (12)
Zn20.54622 (5)0.17586 (5)0.34171 (2)0.03310 (12)
S1A0.0157 (7)0.7863 (17)0.0518 (4)0.065 (2)0.57 (3)
C5A0.1191 (16)0.7222 (15)0.0350 (8)0.0438 (11)0.57 (3)
S1B0.032 (2)0.858 (2)0.0278 (11)0.087 (5)0.43 (3)
C5B0.143 (2)0.7546 (19)0.0296 (10)0.0438 (11)0.43 (3)
S3A0.786 (2)0.3793 (9)0.5571 (3)0.110 (3)0.63 (3)
C15A0.7285 (16)0.3210 (15)0.4808 (4)0.0438 (11)0.63 (3)
S3B0.717 (2)0.397 (2)0.5555 (7)0.111 (6)0.37 (3)
C15B0.690 (3)0.329 (3)0.4793 (7)0.0438 (11)0.37 (3)
S20.82933 (14)0.97029 (14)0.20364 (5)0.0594 (3)
S40.80473 (14)0.52143 (13)0.18706 (6)0.0549 (3)
N10.3658 (3)0.4141 (3)0.06001 (13)0.0294 (6)
N20.4699 (3)0.3396 (3)0.04834 (13)0.0318 (6)
N30.3122 (3)0.2214 (3)0.12156 (13)0.0305 (6)
N40.2470 (4)0.1121 (4)0.16740 (15)0.0408 (7)
N50.2201 (4)0.6795 (4)0.02509 (17)0.0471 (8)
N60.5860 (4)0.7776 (4)0.10139 (16)0.0439 (8)
N70.5476 (3)0.0370 (3)0.33052 (14)0.0323 (7)
N80.6787 (4)0.0591 (4)0.36615 (14)0.0384 (7)
N90.5265 (4)0.2668 (3)0.29609 (14)0.0329 (7)
N100.4718 (4)0.4100 (4)0.25494 (17)0.0421 (8)
N110.3205 (3)0.1727 (3)0.35209 (13)0.0327 (7)
N120.2521 (4)0.2503 (3)0.31036 (13)0.0343 (7)
N130.1194 (3)0.1971 (3)0.39608 (13)0.0292 (6)
N140.0123 (4)0.1907 (4)0.44340 (15)0.0401 (7)
N150.6844 (4)0.2796 (4)0.42611 (16)0.0474 (8)
N160.6258 (4)0.3019 (4)0.27023 (16)0.0446 (8)
C10.4354 (4)0.2233 (4)0.08645 (16)0.0326 (8)
C20.2705 (4)0.3398 (4)0.10392 (15)0.0286 (7)
C30.5138 (5)0.1114 (4)0.09104 (19)0.0443 (9)
H3A0.42790.00370.07640.066*
H3B0.56080.11560.13610.066*
H3C0.60410.14130.06370.066*
C40.1382 (5)0.3744 (5)0.12993 (18)0.0405 (9)
H4C0.11000.44330.10220.061*
H4D0.18040.42740.17390.061*
H4E0.03710.27520.13080.061*
C60.6884 (5)0.8569 (4)0.14333 (19)0.0374 (8)
C70.6631 (5)0.1990 (4)0.34402 (18)0.0395 (9)
C80.4587 (4)0.1629 (4)0.28850 (16)0.0312 (8)
C90.7755 (6)0.2747 (6)0.3658 (2)0.0694 (14)
H9A0.86150.20610.40120.104*
H9B0.83050.29030.32950.104*
H9C0.70790.37730.38100.104*
C100.3097 (5)0.1893 (5)0.2399 (2)0.0510 (11)
H10C0.29440.09220.23950.077*
H10D0.20830.27530.25160.077*
H10E0.32930.21770.19680.077*
C110.1301 (4)0.2624 (4)0.33821 (16)0.0286 (7)
C120.2390 (4)0.1428 (4)0.40368 (17)0.0317 (8)
C130.0177 (5)0.3329 (5)0.31128 (17)0.0406 (9)
H13A0.07870.41600.28430.061*
H13B0.01680.37850.34690.061*
H13C0.08250.25050.28500.061*
C140.2714 (5)0.0639 (5)0.4602 (2)0.0513 (11)
H14C0.33310.00380.44820.077*
H14D0.16380.00820.47340.077*
H14E0.33880.14400.49620.077*
C160.7019 (4)0.3929 (4)0.23544 (18)0.0351 (8)
HW10.139 (3)0.046 (4)0.1524 (17)0.042*
HW20.238 (5)0.164 (4)0.2027 (13)0.042*
HW30.441 (5)0.481 (4)0.2816 (15)0.042*
HW40.558 (3)0.405 (4)0.2359 (17)0.042*
HW50.091 (3)0.127 (4)0.4243 (17)0.042*
HW60.036 (5)0.290 (3)0.4554 (18)0.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0362 (2)0.0312 (2)0.0369 (2)0.02067 (19)0.01070 (18)0.00640 (17)
Zn20.0314 (2)0.0340 (2)0.0403 (2)0.01972 (19)0.00779 (18)0.00290 (18)
S1A0.0510 (18)0.081 (4)0.077 (3)0.047 (2)0.0059 (19)0.026 (3)
C5A0.034 (3)0.041 (2)0.055 (2)0.017 (2)0.0000 (18)0.0045 (19)
S1B0.078 (5)0.085 (7)0.111 (8)0.067 (6)0.048 (6)0.056 (6)
C5B0.034 (3)0.041 (2)0.055 (2)0.017 (2)0.0000 (18)0.0045 (19)
S3A0.182 (8)0.066 (2)0.046 (2)0.030 (4)0.021 (3)0.0143 (17)
C15A0.034 (3)0.041 (2)0.055 (2)0.017 (2)0.0000 (18)0.0045 (19)
S3B0.116 (7)0.085 (7)0.067 (5)0.018 (4)0.038 (4)0.033 (4)
C15B0.034 (3)0.041 (2)0.055 (2)0.017 (2)0.0000 (18)0.0045 (19)
S20.0541 (6)0.0548 (7)0.0472 (6)0.0039 (5)0.0093 (5)0.0087 (5)
S40.0566 (7)0.0515 (6)0.0570 (7)0.0211 (5)0.0149 (5)0.0211 (5)
N10.0330 (15)0.0278 (15)0.0312 (15)0.0160 (13)0.0072 (12)0.0035 (12)
N20.0374 (16)0.0299 (15)0.0337 (16)0.0195 (13)0.0074 (13)0.0031 (13)
N30.0359 (16)0.0276 (15)0.0283 (15)0.0133 (13)0.0062 (13)0.0065 (12)
N40.0488 (19)0.0378 (18)0.0341 (18)0.0158 (16)0.0101 (16)0.0085 (14)
N50.0395 (18)0.051 (2)0.063 (2)0.0297 (17)0.0105 (16)0.0110 (17)
N60.0486 (19)0.0391 (18)0.0459 (19)0.0225 (16)0.0027 (17)0.0032 (16)
N70.0350 (16)0.0318 (16)0.0379 (17)0.0216 (14)0.0051 (13)0.0070 (13)
N80.0424 (17)0.0438 (18)0.0373 (17)0.0281 (15)0.0006 (14)0.0003 (14)
N90.0368 (16)0.0293 (15)0.0369 (16)0.0184 (13)0.0055 (14)0.0043 (13)
N100.047 (2)0.0292 (17)0.054 (2)0.0193 (16)0.0073 (16)0.0054 (15)
N110.0351 (16)0.0395 (17)0.0342 (16)0.0253 (14)0.0075 (13)0.0078 (13)
N120.0366 (16)0.0415 (17)0.0335 (16)0.0243 (14)0.0082 (13)0.0059 (13)
N130.0236 (14)0.0370 (16)0.0296 (15)0.0140 (13)0.0094 (12)0.0067 (12)
N140.0337 (17)0.052 (2)0.0390 (18)0.0202 (17)0.0140 (14)0.0058 (16)
N150.0370 (17)0.054 (2)0.052 (2)0.0229 (16)0.0020 (16)0.0105 (17)
N160.0428 (18)0.0456 (19)0.053 (2)0.0238 (16)0.0151 (16)0.0129 (17)
C10.040 (2)0.0259 (17)0.0331 (19)0.0150 (16)0.0073 (16)0.0042 (15)
C20.0316 (18)0.0267 (17)0.0248 (17)0.0108 (15)0.0025 (14)0.0006 (14)
C30.064 (3)0.038 (2)0.044 (2)0.032 (2)0.017 (2)0.0111 (17)
C40.042 (2)0.046 (2)0.041 (2)0.0237 (18)0.0148 (17)0.0091 (17)
C60.043 (2)0.0328 (19)0.041 (2)0.0175 (18)0.0173 (19)0.0079 (17)
C70.044 (2)0.042 (2)0.040 (2)0.0264 (19)0.0041 (18)0.0049 (17)
C80.0326 (18)0.0298 (18)0.0367 (19)0.0173 (16)0.0095 (15)0.0084 (16)
C90.075 (3)0.070 (3)0.079 (3)0.056 (3)0.023 (3)0.012 (3)
C100.048 (2)0.037 (2)0.069 (3)0.0246 (19)0.011 (2)0.003 (2)
C110.0298 (17)0.0305 (18)0.0291 (18)0.0173 (15)0.0013 (14)0.0021 (14)
C120.0267 (17)0.0367 (19)0.037 (2)0.0172 (16)0.0074 (15)0.0097 (16)
C130.043 (2)0.054 (2)0.035 (2)0.0311 (19)0.0023 (17)0.0040 (17)
C140.048 (2)0.065 (3)0.053 (3)0.033 (2)0.015 (2)0.029 (2)
C160.0323 (19)0.037 (2)0.042 (2)0.0225 (17)0.0021 (17)0.0013 (17)
Geometric parameters (Å, º) top
Zn1—N51.914 (3)N10—HW40.868 (18)
Zn1—N61.954 (3)N11—C121.318 (4)
Zn1—N2i2.011 (3)N11—N121.395 (4)
Zn1—N12.012 (3)N12—C111.309 (4)
Zn2—N161.926 (3)N13—C121.344 (4)
Zn2—N151.962 (3)N13—C111.359 (4)
Zn2—N71.990 (3)N13—N141.410 (4)
Zn2—N112.000 (3)N14—HW50.879 (18)
S1A—C5A1.595 (10)N14—HW60.871 (18)
C5A—N51.147 (10)N16—C161.161 (4)
S1B—C5B1.629 (12)C1—C31.475 (5)
C5B—N51.173 (12)C2—C41.474 (5)
S3A—C15A1.600 (9)C3—H3A0.9700
C15A—N151.147 (8)C3—H3B0.9700
S3B—C15B1.626 (13)C3—H3C0.9700
C15B—N151.158 (12)C4—H4C0.9700
S2—C61.624 (4)C4—H4D0.9700
S4—C161.615 (4)C4—H4E0.9700
N1—C21.310 (4)C7—C91.485 (5)
N1—N21.395 (4)C8—C101.485 (5)
N2—C11.315 (4)C9—H9A0.9700
N2—Zn1i2.011 (3)C9—H9B0.9700
N3—C21.355 (4)C9—H9C0.9700
N3—C11.357 (4)C10—H10C0.9700
N3—N41.399 (4)C10—H10D0.9700
N4—HW10.889 (18)C10—H10E0.9700
N4—HW20.882 (18)C11—C131.478 (5)
N6—C61.147 (5)C12—C141.474 (5)
N7—C81.312 (4)C13—H13A0.9700
N7—N81.395 (4)C13—H13B0.9700
N8—C71.305 (4)C13—H13C0.9700
N9—C81.342 (4)C14—H14C0.9700
N9—C71.365 (5)C14—H14D0.9700
N9—N101.413 (4)C14—H14E0.9700
N10—HW30.853 (18)
N5—Zn1—N6109.04 (14)N2—C1—C3127.0 (3)
N5—Zn1—N2i115.00 (13)N3—C1—C3124.7 (3)
N6—Zn1—N2i105.22 (12)N1—C2—N3108.2 (3)
N5—Zn1—N1114.77 (12)N1—C2—C4127.1 (3)
N6—Zn1—N1103.49 (12)N3—C2—C4124.7 (3)
N2i—Zn1—N1108.28 (11)C1—C3—H3A109.5
N16—Zn2—N15112.81 (14)C1—C3—H3B109.5
N16—Zn2—N7112.84 (13)H3A—C3—H3B109.5
N15—Zn2—N7106.15 (13)C1—C3—H3C109.5
N16—Zn2—N11105.92 (12)H3A—C3—H3C109.5
N15—Zn2—N11103.13 (12)H3B—C3—H3C109.5
N7—Zn2—N11115.73 (11)C2—C4—H4C109.5
N5—C5A—S1A177.3 (14)C2—C4—H4D109.5
N5—C5B—S1B174.2 (18)H4C—C4—H4D109.5
N15—C15A—S3A178.8 (7)C2—C4—H4E109.5
N15—C15B—S3B174.4 (13)H4C—C4—H4E109.5
C2—N1—N2108.0 (3)H4D—C4—H4E109.5
C2—N1—Zn1127.6 (2)N6—C6—S2178.4 (4)
N2—N1—Zn1122.2 (2)N8—C7—N9109.4 (3)
C1—N2—N1107.5 (3)N8—C7—C9126.4 (4)
C1—N2—Zn1i127.7 (2)N9—C7—C9124.2 (3)
N1—N2—Zn1i122.1 (2)N7—C8—N9108.1 (3)
C2—N3—C1108.1 (3)N7—C8—C10127.2 (3)
C2—N3—N4129.1 (3)N9—C8—C10124.7 (3)
C1—N3—N4122.8 (3)C7—C9—H9A109.5
N3—N4—HW1108 (2)C7—C9—H9B109.5
N3—N4—HW2109 (2)H9A—C9—H9B109.5
HW1—N4—HW2103 (3)C7—C9—H9C109.5
C5A—N5—Zn1164.9 (8)H9A—C9—H9C109.5
C5B—N5—Zn1158.6 (10)H9B—C9—H9C109.5
C6—N6—Zn1176.7 (3)C8—C10—H10C109.5
C8—N7—N8108.9 (3)C8—C10—H10D109.5
C8—N7—Zn2132.1 (2)H10C—C10—H10D109.5
N8—N7—Zn2118.4 (2)C8—C10—H10E109.5
C7—N8—N7106.2 (3)H10C—C10—H10E109.5
C8—N9—C7107.5 (3)H10D—C10—H10E109.5
C8—N9—N10123.4 (3)N12—C11—N13109.4 (3)
C7—N9—N10128.7 (3)N12—C11—C13126.1 (3)
N9—N10—HW3103 (3)N13—C11—C13124.5 (3)
N9—N10—HW4108 (3)N11—C12—N13108.0 (3)
HW3—N10—HW4114 (4)N11—C12—C14126.6 (3)
C12—N11—N12108.5 (3)N13—C12—C14125.3 (3)
C12—N11—Zn2128.6 (2)C11—C13—H13A109.5
N12—N11—Zn2120.5 (2)C11—C13—H13B109.5
C11—N12—N11106.4 (3)H13A—C13—H13B109.5
C12—N13—C11107.6 (3)C11—C13—H13C109.5
C12—N13—N14123.5 (3)H13A—C13—H13C109.5
C11—N13—N14128.8 (3)H13B—C13—H13C109.5
N13—N14—HW5105 (2)C12—C14—H14C109.5
N13—N14—HW6106 (3)C12—C14—H14D109.5
HW5—N14—HW6118 (4)H14C—C14—H14D109.5
C15A—N15—Zn2163.6 (7)C12—C14—H14E109.5
C15B—N15—Zn2148.3 (11)H14C—C14—H14E109.5
C16—N16—Zn2167.0 (3)H14D—C14—H14E109.5
N2—C1—N3108.2 (3)N16—C16—S4178.7 (3)
N5—Zn1—N1—C239.3 (3)N2—N1—C2—N31.0 (3)
N6—Zn1—N1—C279.4 (3)Zn1—N1—C2—N3162.3 (2)
N2i—Zn1—N1—C2169.3 (3)N2—N1—C2—C4178.2 (3)
N5—Zn1—N1—N2159.6 (2)Zn1—N1—C2—C418.5 (5)
N6—Zn1—N1—N281.7 (2)C1—N3—C2—N10.8 (3)
N2i—Zn1—N1—N229.6 (3)N4—N3—C2—N1179.0 (3)
C2—N1—N2—C10.8 (3)C1—N3—C2—C4178.5 (3)
Zn1—N1—N2—C1163.5 (2)N4—N3—C2—C41.8 (5)
C2—N1—N2—Zn1i162.0 (2)N7—N8—C7—N90.4 (4)
Zn1—N1—N2—Zn1i33.6 (3)N7—N8—C7—C9178.8 (4)
N16—Zn2—N7—C866.9 (3)C8—N9—C7—N80.8 (4)
N15—Zn2—N7—C8169.0 (3)N10—N9—C7—N8173.8 (3)
N11—Zn2—N7—C855.3 (3)C8—N9—C7—C9178.4 (4)
N16—Zn2—N7—N8102.7 (2)N10—N9—C7—C95.4 (6)
N15—Zn2—N7—N821.4 (3)N8—N7—C8—N90.7 (4)
N11—Zn2—N7—N8135.1 (2)Zn2—N7—C8—N9171.0 (2)
C8—N7—N8—C70.1 (4)N8—N7—C8—C10178.8 (3)
Zn2—N7—N8—C7172.0 (2)Zn2—N7—C8—C108.4 (6)
N16—Zn2—N11—C12159.0 (3)C7—N9—C8—N70.9 (4)
N15—Zn2—N11—C1240.3 (3)N10—N9—C8—N7174.3 (3)
N7—Zn2—N11—C1275.2 (3)C7—N9—C8—C10178.5 (4)
N16—Zn2—N11—N121.3 (3)N10—N9—C8—C105.1 (5)
N15—Zn2—N11—N12120.0 (2)N11—N12—C11—N130.5 (4)
N7—Zn2—N11—N12124.6 (2)N11—N12—C11—C13178.4 (3)
C12—N11—N12—C110.7 (4)C12—N13—C11—N120.2 (4)
Zn2—N11—N12—C11164.5 (2)N14—N13—C11—N12176.7 (3)
N15—Zn2—N16—C1617.4 (14)C12—N13—C11—C13178.8 (3)
N7—Zn2—N16—C16102.9 (13)N14—N13—C11—C134.3 (5)
N11—Zn2—N16—C16129.5 (13)N12—N11—C12—N130.6 (4)
N1—N2—C1—N30.3 (3)Zn2—N11—C12—N13162.8 (2)
Zn1i—N2—C1—N3161.3 (2)N12—N11—C12—C14179.4 (4)
N1—N2—C1—C3179.9 (3)Zn2—N11—C12—C1417.2 (5)
Zn1i—N2—C1—C318.3 (5)C11—N13—C12—N110.3 (4)
C2—N3—C1—N20.2 (4)N14—N13—C12—N11177.4 (3)
N4—N3—C1—N2179.5 (3)C11—N13—C12—C14179.7 (4)
C2—N3—C1—C3179.3 (3)N14—N13—C12—C142.6 (5)
N4—N3—C1—C30.9 (5)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—HW1···S2ii0.89 (2)2.83 (3)3.495 (3)133 (3)
N4—HW2···N120.88 (2)2.31 (2)3.157 (4)162 (3)
N10—HW3···N12iii0.85 (2)2.47 (2)3.251 (4)152 (3)
N10—HW4···S4iii0.87 (2)2.80 (2)3.641 (4)163 (3)
N14—HW5···N8iv0.88 (2)2.20 (2)3.061 (4)167 (3)
N14—HW6···S3Av0.87 (2)2.83 (3)3.617 (9)151 (3)
N14—HW6···S3Bv0.87 (2)2.83 (3)3.542 (18)140 (3)
C13—H13B···S3Av0.972.823.458 (7)124
Symmetry codes: (ii) x1, y1, z; (iii) x, y1, z; (iv) x1, y, z; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Zn2(NCS)4(C4H8N4)2]·2[Zn(NCS)2(C4H8N4)2]
Mr1399.08
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)8.7665 (8), 9.3100 (5), 20.661 (3)
α, β, γ (°)92.560 (9), 95.926 (2), 115.427 (6)
V3)1507.3 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.91
Crystal size (mm)0.34 × 0.30 × 0.14
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.564, 0.776
No. of measured, independent and
observed [I > 2σ(I)] reflections
14831, 5484, 4550
Rint0.034
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.090, 1.04
No. of reflections5484
No. of parameters387
No. of restraints30
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 0.36

Computer programs: CrystalClear (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Zn1—N51.914 (3)Zn2—N161.926 (3)
Zn1—N61.954 (3)Zn2—N151.962 (3)
Zn1—N2i2.011 (3)Zn2—N71.990 (3)
Zn1—N12.012 (3)Zn2—N112.000 (3)
N5—Zn1—N6109.04 (14)N16—Zn2—N15112.81 (14)
N5—Zn1—N2i115.00 (13)N16—Zn2—N7112.84 (13)
N6—Zn1—N2i105.22 (12)N15—Zn2—N7106.15 (13)
N5—Zn1—N1114.77 (12)N16—Zn2—N11105.92 (12)
N6—Zn1—N1103.49 (12)N15—Zn2—N11103.13 (12)
N2i—Zn1—N1108.28 (11)N7—Zn2—N11115.73 (11)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—HW1···S2ii0.889 (18)2.83 (3)3.495 (3)133 (3)
N4—HW2···N120.882 (18)2.31 (2)3.157 (4)162 (3)
N10—HW3···N12iii0.853 (18)2.47 (2)3.251 (4)152 (3)
N10—HW4···S4iii0.868 (18)2.80 (2)3.641 (4)163 (3)
N14—HW5···N8iv0.879 (18)2.20 (2)3.061 (4)167 (3)
N14—HW6···S3Av0.871 (18)2.83 (3)3.617 (9)151 (3)
N14—HW6···S3Bv0.871 (18)2.83 (3)3.542 (18)140 (3)
C13—H13B···S3Av0.972.823.458 (7)123.9
Symmetry codes: (ii) x1, y1, z; (iii) x, y1, z; (iv) x1, y, z; (v) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the Funds of the Key Laboratory of Organic Synthesis Chemistry of Jiangsu Province and the Youth Foundation of Taishan Medical College, People's Republic of China.

References

First citationHaasnoot, J. G. (2000). Coord. Chem. Rev. 200–202, 131–185.  Web of Science CrossRef CAS Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLavrenova, L. G., Baidina, I. A., Ikorskii, V. N., Sheludjkova, L. A. & Larionov, S. V. (1992). Zh. Neorg. Khim. 37, 630–634.  CAS Google Scholar
First citationLiu, J. C., Guo, G. C., Huang, J. S. & You, X. Z. (2003). Inorg. Chem. 42, 235–243.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, J. C., Xu, Y., Duan, C. Y., Wang, S. L., Liao, F. L., Zhuang, J. Z. & You, X. Z. (1999). Inorg. Chim. Acta, 295, 229–233.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYi, L., Ding, B., Zhao, B., Cheng, P., Liao, D. Z., Yan, S. P. & Jiang, Z. H. (2004). Inorg. Chem. 43, 33–43.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, R., Chen, Q., Yang, X. & Wu, X. (2011). Acta Cryst. E67, m26.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhang, Y.-M., Zhang, Y.-P., Li, B.-L. & Zhang, Y. (2007). Acta Cryst. C63, m120–m122.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, Q. H., Li, H. F., Chen, Z. D. & Fang, R. B. (2002). Inorg. Chim. Acta, 36, 142–146.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1100-m1101
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds