organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Methyl N′-[(1H-indol-3-yl)methyl­­idene]hydrazine­carboxyl­ate 0.25-hydrate

aLinjiang College, Hangzhou Vocational and Technical College, Hangzhou 310018, People's Republic of China, and bResearch Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: zgdhxc@126.com

(Received 17 June 2011; accepted 1 July 2011; online 9 July 2011)

The asymmetric unit of the title compound, C11H11N3O2·0.25H2O, contains two independent organic mol­ecules and a water mol­ecule, which lies on a twofold rotation axis. The side chains of the two mol­ecules have slightly different orientations, the C=N—N—C torsion angle being −163.03 (15)° in one and −177.52 (14)° in the other, with each adopting a trans configuration with respect to the C=N bond. In the crystal, mol­ecules are linked into chains extending along b by N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds and in addition, four inter­molecular C—H⋯π inter­actions are present.

Related literature

For general background to Schiff bases, see: Cimerman et al. (1997[Cimerman, Z., Galic, N. & Bosner, B. (1997). Anal Chim. Acta, 343, 145-153.]); Offe et al. (1952[Offe, H. A., Siefen, W. & Domagk, G. (1952). Z. Naturforsch. Teil B, 7, 446-447.]); Richardson et al. (1988[Richardson, D., Baker, E., Ponka, P., Wilairat, P., Vitolo, M. L. & Webb, J. (1988). Thalassemia: Pathophysiology and Management, Part B, p. 81. New York: Alan R. Liss Inc.]). For related structures, see: Shang et al. (2007[Shang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, o3394.]); Tamboura et al. (2009[Tamboura, F. B., Gaye, M., Sall, A. S., Barry, A. H. & Bah, Y. (2009). Acta Cryst. E65, m160-m161.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11N3O2·0.25H2O

  • Mr = 886.93

  • Monoclinic, C 2/c

  • a = 27.842 (2) Å

  • b = 11.7574 (11) Å

  • c = 18.565 (2) Å

  • β = 130.558 (5)°

  • V = 4617.2 (8) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 223 K

  • 0.21 × 0.17 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.977, Tmax = 0.989

  • 21333 measured reflections

  • 4052 independent reflections

  • 3083 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.124

  • S = 1.05

  • 4052 reflections

  • 298 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 and Cg5 are the centroids of the C16–C19/N4 and C12–C17 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.86 2.15 2.9426 (18) 154
O1W—H1WA⋯N2ii 0.93 (2) 2.19 (2) 3.0773 (17) 161 (2)
O1W—H1WA⋯O1ii 0.93 (2) 2.60 (2) 3.2217 (14) 125 (2)
N6—H6⋯O1W 0.86 2.17 3.0087 (17) 166
C7—H7⋯Cg4iii 0.93 2.85 3.594 (3) 137
C9—H9⋯Cg5iii 0.93 2.74 3.537 (3) 145
C22—H22ACg4iv 0.96 2.92 3.555 (4) 125
C22—H22ACg5iv 0.96 2.86 3.796 (3) 125
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [-x, y-1, -z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y+{\script{3\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have attracted much attention due to their potential analytical applications (Cimerman et al., 1997). They are also important ligands, which have been reported to have mild bacteriostatic activity and are used as potential oral iron-chelating drugs for genetic disorders such as thalassemia (Offe et al., 1952; Richardson et al., 1988). Metal complexes based on Schiff bases have received considerable attention because they can be utilized as model compounds of active centres in various complexes (Tamboura et al., 2009). We report here the crystal structure of the title compound C11H11N3O2 . 0.25H2O.

The title compound (Fig. 1) has two independent, but almost conformationally identical molecules in the asymmetric unit, together with a water molecule of solvation which lies on a twofold rotation axis. Each molecule adopts a trans configuration with respect to the C N bond. The N2/N3/O1/O2/C10/C11 and N5/N6/O3/O4/C21/C22 planes form dihedral angles of 20.39 (6)° and 16.57 (6)°, respectively, with the C1—C8/N1 and C12—C19/N4 planes. The dihedral angle between the two independent benzene rings is 64.06 (4)°. The bond lengths and angles are comparable to those observed for methyl N'-[(E)-4-methoxybenzylidene]hydrazinecarboxylate (Shang et al., 2007).

The molecules are linked into chains extending along the b axis by N—H···O, O—H···N and O—H···O hydrogen bonds (Table 1 and Fig. 2). In addition, four intermolecular C—H···π interactions are present.

Related literature top

For general background to Schiff bases, see: Cimerman et al. (1997); Offe et al. (1952); Richardson et al. (1988). For related structures, see: Shang et al. (2007); Tamboura et al. (2009).

Experimental top

1H-Indole-3-carbaldehyde (1.45 g, 0.01 mol) and methyl hydrazinecarboxylate (0.90g, 0.01 mol) were dissolved in stirred methanol (15 ml) and left for 3.5 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 93% yield. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature (m.p. 465–467 K).

Refinement top

The water H atom was located in a difference Fourier and both positional and isotropic displacement parameters were refined. Other H atoms were positioned geometrically (N—H = 0.86 Å and C—H = 0.93 or 0.96 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(Cmethyl). A rotating group model was used for the methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular conformation and atom numbering scheme for the two independent organic molecules and the water molecule of solvation in the asymmetric unit of the title compound. The water molecule lies on a twofold rotation axis and the hydrogen bond is shown as a dashed line. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal packing of the title compound in the unit cell. Hydrogen bonds are shown as dashed lines.
(E)-Methyl N'-[(1H-indol-3-yl)methylidene]hydrazinecarboxylate 0.25-hydrate top
Crystal data top
C11H11N3O2·0.25H2OF(000) = 1864
Mr = 886.93Dx = 1.276 Mg m3
Monoclinic, C2/cMelting point = 465–467 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 27.842 (2) ÅCell parameters from 4052 reflections
b = 11.7574 (11) Åθ = 1.9–25.0°
c = 18.565 (2) ŵ = 0.09 mm1
β = 130.558 (5)°T = 223 K
V = 4617.2 (8) Å3Block, colourless
Z = 160.21 × 0.17 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4052 independent reflections
Radiation source: fine-focus sealed tube3083 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 3333
Tmin = 0.977, Tmax = 0.989k = 1313
21333 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0709P)2 + 0.7592P]
where P = (Fo2 + 2Fc2)/3
4052 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 0.16 e Å3
1 restraintΔρmin = 0.19 e Å3
Crystal data top
C11H11N3O2·0.25H2OV = 4617.2 (8) Å3
Mr = 886.93Z = 16
Monoclinic, C2/cMo Kα radiation
a = 27.842 (2) ŵ = 0.09 mm1
b = 11.7574 (11) ÅT = 223 K
c = 18.565 (2) Å0.21 × 0.17 × 0.15 mm
β = 130.558 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4052 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3083 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.989Rint = 0.029
21333 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0401 restraint
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.16 e Å3
4052 reflectionsΔρmin = 0.19 e Å3
298 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.37219 (7)0.37491 (12)0.56024 (11)0.0531 (4)
H1A0.40100.31620.58140.064*
C20.30987 (8)0.35174 (15)0.51235 (14)0.0696 (5)
H20.29650.27650.50140.083*
C30.26622 (9)0.43864 (17)0.47977 (16)0.0820 (6)
H30.22420.42010.44760.098*
C40.28342 (9)0.55074 (16)0.49370 (16)0.0789 (5)
H40.25390.60850.47150.095*
C50.34667 (8)0.57480 (12)0.54227 (13)0.0584 (4)
C60.39200 (7)0.48869 (12)0.57692 (10)0.0475 (3)
C70.43931 (9)0.65934 (14)0.61492 (13)0.0665 (5)
H70.46960.71610.63910.080*
C80.45160 (7)0.54508 (13)0.62345 (11)0.0522 (4)
C90.51368 (7)0.50072 (14)0.67094 (11)0.0552 (4)
H90.54700.55210.70090.066*
C100.60747 (8)0.27236 (15)0.71437 (11)0.0607 (4)
C110.69308 (11)0.1737 (2)0.7468 (2)0.1228 (10)
H11A0.73800.18070.78430.184*
H11B0.67300.17000.68090.184*
H11C0.68390.10560.76440.184*
C120.10157 (13)0.8858 (2)0.10052 (18)0.0940 (8)
H120.08450.92020.04320.113*
C130.15456 (13)0.9284 (2)0.1845 (2)0.0928 (7)
H130.17430.99200.18420.111*
C140.17960 (9)0.87807 (16)0.27089 (15)0.0760 (5)
H140.21580.90850.32710.091*
C150.15154 (7)0.78446 (14)0.27389 (12)0.0591 (4)
H150.16820.75240.33180.071*
C160.09771 (8)0.73753 (14)0.18920 (11)0.0575 (4)
C170.07411 (10)0.78978 (18)0.10343 (13)0.0741 (5)
C180.01498 (10)0.6371 (2)0.06843 (15)0.0889 (7)
H180.01610.58170.03300.107*
C190.05859 (8)0.63973 (15)0.16554 (12)0.0629 (4)
C200.06170 (8)0.56012 (14)0.22699 (14)0.0649 (5)
H200.03700.49470.20130.078*
C210.13167 (8)0.50520 (12)0.46021 (14)0.0601 (4)
C220.16560 (12)0.40801 (19)0.59737 (16)0.0963 (7)
H22A0.15880.33770.61590.144*
H22B0.15450.47050.61740.144*
H22C0.20930.41400.62650.144*
N10.37741 (8)0.67819 (11)0.56674 (12)0.0742 (4)
H10.35990.74390.55340.089*
N20.52637 (6)0.39465 (11)0.67489 (9)0.0563 (3)
N30.58987 (6)0.37255 (13)0.72462 (10)0.0686 (4)
H3N0.61780.42320.76200.082*
N40.02321 (9)0.7252 (2)0.03134 (11)0.0964 (6)
H4A0.00030.73930.02820.116*
N50.09752 (6)0.57712 (10)0.31589 (11)0.0603 (4)
N60.09703 (7)0.49139 (11)0.36687 (11)0.0670 (4)
H60.07490.43080.33900.080*
O10.57234 (6)0.19418 (10)0.66782 (9)0.0769 (4)
O20.66952 (6)0.27132 (13)0.76297 (11)0.0956 (5)
O1W0.00000.30761 (12)0.25000.0550 (4)
O30.16253 (6)0.58794 (9)0.50562 (9)0.0702 (3)
O40.12715 (6)0.41067 (10)0.49677 (10)0.0790 (4)
H1WA0.0053 (11)0.2590 (17)0.2837 (14)0.110 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0528 (9)0.0430 (8)0.0676 (10)0.0006 (6)0.0410 (8)0.0033 (7)
C20.0606 (11)0.0536 (10)0.0968 (13)0.0079 (8)0.0522 (11)0.0047 (9)
C30.0542 (11)0.0768 (13)0.1139 (16)0.0024 (9)0.0541 (12)0.0064 (11)
C40.0640 (12)0.0660 (11)0.1093 (15)0.0177 (9)0.0574 (12)0.0080 (10)
C50.0641 (11)0.0464 (8)0.0772 (11)0.0035 (7)0.0515 (10)0.0014 (7)
C60.0533 (9)0.0443 (8)0.0554 (9)0.0002 (6)0.0401 (8)0.0017 (6)
C70.0784 (12)0.0476 (9)0.0950 (13)0.0127 (8)0.0659 (11)0.0078 (8)
C80.0590 (10)0.0474 (8)0.0620 (10)0.0076 (7)0.0446 (9)0.0042 (7)
C90.0545 (10)0.0576 (10)0.0632 (10)0.0147 (7)0.0425 (9)0.0093 (7)
C100.0535 (10)0.0675 (11)0.0551 (9)0.0027 (8)0.0327 (8)0.0019 (8)
C110.0888 (17)0.129 (2)0.133 (2)0.0305 (15)0.0641 (16)0.0249 (17)
C120.123 (2)0.1079 (18)0.0932 (16)0.0552 (16)0.0886 (17)0.0451 (14)
C130.1119 (19)0.0849 (15)0.130 (2)0.0228 (13)0.1002 (19)0.0324 (14)
C140.0701 (12)0.0744 (12)0.0918 (14)0.0033 (9)0.0564 (11)0.0109 (10)
C150.0549 (10)0.0629 (10)0.0582 (9)0.0075 (7)0.0362 (8)0.0080 (8)
C160.0570 (10)0.0627 (10)0.0539 (9)0.0217 (8)0.0365 (8)0.0073 (7)
C170.0815 (13)0.0883 (14)0.0601 (11)0.0357 (11)0.0494 (11)0.0148 (10)
C180.0670 (13)0.1005 (17)0.0687 (13)0.0171 (11)0.0306 (11)0.0243 (12)
C190.0501 (9)0.0642 (11)0.0613 (10)0.0093 (8)0.0304 (9)0.0114 (8)
C200.0497 (10)0.0529 (9)0.0816 (13)0.0011 (7)0.0380 (10)0.0145 (9)
C210.0554 (10)0.0384 (8)0.0911 (13)0.0019 (7)0.0497 (10)0.0021 (8)
C220.1127 (18)0.0771 (14)0.0996 (17)0.0153 (12)0.0692 (16)0.0080 (11)
N10.0903 (11)0.0386 (7)0.1144 (12)0.0056 (7)0.0758 (11)0.0035 (7)
N20.0464 (8)0.0592 (8)0.0643 (8)0.0069 (6)0.0364 (7)0.0063 (6)
N30.0460 (8)0.0722 (9)0.0825 (10)0.0108 (7)0.0394 (8)0.0202 (8)
N40.0883 (13)0.1306 (17)0.0476 (9)0.0431 (12)0.0341 (10)0.0016 (10)
N50.0542 (8)0.0436 (7)0.0782 (10)0.0021 (6)0.0410 (8)0.0039 (6)
N60.0647 (9)0.0428 (7)0.0899 (11)0.0131 (6)0.0486 (9)0.0071 (7)
O10.0685 (8)0.0574 (7)0.0732 (8)0.0012 (6)0.0321 (7)0.0016 (6)
O20.0550 (8)0.1026 (11)0.1118 (11)0.0021 (7)0.0465 (8)0.0286 (9)
O1W0.0567 (9)0.0410 (8)0.0685 (10)0.0000.0412 (8)0.000
O30.0713 (8)0.0426 (6)0.0865 (9)0.0090 (5)0.0468 (7)0.0039 (6)
O40.0910 (10)0.0490 (7)0.1064 (11)0.0161 (6)0.0684 (9)0.0004 (6)
Geometric parameters (Å, º) top
C1—C21.367 (2)C13—H130.9300
C1—C61.403 (2)C14—C151.372 (2)
C1—H1A0.9300C14—H140.9300
C2—C31.390 (3)C15—C161.399 (2)
C2—H20.9300C15—H150.9300
C3—C41.368 (3)C16—C171.409 (2)
C3—H30.9300C16—C191.442 (2)
C4—C51.389 (2)C17—N41.382 (3)
C4—H40.9300C18—N41.344 (3)
C5—N11.382 (2)C18—C191.371 (3)
C5—C61.406 (2)C18—H180.9300
C6—C81.441 (2)C19—C201.434 (3)
C7—N11.347 (2)C20—N51.272 (2)
C7—C81.370 (2)C20—H200.9300
C7—H70.9300C21—O31.2055 (18)
C8—C91.434 (2)C21—N61.336 (2)
C9—N21.285 (2)C21—O41.3502 (19)
C9—H90.9300C22—O41.427 (2)
C10—O11.2038 (19)C22—H22A0.9600
C10—O21.331 (2)C22—H22B0.9600
C10—N31.336 (2)C22—H22C0.9600
C11—O21.447 (3)N1—H10.8600
C11—H11A0.9600N2—N31.3868 (18)
C11—H11B0.9600N3—H3N0.8600
C11—H11C0.9600N4—H4A0.8600
C12—C131.367 (3)N5—N61.3887 (19)
C12—C171.384 (3)N6—H60.8600
C12—H120.9300O1W—H1WA0.928 (15)
C13—C141.398 (3)
C2—C1—C6118.95 (14)C13—C14—H14119.5
C2—C1—H1A120.5C14—C15—C16119.54 (16)
C6—C1—H1A120.5C14—C15—H15120.2
C1—C2—C3121.17 (16)C16—C15—H15120.2
C1—C2—H2119.4C15—C16—C17118.01 (18)
C3—C2—H2119.4C15—C16—C19134.57 (15)
C4—C3—C2121.77 (17)C17—C16—C19107.38 (17)
C4—C3—H3119.1N4—C17—C12130.9 (2)
C2—C3—H3119.1N4—C17—C16106.6 (2)
C3—C4—C5117.33 (16)C12—C17—C16122.4 (2)
C3—C4—H4121.3N4—C18—C19110.9 (2)
C5—C4—H4121.3N4—C18—H18124.6
N1—C5—C4130.18 (15)C19—C18—H18124.6
N1—C5—C6107.65 (14)C18—C19—C20125.10 (19)
C4—C5—C6122.17 (15)C18—C19—C16105.46 (19)
C1—C6—C5118.61 (14)C20—C19—C16129.43 (15)
C1—C6—C8134.87 (14)N5—C20—C19121.37 (15)
C5—C6—C8106.51 (13)N5—C20—H20119.3
N1—C7—C8110.71 (14)C19—C20—H20119.3
N1—C7—H7124.6O3—C21—N6126.17 (16)
C8—C7—H7124.6O3—C21—O4124.73 (18)
C7—C8—C9122.58 (14)N6—C21—O4109.10 (14)
C7—C8—C6106.16 (14)O4—C22—H22A109.5
C9—C8—C6131.26 (14)O4—C22—H22B109.5
N2—C9—C8124.40 (14)H22A—C22—H22B109.5
N2—C9—H9117.8O4—C22—H22C109.5
C8—C9—H9117.8H22A—C22—H22C109.5
O1—C10—O2124.77 (17)H22B—C22—H22C109.5
O1—C10—N3124.98 (16)C7—N1—C5108.96 (13)
O2—C10—N3110.25 (15)C7—N1—H1125.5
O2—C11—H11A109.5C5—N1—H1125.5
O2—C11—H11B109.5C9—N2—N3113.83 (13)
H11A—C11—H11B109.5C10—N3—N2119.82 (14)
O2—C11—H11C109.5C10—N3—H3N120.1
H11A—C11—H11C109.5N2—N3—H3N120.1
H11B—C11—H11C109.5C18—N4—C17109.66 (16)
C13—C12—C17117.93 (19)C18—N4—H4A125.2
C13—C12—H12121.0C17—N4—H4A125.2
C17—C12—H12121.0C20—N5—N6115.05 (14)
C12—C13—C14121.1 (2)C21—N6—N5118.48 (13)
C12—C13—H13119.4C21—N6—H6120.8
C14—C13—H13119.4N5—N6—H6120.8
C15—C14—C13120.9 (2)C10—O2—C11115.48 (17)
C15—C14—H14119.5C21—O4—C22116.13 (15)
C6—C1—C2—C30.4 (3)C15—C16—C17—C121.0 (2)
C1—C2—C3—C40.2 (3)C19—C16—C17—C12179.00 (16)
C2—C3—C4—C50.2 (3)N4—C18—C19—C20177.95 (16)
C3—C4—C5—N1179.76 (19)N4—C18—C19—C161.3 (2)
C3—C4—C5—C60.5 (3)C15—C16—C19—C18176.42 (17)
C2—C1—C6—C51.0 (2)C17—C16—C19—C181.06 (17)
C2—C1—C6—C8179.73 (16)C15—C16—C19—C204.4 (3)
N1—C5—C6—C1179.47 (14)C17—C16—C19—C20178.17 (15)
C4—C5—C6—C11.1 (2)C18—C19—C20—N5169.80 (16)
N1—C5—C6—C80.04 (17)C16—C19—C20—N59.3 (3)
C4—C5—C6—C8179.45 (17)C8—C7—N1—C50.4 (2)
N1—C7—C8—C9179.48 (14)C4—C5—N1—C7179.13 (19)
N1—C7—C8—C60.42 (19)C6—C5—N1—C70.2 (2)
C1—C6—C8—C7179.56 (17)C8—C9—N2—N3179.82 (14)
C5—C6—C8—C70.28 (17)O1—C10—N3—N24.1 (3)
C1—C6—C8—C90.3 (3)O2—C10—N3—N2175.87 (15)
C5—C6—C8—C9179.62 (16)C9—N2—N3—C10163.03 (15)
C7—C8—C9—N2175.11 (16)C19—C18—N4—C171.1 (2)
C6—C8—C9—N24.8 (3)C12—C17—N4—C18178.02 (19)
C17—C12—C13—C141.2 (3)C16—C17—N4—C180.4 (2)
C12—C13—C14—C150.3 (3)C19—C20—N5—N6178.25 (13)
C13—C14—C15—C161.1 (3)O3—C21—N6—N52.6 (2)
C14—C15—C16—C170.5 (2)O4—C21—N6—N5177.00 (13)
C14—C15—C16—C19176.80 (17)C20—N5—N6—C21177.52 (14)
C13—C12—C17—N4176.32 (18)O1—C10—O2—C118.4 (3)
C13—C12—C17—C161.8 (3)N3—C10—O2—C11171.5 (2)
C15—C16—C17—N4177.52 (13)O3—C21—O4—C224.5 (2)
C19—C16—C17—N40.45 (17)N6—C21—O4—C22175.15 (16)
Hydrogen-bond geometry (Å, º) top
Cg4 and Cg5 are the centroids of the C16–C19/N4 and C12–C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.862.152.9426 (18)154
O1W—H1WA···N2ii0.93 (2)2.19 (2)3.0773 (17)161 (2)
O1W—H1WA···O1ii0.93 (2)2.60 (2)3.2217 (14)125 (2)
N6—H6···O1W0.862.173.0087 (17)166
C7—H7···Cg4iii0.932.853.594 (3)137
C9—H9···Cg5iii0.932.743.537 (3)145
C22—H22A···Cg4iv0.962.923.555 (4)125
C22—H22A···Cg5iv0.962.863.796 (3)125
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x, y1, z+1/2; (iv) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H11N3O2·0.25H2O
Mr886.93
Crystal system, space groupMonoclinic, C2/c
Temperature (K)223
a, b, c (Å)27.842 (2), 11.7574 (11), 18.565 (2)
β (°) 130.558 (5)
V3)4617.2 (8)
Z16
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.21 × 0.17 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.977, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
21333, 4052, 3083
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.124, 1.05
No. of reflections4052
No. of parameters298
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.19

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg4 and Cg5 are the centroids of the C16–C19/N4 and C12–C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.862.152.9426 (18)153.7
O1W—H1WA···N2ii0.928 (15)2.187 (16)3.0773 (17)160.5 (19)
O1W—H1WA···O1ii0.928 (15)2.60 (2)3.2217 (14)124.5 (17)
N6—H6···O1W0.862.173.0087 (17)165.8
C7—H7···Cg4iii0.932.853.594 (3)137
C9—H9···Cg5iii0.932.743.537 (3)145
C22—H22A···Cg4iv0.962.923.555 (4)125
C22—H22A···Cg5iv0.962.863.796 (3)125
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x, y1, z+1/2; (iv) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

The authors thank the Science and Technology Project of Zhejiang Province (grant No. 2007 F70077) and Hangzhou Vocational and Technical College for financial support.

References

First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCimerman, Z., Galic, N. & Bosner, B. (1997). Anal Chim. Acta, 343, 145–153.  CrossRef CAS Web of Science Google Scholar
First citationOffe, H. A., Siefen, W. & Domagk, G. (1952). Z. Naturforsch. Teil B, 7, 446–447.  Google Scholar
First citationRichardson, D., Baker, E., Ponka, P., Wilairat, P., Vitolo, M. L. & Webb, J. (1988). Thalassemia: Pathophysiology and Management, Part B, p. 81. New York: Alan R. Liss Inc.  Google Scholar
First citationShang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, o3394.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTamboura, F. B., Gaye, M., Sall, A. S., Barry, A. H. & Bah, Y. (2009). Acta Cryst. E65, m160–m161.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds