organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Fluoro­phen­yl)-2-(1H-imidazol-1-yl)ethanone

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: taoxiao@njut.edu.cn

(Received 28 June 2011; accepted 3 July 2011; online 13 July 2011)

In the title compound, C11H9FN2O, the dihedral angle between the rings is 87.50 (4)°. In the crystal, inter­molecular C—H⋯N hydrogen bonds link the mol­ecules in a stacked arrangement along the c axis.

Related literature

For related compounds containing a 2-(1H-imidazol-1-yl)-1-phenyl­ethanone fragment, see: Akira et al. (1985[Akira, S., Hideo, S., Noboru, H., Yukio, M., Akira, N. & Kenichi, I. (1985). JP Patent No. JP60260562.]); North et al. (1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]); Yoshimi et al. (2000[Yoshimi, N., Tetsuto, O., Akira, S., Hiroki, K. & Kazuo, K. (2000). Rec. Res. Dev. Antimicrob. Agents Chemother. 4, 81-102.]); Yuan et al. (2007[Yuan, L., Tao, X., Xu, B., Wu, W.-Y. & Wang, J.-T. (2007). Acta Cryst. E63, o1640-o1641.]); Tao et al. (2007[Tao, X., Yuan, L., Zhang, X.-Q., Jing, C. & Wang, J.-T. (2007). Acta Cryst. E63, o1330-o1331.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9FN2O

  • Mr = 204.20

  • Orthorhombic, P 21 21 21

  • a = 8.6730 (17) Å

  • b = 10.132 (2) Å

  • c = 11.088 (2) Å

  • V = 974.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.969, Tmax = 0.990

  • 3790 measured reflections

  • 1052 independent reflections

  • 778 reflections with I > 2σ(I)

  • Rint = 0.045

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.093

  • S = 1.01

  • 1052 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.10 e Å−3

  • Δρmin = −0.09 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯N2i 0.97 2.51 3.454 (4) 164
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994)[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]; cell refinement: CAD-4 EXPRESS[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]; data reduction: XCAD4 (Harms & Wocadlo,1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009)[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]; software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The title compound, C11H9O1N2F1, is the key intermediate in the synthesis of a new kind of antifungal drug (Akira et al., 1985; Yoshimi et al., 2000). The crystal structure determination has been carried out in order to elucidate the molecular conformation (Fig. 1).

In the crystal structure, the bond lengths and angles of the title compound are within normal ranges (Allen et al., 1987). The phenyl and imidazole rings are planar (rms deviations of 0.0038 and 0.0036, respectively) and almost perpendicular to each other. The dihedral angle between the mean planes is 87.50 (4)°. In the crystal structure, intermolecular C—H···N hydrogen bonds (Table 1) link the molecules in a stacked arrangement along the a axis (Fig. 2).

Related literature top

For related compounds containing a 2-(1H-imidazol-1-yl)-1-phenylethanone fragment, see: Akira et al. (1985); North et al. (1968); Yoshimi et al. (2000); Yuan et al. (2007); Tao et al. (2007).

Experimental top

Sodium hydride (4.8 g, 120 mmol) was suspended in dimethylformamide (DMF, 30 ml). Imidazole (6.8 g, 120 mmol) dissolved in DMF (30 ml) was slowly added dropwise at 273 K, and reacted atroom temperature for 30 min. 2-chloro-1-(4-fluorophenyl)ethanone (15.48 g, 90 mmol) dissolved in DMF (30 ml) was then slowly added dropwise, and reacted at room temperature for 4 h. The mixture was placed in ice-water (300 ml), and 1 mol hydrochloric acid (50 ml) was then added. After filtration, the filtrate was neutralized with sodium bicarbonate to pH = 6, and a yellow deposit was obtained (m.p. 423–424 K). Crystals suitable for X-ray analysis were obtained by dissolving the crude product (1.0 g) in ethanol (30 ml) and then allowing the solution to evaporate slowly at room temperature for about 7 d.

Refinement top

In the absence of significant anomalous scattering effects, all Friedel pairs were merged. H atoms were positioned geometrically, with C—H = 0.93 and 0.97 Å for aromatic and methylene H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
1-(4-Fluorophenyl)-2-(1H-imidazol-1-yl)ethanone top
Crystal data top
C11H9FN2ODx = 1.392 Mg m3
Mr = 204.20Melting point: 423 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 8.6730 (17) Åθ = 9–13°
b = 10.132 (2) ŵ = 0.11 mm1
c = 11.088 (2) ÅT = 293 K
V = 974.4 (3) Å3Block, yellow
Z = 40.30 × 0.20 × 0.10 mm
F(000) = 424
Data collection top
Enraf–Nonius CAD-4
diffractometer
778 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
Graphite monochromatorθmax = 25.4°, θmin = 2.7°
ω/2θ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 1212
Tmin = 0.969, Tmax = 0.990l = 1313
3790 measured reflections3 standard reflections every 200 reflections
1052 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0484P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
1052 reflectionsΔρmax = 0.10 e Å3
137 parametersΔρmin = 0.09 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.034 (5)
Crystal data top
C11H9FN2OV = 974.4 (3) Å3
Mr = 204.20Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.6730 (17) ŵ = 0.11 mm1
b = 10.132 (2) ÅT = 293 K
c = 11.088 (2) Å0.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
778 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.045
Tmin = 0.969, Tmax = 0.9903 standard reflections every 200 reflections
3790 measured reflections intensity decay: 1%
1052 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.01Δρmax = 0.10 e Å3
1052 reflectionsΔρmin = 0.09 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F0.3432 (3)0.73232 (18)0.41347 (18)0.1052 (8)
O0.4019 (3)0.2049 (2)0.7042 (2)0.0838 (8)
N10.1657 (3)0.0314 (2)0.6780 (2)0.0556 (6)
C10.2015 (4)0.4109 (3)0.4913 (3)0.0657 (9)
H1A0.12230.35380.46950.079*
C20.2138 (4)0.5322 (3)0.4355 (3)0.0760 (10)
H2A0.14390.55740.37630.091*
N20.1233 (3)0.1189 (3)0.8187 (3)0.0798 (9)
C30.3297 (5)0.6133 (3)0.4687 (3)0.0708 (9)
C40.4345 (4)0.5823 (3)0.5561 (3)0.0671 (9)
H4A0.51230.64090.57760.081*
C50.4208 (3)0.4608 (3)0.6112 (2)0.0568 (8)
H5A0.49060.43720.67110.068*
C60.3053 (3)0.3735 (2)0.5794 (2)0.0496 (7)
C70.3005 (3)0.2428 (3)0.6385 (2)0.0535 (7)
C80.1625 (3)0.1556 (3)0.6133 (3)0.0623 (8)
H8A0.06940.20310.63510.075*
H8B0.15790.13760.52750.075*
C90.2500 (4)0.0773 (3)0.6483 (3)0.0689 (9)
H9A0.31440.08710.58180.083*
C100.2215 (4)0.1673 (3)0.7341 (3)0.0726 (9)
H10A0.26340.25170.73550.087*
C110.0935 (4)0.0013 (3)0.7805 (3)0.0702 (9)
H11A0.02850.05940.82090.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F0.143 (2)0.0728 (12)0.1000 (14)0.0026 (14)0.0088 (16)0.0255 (11)
O0.0624 (13)0.0863 (16)0.1027 (17)0.0131 (12)0.0320 (15)0.0296 (14)
N10.0520 (14)0.0485 (13)0.0663 (15)0.0000 (12)0.0001 (13)0.0063 (12)
C10.064 (2)0.071 (2)0.0621 (18)0.0075 (18)0.0060 (17)0.0042 (16)
C20.081 (3)0.077 (2)0.069 (2)0.006 (2)0.013 (2)0.0144 (18)
N20.087 (2)0.0536 (16)0.099 (2)0.0046 (15)0.0121 (19)0.0027 (15)
C30.092 (3)0.0574 (18)0.063 (2)0.004 (2)0.015 (2)0.0078 (16)
C40.073 (2)0.0598 (18)0.0681 (19)0.0104 (17)0.009 (2)0.0072 (16)
C50.0529 (17)0.0658 (19)0.0518 (17)0.0018 (15)0.0016 (15)0.0025 (14)
C60.0467 (16)0.0559 (16)0.0463 (15)0.0017 (14)0.0002 (13)0.0028 (12)
C70.0445 (15)0.0635 (17)0.0524 (16)0.0015 (14)0.0024 (14)0.0041 (14)
C80.0580 (18)0.0609 (18)0.0681 (19)0.0017 (15)0.0059 (17)0.0028 (15)
C90.0601 (18)0.0654 (18)0.081 (2)0.0062 (17)0.0065 (18)0.0114 (18)
C100.066 (2)0.0521 (17)0.100 (2)0.0043 (16)0.001 (2)0.0078 (19)
C110.0656 (19)0.064 (2)0.080 (2)0.0029 (18)0.0139 (19)0.0142 (18)
Geometric parameters (Å, º) top
F—C31.358 (3)C4—C51.379 (4)
O—C71.205 (3)C4—H4A0.9300
N1—C111.333 (3)C5—C61.382 (4)
N1—C91.363 (3)C5—H5A0.9300
N1—C81.449 (3)C6—C71.478 (4)
C1—C21.380 (4)C7—C81.514 (4)
C1—C61.381 (4)C8—H8A0.9700
C1—H1A0.9300C8—H8B0.9700
C2—C31.350 (5)C9—C101.341 (4)
C2—H2A0.9300C9—H9A0.9300
N2—C111.315 (4)C10—H10A0.9300
N2—C101.359 (4)C11—H11A0.9300
C3—C41.365 (5)
C11—N1—C9105.9 (3)C1—C6—C7122.7 (3)
C11—N1—C8127.7 (3)C5—C6—C7118.7 (3)
C9—N1—C8126.3 (3)O—C7—C6122.2 (3)
C2—C1—C6120.7 (3)O—C7—C8120.2 (3)
C2—C1—H1A119.6C6—C7—C8117.6 (3)
C6—C1—H1A119.6N1—C8—C7113.6 (2)
C3—C2—C1118.5 (3)N1—C8—H8A108.8
C3—C2—H2A120.7C7—C8—H8A108.8
C1—C2—H2A120.7N1—C8—H8B108.8
C11—N2—C10103.6 (3)C7—C8—H8B108.8
C2—C3—F118.8 (3)H8A—C8—H8B107.7
C2—C3—C4123.3 (3)C10—C9—N1106.2 (3)
F—C3—C4117.9 (3)C10—C9—H9A126.9
C3—C4—C5117.6 (3)N1—C9—H9A126.9
C3—C4—H4A121.2C9—C10—N2111.1 (3)
C5—C4—H4A121.2C9—C10—H10A124.4
C4—C5—C6121.4 (3)N2—C10—H10A124.4
C4—C5—H5A119.3N2—C11—N1113.2 (3)
C6—C5—H5A119.3N2—C11—H11A123.4
C1—C6—C5118.5 (3)N1—C11—H11A123.4
C6—C1—C2—C30.0 (5)C5—C6—C7—C8172.8 (2)
C1—C2—C3—F179.5 (3)C11—N1—C8—C798.2 (3)
C1—C2—C3—C40.9 (6)C9—N1—C8—C778.6 (4)
C2—C3—C4—C50.8 (5)O—C7—C8—N12.1 (4)
F—C3—C4—C5179.5 (3)C6—C7—C8—N1178.2 (2)
C3—C4—C5—C60.0 (4)C11—N1—C9—C100.9 (3)
C2—C1—C6—C50.8 (4)C8—N1—C9—C10178.3 (3)
C2—C1—C6—C7177.6 (3)N1—C9—C10—N20.9 (4)
C4—C5—C6—C10.8 (4)C11—N2—C10—C90.5 (4)
C4—C5—C6—C7177.6 (3)C10—N2—C11—N10.1 (4)
C1—C6—C7—O170.8 (3)C9—N1—C11—N20.6 (4)
C5—C6—C7—O7.6 (4)C8—N1—C11—N2177.9 (3)
C1—C6—C7—C88.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···N2i0.972.513.454 (4)164
Symmetry code: (i) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC11H9FN2O
Mr204.20
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)8.6730 (17), 10.132 (2), 11.088 (2)
V3)974.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.969, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
3790, 1052, 778
Rint0.045
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.093, 1.01
No. of reflections1052
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.10, 0.09

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···N2i0.972.513.454 (4)164
Symmetry code: (i) x, y+1/2, z+3/2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAkira, S., Hideo, S., Noboru, H., Yukio, M., Akira, N. & Kenichi, I. (1985). JP Patent No. JP60260562.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTao, X., Yuan, L., Zhang, X.-Q., Jing, C. & Wang, J.-T. (2007). Acta Cryst. E63, o1330–o1331.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYoshimi, N., Tetsuto, O., Akira, S., Hiroki, K. & Kazuo, K. (2000). Rec. Res. Dev. Antimicrob. Agents Chemother. 4, 81–102.  Google Scholar
First citationYuan, L., Tao, X., Xu, B., Wu, W.-Y. & Wang, J.-T. (2007). Acta Cryst. E63, o1640–o1641.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds