organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(5S)-3-Chloro-4-di­allyl­amino-5-[(1R,2S,5R)-2-iso­propyl-5-methyl­cyclo­hex­yl­oxy]furan-2(5H)-one

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: wangwangzhaoyang@tom.com

(Received 7 July 2011; accepted 11 July 2011; online 16 July 2011)

The title compound, C20H30ClNO3, was obtained via a tandem asymmetric Michael addition–elimination reaction of (5S)-3,4-dichloro-5-(l-menth­yloxy)-2(5H)-furan­one and diallyl­amine in the presence of potassium fluoride. The mol­ecular structure contains an approximately planar five-membered furan­one ring [maximum atomic deviation = 0.0221 (3) Å] and a six-membered ring adopting a chair conformation.

Related literature

For the biological activity of 4-amino-2(5H)-furan­ones, see: Gondela & Walczak (2010[Gondela, E. & Walczak, K. Z. (2010). Eur. J. Med. Chem. 45, 3993-3997.]). For chemical, pharmaceutical and agrochemical applications of 3,4-amino-2(5H)-furan­ones, see: Tanoury et al. (2008[Tanoury, G. J., Chen, M.-Z., Dong, Y., Forslund, R. E. & Magdziak, D. (2008). Org. Lett. 10, 185-188.]); Kimura et al. (2000[Kimura, Y., Mizuno, T., Kawano, T., Okada, K. & Shimad, A. (2000). Phytochemistry, 53, 829-831.]). For the synthesis of optically pure 5-(l-menth­yloxy)-3,4-dichloro-2(5H)-furan­ones, see: Song et al. (2009[Song, X.-M., Wang, Z.-Y., Li, J.-X. & Fu, J.-H. (2009). Chin. J. Org. Chem. 11, 1804-1810.]). For the use of inter­mediate chiral 5-S-(l-menth­yloxy)-2(5H)-furan­ones, see: Hoffmann et al. (2006[Hoffmann, N., Bertrand, S., Marinkovi, S. & Pesch, J. (2006). Pure Appl. Chem. 78, 2227-2246.]).

[Scheme 1]

Experimental

Crystal data
  • C20H30ClNO3

  • Mr = 367.90

  • Orthorhombic, P 21 21 21

  • a = 8.4540 (17) Å

  • b = 11.722 (2) Å

  • c = 20.648 (4) Å

  • V = 2046.1 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 273 K

  • 0.23 × 0.20 × 0.16 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.954, Tmax = 0.968

  • 9931 measured reflections

  • 3950 independent reflections

  • 2923 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.102

  • S = 0.97

  • 3950 reflections

  • 230 parameters

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.13 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1677 Friedel pairs

  • Flack parameter: −0.06 (6)

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The 2(5H)-furanone moiety is present in many natural products exhibiting various biological activities, namely antibiotic cytotoxic and antitumor (Gondela & Walczak, 2010). Recently, owing to their specific activity and high stereoselectivity, chiral 5S-(l-menthyloxy)-2(5H)-furanones have emerged as significant synthetic intermediates (Hoffmann et al., 2006; Song et al., 2009). At the same time, 4-amino-2(5H)-furanone (or 3-amino-2(5H)-furanone) is a kind of attractive moiety in chemical, pharmaceutical and agrochemical research (Tanoury et al., 2008; Kimura et al., 2000). Therefore we were interested in the tandem Michael addition-elimination reaction of the chiral synthon 3,4-dichloro-5(S)-(l-menthyloxy)-2(5H)-furanone and diallylamine in the present of potassium fluoride which yielded the title compound, C20H30ClNO3, illustrated in Fig. 1.

The title compound has four chiral centers [C4(S), C7(R), C9(R), C11(S)] and contains a five-membered furanone ring and a six-membered ring connected to each other via a C11—O1—C9 ether bond. The furanone ring of C11—O2—C12—C13—C14 is approximately planar [maximum atomic deviation 0.0221 (3) Å], whereas the six-membered ring displays a chair conformation.

Related literature top

For the biological activity of 4-amino-2(5H)-furanones, see: Gondela et al. (2010). For applications of 3,4-amino-2(5H)-furanone in chemical, pharmaceutical and agrochemical fields, see: Tanoury et al. (2008); Kimura et al. (2000). For the synthesis of optically pure 5-(l-menthyloxy)-3,4-dichloro-2(5H)-furanones, see: Song et al. (2009). For the use of intermediate chiral 5-S-(l-menthyloxy)-2(5H)-furanones, see: Hoffmann et al. (2006).

Experimental top

The precursor 3,4-dichloro-5-(S)-(l-menthyloxy)-2(5H)-furanone was prepared according to the literature procedure (Song et al., 2009). After the mixture of 3,4-dichloro-5S-(l-menthyloxy)-2(5H)-furanone (2.0 mmol) and potassium fluoride (6.0 mmol) was dissolved in absolute tetrahydrofuran (2.0 ml) under nitrogen atmosphere, tetrahydrofuran solution of diallylamine (3.0 mmol) was added. The reaction was carried out under the stirring at room temperature for 24 h. Once the reaction was complete, the solvents were removed under reduced pressure. The residual solid was dissolved in dichloromethane. Then the combined organic layers from extraction were concentrated under reduced pressure, and the crude product was purified by silica gel column chromatography with the gradient mixture of petroleum ether and ethyl acetate to give the final product (0.575 g, 78.3%).

Refinement top

All H atoms were positioned in calculated positions and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C) for aromatic H atoms, with C—H = 0.97 Å and Uiso(H) = 1.2 Ueq(C) for methylene H atoms, with C—H = 0.98 Å and Uiso(H) = 1.2 Ueq(C) for methine H atoms, and with C—H = 0.96 Å and Uiso(H) = 1.5 Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing thermal ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Perspective view of the crystal packing.
(5S)-3-Chloro-4-diallylamino-5-[(1R,2S,5R)-2- isopropyl-5-methylcyclohexyloxy]furan-2(5H)-one top
Crystal data top
C20H30ClNO3F(000) = 792.0
Mr = 367.90Dx = 1.194 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2994 reflections
a = 8.4540 (17) Åθ = 2.6–22.1°
b = 11.722 (2) ŵ = 0.20 mm1
c = 20.648 (4) ÅT = 273 K
V = 2046.1 (7) Å3Block, colourless
Z = 40.23 × 0.20 × 0.16 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3950 independent reflections
Radiation source: fine-focus sealed tube2923 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
phi and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 108
Tmin = 0.954, Tmax = 0.968k = 1414
9931 measured reflectionsl = 2225
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0584P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.102(Δ/σ)max < 0.001
S = 0.97Δρmax = 0.11 e Å3
3950 reflectionsΔρmin = 0.13 e Å3
230 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0125 (18)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1677 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.06 (6)
Crystal data top
C20H30ClNO3V = 2046.1 (7) Å3
Mr = 367.90Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.4540 (17) ŵ = 0.20 mm1
b = 11.722 (2) ÅT = 273 K
c = 20.648 (4) Å0.23 × 0.20 × 0.16 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3950 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2923 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.968Rint = 0.033
9931 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.102Δρmax = 0.11 e Å3
S = 0.97Δρmin = 0.13 e Å3
3950 reflectionsAbsolute structure: Flack (1983), 1677 Friedel pairs
230 parametersAbsolute structure parameter: 0.06 (6)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.27814 (9)0.46092 (4)0.91712 (3)0.0767 (2)
C140.3852 (2)0.68664 (15)0.92440 (10)0.0450 (5)
C120.3084 (3)0.60235 (16)1.01887 (11)0.0553 (5)
C130.3270 (3)0.58965 (15)0.95061 (10)0.0513 (5)
C110.3995 (3)0.77169 (15)0.97949 (9)0.0455 (5)
H110.50780.80090.98270.055*
C40.2172 (3)1.05546 (15)0.97288 (11)0.0560 (5)
H40.10961.02950.98270.067*
C80.3116 (3)0.95600 (17)1.07345 (10)0.0595 (6)
H8A0.38960.90241.08950.071*
H8B0.20770.92521.08300.071*
C90.3297 (3)0.96703 (16)1.00113 (9)0.0496 (5)
H90.43890.98900.99110.060*
C60.2206 (4)1.1564 (2)1.08117 (14)0.0844 (8)
H6A0.23961.22961.10170.101*
H6B0.11251.13411.09050.101*
C190.6469 (3)0.81529 (18)0.81335 (11)0.0645 (6)
H190.73000.78520.83740.077*
C50.2408 (4)1.16881 (17)1.00889 (14)0.0805 (8)
H5A0.34611.19760.99990.097*
H5B0.16521.22420.99280.097*
C180.4919 (3)0.82587 (17)0.84594 (11)0.0591 (6)
H18A0.50420.87180.88470.071*
H18B0.41890.86520.81740.071*
C200.6762 (4)0.8440 (2)0.75483 (13)0.0879 (9)
H20A0.59630.87440.72910.105*
H20B0.77740.83450.73800.105*
C150.3794 (3)0.6432 (2)0.80906 (11)0.0696 (7)
H15A0.39660.56400.82070.083*
H15B0.44790.66060.77270.083*
C30.2284 (3)1.06627 (18)0.89904 (12)0.0692 (7)
H30.22440.98860.88150.083*
C20.0861 (4)1.1300 (3)0.87141 (16)0.1021 (11)
H2A0.08871.12630.82500.153*
H2B0.08971.20830.88500.153*
H2C0.00961.09540.88690.153*
C70.3313 (3)1.0696 (2)1.10909 (12)0.0737 (8)
H70.43971.09641.10190.088*
C170.1074 (4)0.7219 (3)0.81581 (15)0.0960 (10)
H17A0.13380.76500.85210.115*
H17B0.00530.72510.79910.115*
C160.2130 (5)0.6574 (3)0.78848 (13)0.0877 (9)
H160.18080.61610.75240.105*
C10.3837 (4)1.1195 (3)0.87538 (15)0.0915 (9)
H1A0.47141.08080.89520.137*
H1B0.38621.19880.88700.137*
H1C0.39081.11210.82920.137*
C100.3083 (5)1.0534 (3)1.18160 (13)0.1167 (12)
H10A0.20531.02211.18960.175*
H10B0.31771.12581.20300.175*
H10C0.38761.00231.19790.175*
O10.29340 (17)0.86000 (10)0.96896 (6)0.0459 (3)
O30.2592 (2)0.53592 (13)1.05869 (8)0.0787 (5)
O20.3578 (2)0.70923 (11)1.03625 (6)0.0578 (4)
N10.4245 (2)0.71508 (14)0.86380 (8)0.0535 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0780 (5)0.0447 (3)0.1075 (5)0.0086 (3)0.0051 (4)0.0110 (3)
C140.0359 (12)0.0431 (10)0.0560 (12)0.0047 (8)0.0009 (10)0.0023 (9)
C120.0476 (14)0.0461 (11)0.0721 (14)0.0114 (10)0.0083 (12)0.0082 (10)
C130.0499 (14)0.0391 (10)0.0650 (13)0.0052 (9)0.0028 (11)0.0034 (9)
C110.0420 (13)0.0424 (10)0.0520 (11)0.0048 (8)0.0026 (10)0.0002 (9)
C40.0468 (13)0.0410 (10)0.0802 (14)0.0021 (9)0.0065 (12)0.0006 (9)
C80.0590 (15)0.0544 (12)0.0651 (13)0.0027 (11)0.0038 (12)0.0137 (10)
C90.0429 (12)0.0384 (9)0.0676 (13)0.0027 (9)0.0066 (10)0.0081 (9)
C60.0707 (19)0.0605 (13)0.122 (2)0.0036 (13)0.0113 (19)0.0395 (14)
C190.0649 (17)0.0676 (14)0.0611 (14)0.0026 (11)0.0068 (12)0.0045 (11)
C50.0714 (18)0.0416 (11)0.128 (2)0.0022 (11)0.0092 (18)0.0092 (12)
C180.0696 (18)0.0510 (12)0.0567 (13)0.0041 (11)0.0104 (12)0.0008 (9)
C200.102 (3)0.0845 (18)0.0771 (18)0.0078 (16)0.0255 (17)0.0160 (13)
C150.085 (2)0.0660 (14)0.0577 (13)0.0072 (13)0.0093 (14)0.0186 (11)
C30.0683 (18)0.0532 (12)0.0860 (17)0.0052 (11)0.0083 (14)0.0154 (11)
C20.097 (3)0.093 (2)0.117 (2)0.0256 (18)0.001 (2)0.0334 (19)
C70.0587 (18)0.0717 (15)0.0907 (18)0.0038 (12)0.0042 (14)0.0356 (13)
C170.072 (2)0.112 (2)0.103 (2)0.0005 (18)0.0199 (19)0.0284 (19)
C160.095 (3)0.097 (2)0.0713 (17)0.0248 (18)0.0220 (18)0.0032 (14)
C10.091 (2)0.0711 (17)0.112 (2)0.0002 (15)0.0313 (18)0.0273 (16)
C100.132 (3)0.124 (2)0.095 (2)0.017 (2)0.009 (2)0.0571 (18)
O10.0451 (9)0.0361 (6)0.0566 (8)0.0029 (6)0.0014 (7)0.0035 (5)
O30.0931 (14)0.0606 (9)0.0823 (11)0.0075 (10)0.0270 (10)0.0186 (8)
O20.0713 (11)0.0498 (8)0.0524 (8)0.0084 (7)0.0055 (8)0.0020 (6)
N10.0601 (13)0.0492 (9)0.0512 (10)0.0060 (8)0.0077 (9)0.0074 (8)
Geometric parameters (Å, º) top
Cl1—C131.711 (2)C5—H5B0.9700
C14—N11.337 (3)C18—N11.466 (3)
C14—C131.352 (3)C18—H18A0.9700
C14—C111.517 (3)C18—H18B0.9700
C12—O31.206 (2)C20—H20A0.9300
C12—O21.369 (2)C20—H20B0.9300
C12—C131.426 (3)C15—N11.460 (3)
C11—O11.387 (2)C15—C161.479 (4)
C11—O21.426 (2)C15—H15A0.9700
C11—H110.9800C15—H15B0.9700
C4—C91.523 (3)C3—C21.526 (4)
C4—C31.533 (3)C3—C11.534 (4)
C4—C51.536 (3)C3—H30.9800
C4—H40.9800C2—H2A0.9600
C8—C91.507 (3)C2—H2B0.9600
C8—C71.530 (3)C2—H2C0.9600
C8—H8A0.9700C7—C101.521 (4)
C8—H8B0.9700C7—H70.9800
C9—O11.452 (2)C17—C161.299 (4)
C9—H90.9800C17—H17A0.9300
C6—C71.498 (4)C17—H17B0.9300
C6—C51.509 (4)C16—H160.9300
C6—H6A0.9700C1—H1A0.9600
C6—H6B0.9700C1—H1B0.9600
C19—C201.279 (3)C1—H1C0.9600
C19—C181.478 (4)C10—H10A0.9600
C19—H190.9300C10—H10B0.9600
C5—H5A0.9700C10—H10C0.9600
N1—C14—C13132.44 (19)C19—C18—H18B109.1
N1—C14—C11121.21 (17)H18A—C18—H18B107.8
C13—C14—C11106.34 (18)C19—C20—H20A120.0
O3—C12—O2121.2 (2)C19—C20—H20B120.0
O3—C12—C13130.1 (2)H20A—C20—H20B120.0
O2—C12—C13108.72 (17)N1—C15—C16113.9 (2)
C14—C13—C12110.37 (18)N1—C15—H15A108.8
C14—C13—Cl1131.91 (17)C16—C15—H15A108.8
C12—C13—Cl1117.71 (15)N1—C15—H15B108.8
O1—C11—O2110.64 (16)C16—C15—H15B108.8
O1—C11—C14108.76 (15)H15A—C15—H15B107.7
O2—C11—C14105.02 (15)C2—C3—C4111.3 (2)
O1—C11—H11110.8C2—C3—C1110.9 (2)
O2—C11—H11110.8C4—C3—C1113.8 (2)
C14—C11—H11110.8C2—C3—H3106.8
C9—C4—C3113.48 (18)C4—C3—H3106.8
C9—C4—C5108.78 (19)C1—C3—H3106.8
C3—C4—C5113.70 (18)C3—C2—H2A109.5
C9—C4—H4106.8C3—C2—H2B109.5
C3—C4—H4106.8H2A—C2—H2B109.5
C5—C4—H4106.8C3—C2—H2C109.5
C9—C8—C7113.01 (18)H2A—C2—H2C109.5
C9—C8—H8A109.0H2B—C2—H2C109.5
C7—C8—H8A109.0C6—C7—C10112.5 (2)
C9—C8—H8B109.0C6—C7—C8109.8 (2)
C7—C8—H8B109.0C10—C7—C8110.6 (2)
H8A—C8—H8B107.8C6—C7—H7107.9
O1—C9—C8110.96 (15)C10—C7—H7107.9
O1—C9—C4106.29 (16)C8—C7—H7107.9
C8—C9—C4111.98 (17)C16—C17—H17A120.0
O1—C9—H9109.2C16—C17—H17B120.0
C8—C9—H9109.2H17A—C17—H17B120.0
C4—C9—H9109.2C17—C16—C15126.5 (3)
C7—C6—C5112.0 (2)C17—C16—H16116.8
C7—C6—H6A109.2C15—C16—H16116.8
C5—C6—H6A109.2C3—C1—H1A109.5
C7—C6—H6B109.2C3—C1—H1B109.5
C5—C6—H6B109.2H1A—C1—H1B109.5
H6A—C6—H6B107.9C3—C1—H1C109.5
C20—C19—C18125.4 (3)H1A—C1—H1C109.5
C20—C19—H19117.3H1B—C1—H1C109.5
C18—C19—H19117.3C7—C10—H10A109.5
C6—C5—C4112.37 (19)C7—C10—H10B109.5
C6—C5—H5A109.1H10A—C10—H10B109.5
C4—C5—H5A109.1C7—C10—H10C109.5
C6—C5—H5B109.1H10A—C10—H10C109.5
C4—C5—H5B109.1H10B—C10—H10C109.5
H5A—C5—H5B107.9C11—O1—C9115.87 (15)
N1—C18—C19112.65 (18)C12—O2—C11109.26 (15)
N1—C18—H18A109.1C14—N1—C15121.05 (18)
C19—C18—H18A109.1C14—N1—C18123.58 (16)
N1—C18—H18B109.1C15—N1—C18114.71 (17)
N1—C14—C13—C12178.7 (2)C9—C4—C3—C169.3 (2)
C11—C14—C13—C122.5 (2)C5—C4—C3—C155.8 (3)
N1—C14—C13—Cl10.1 (4)C5—C6—C7—C10178.1 (2)
C11—C14—C13—Cl1178.66 (18)C5—C6—C7—C854.5 (3)
O3—C12—C13—C14179.4 (2)C9—C8—C7—C654.1 (3)
O2—C12—C13—C140.8 (2)C9—C8—C7—C10178.8 (2)
O3—C12—C13—Cl11.6 (3)N1—C15—C16—C173.2 (4)
O2—C12—C13—Cl1178.22 (15)O2—C11—O1—C987.69 (19)
N1—C14—C11—O165.3 (2)C14—C11—O1—C9157.46 (15)
C13—C14—C11—O1113.67 (19)C8—C9—O1—C1168.4 (2)
N1—C14—C11—O2176.28 (18)C4—C9—O1—C11169.65 (16)
C13—C14—C11—O24.8 (2)O3—C12—O2—C11176.1 (2)
C7—C8—C9—O1173.88 (18)C13—C12—O2—C114.0 (2)
C7—C8—C9—C455.3 (3)O1—C11—O2—C12111.83 (19)
C3—C4—C9—O156.8 (2)C14—C11—O2—C125.3 (2)
C5—C4—C9—O1175.58 (18)C13—C14—N1—C1512.0 (4)
C3—C4—C9—C8178.10 (18)C11—C14—N1—C15166.6 (2)
C5—C4—C9—C854.3 (2)C13—C14—N1—C18177.8 (2)
C7—C6—C5—C457.3 (3)C11—C14—N1—C183.6 (3)
C9—C4—C5—C655.5 (3)C16—C15—N1—C1479.1 (3)
C3—C4—C5—C6177.0 (2)C16—C15—N1—C1891.9 (3)
C20—C19—C18—N1115.5 (3)C19—C18—N1—C14122.4 (2)
C9—C4—C3—C2164.5 (2)C19—C18—N1—C1566.8 (3)
C5—C4—C3—C270.4 (3)

Experimental details

Crystal data
Chemical formulaC20H30ClNO3
Mr367.90
Crystal system, space groupOrthorhombic, P212121
Temperature (K)273
a, b, c (Å)8.4540 (17), 11.722 (2), 20.648 (4)
V3)2046.1 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.23 × 0.20 × 0.16
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.954, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
9931, 3950, 2923
Rint0.033
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.102, 0.97
No. of reflections3950
No. of parameters230
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.13
Absolute structureFlack (1983), 1677 Friedel pairs
Absolute structure parameter0.06 (6)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

 

Acknowledgements

The work was supported by the National Natural Science Foundation of China (grant No. 20772035) and the Natural Science Foundation of Guangdong Province, China (grant No. 5300082).

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGondela, E. & Walczak, K. Z. (2010). Eur. J. Med. Chem. 45, 3993–3997.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHoffmann, N., Bertrand, S., Marinkovi, S. & Pesch, J. (2006). Pure Appl. Chem. 78, 2227–2246.  Web of Science CrossRef CAS Google Scholar
First citationKimura, Y., Mizuno, T., Kawano, T., Okada, K. & Shimad, A. (2000). Phytochemistry, 53, 829–831.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, X.-M., Wang, Z.-Y., Li, J.-X. & Fu, J.-H. (2009). Chin. J. Org. Chem. 11, 1804–1810.  Google Scholar
First citationTanoury, G. J., Chen, M.-Z., Dong, Y., Forslund, R. E. & Magdziak, D. (2008). Org. Lett. 10, 185–188.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds