organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(Di­phenyl­methyl­­idene)indolin-2-one

aCollege of Science, Northwest A&F University, Yangling 712100, Shannxi Province, People's Republic of China
*Correspondence e-mail: wangjunru008@sohu.com

(Received 21 June 2011; accepted 15 July 2011; online 23 July 2011)

The title mol­ecule, C21H15NO, has an indoline-2-one and two benzene substituent groups which are arranged in a propeller-like fashion around the central C atom. The dihedral angle between the two benzene rings is 73.32 (16)° and those between the benzene rings and the indoline-2-one group are 76.54 (14) and 67.69 (14)°. In the crystal, there is an inter­molecular N—H⋯O hydrogen-bonding inter­action, which links the mol­ecules into chains extending along c.

Related literature

For general background to indoline-2-one and its derivatives, see: Colgan et al. (1996[Colgan, S. T., Haggan, G. R. & Reed, R. H. (1996). J. Pharm. Biomed. Anal. 14, 825-830.]). For the use of indoline-2-one as a precursor for the synthesis of organic luminescent mol­ecules, see: Ji et al. (2010[Ji, L., Fang, Q., Yuan, M. S., Liu, Z. Q., Shen, Y. S. & Chen, H. F. (2010). Org. Lett. 12, 5192-5195.]). For a related structure, see: Spencer et al. (2010[Spencer, J., Chowdhry, B. Z., Hamid, S., Mendham, A. P., Male, L., Coles, S. J. & Hursthouse, M. B. (2010). Acta Cryst. C66, o71-o78.]).

[Scheme 1]

Experimental

Crystal data
  • C21H15NO

  • Mr = 297.34

  • Orthorhombic, P n a 21

  • a = 11.0679 (11) Å

  • b = 17.6465 (16) Å

  • c = 7.8835 (6) Å

  • V = 1539.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.46 × 0.40 × 0.38 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.965, Tmax = 0.971

  • 9094 measured reflections

  • 2072 independent reflections

  • 1105 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.097

  • S = 1.06

  • 2072 reflections

  • 208 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.23 2.974 (3) 144
Symmetry code: (i) [-x+1, -y+1, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Indoline-2-one and its derivatives are very important compounds as materials for the synthesis of pharmaceuticals (Colgan et al., 1996). Indoline-2-one may also be used as a precursor for synthesizing organic luminescent molecules because of its perfect conformation (Ji et al., 2010). In the course of exploring new electro-optic compounds, we obtained a intermediate compound C21H15NO (I) and the synthesis and structure are reported here.

The title compound has three substituent ring systems, an indoline-2-one ring and two benzene rings which are arranged in a propeller-like fashion around the central atom C9 (Fig. 1). The interplanar dihedral angle between the two benzene rings defined by C10–C15 and C16–C21 is 73.32 (16)°. The interplanar angles between these benzene planes and that of the indoline moiety are 76.54 (14)° and 67.69 (14)°, respectively. The molecules of (I) crystallize in the space group Pna21 which is different from that of 3-(propan-2-ylidene)indolin-2-one (P-1) (Spencer et al. 2010). In the crystal structure there is an intermolecular N—H···O hydrogen-bonding interaction (Table 1) linking the molecules into one-dimensional chains which extend along c in the unit cell (Fig. 2).

Related literature top

For general background to indoline-2-one and its derivatives, see: Colgan et al. (1996). For the use of indoline-2-one as a precursor for the synthesis of organic luminescent molecules, see: Ji et al. (2010). For a related structure, see: Spencer et al. (2010).

Experimental top

Indolin-2-one (0.50 g, 3.76 mmol) was dissolved in THF (20 mL) and KOH (0.80 g, 14.3 mmol) was slowly added. After heating the stirred mixture at reflux temperature for 30 min, a solution of benzophenone (0.80 g, 4.40 mmol) in THF was slowly added and the refluxing continued for 2 h. The mixture was then cooled to 333 K and poured into water (200 mL) and was extracted with chloroform and dried over Na2SO4. After removing the solvent, the crude product was purified by column chromatography on silica gel, affording the title compound (yield: 0.28 g, 25%). The compound was then dissolved in THF and yellow crystals were formed on slow evaporation at room temperature over one week.

Refinement top

All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H = 0.93 Å and N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C, N). Friedel pairs (1153) were merged for the data used in the refinement.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular packing of (I) viewed along the c axis, with hydrogen bonds shown as dashed lines.
3-(Diphenylmethylidene)indolin-2-one top
Crystal data top
C21H15NOF(000) = 624
Mr = 297.34Dx = 1.283 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1702 reflections
a = 11.0679 (11) Åθ = 2.8–21.0°
b = 17.6465 (16) ŵ = 0.08 mm1
c = 7.8835 (6) ÅT = 298 K
V = 1539.7 (2) Å3Block, yellow
Z = 40.46 × 0.40 × 0.38 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2072 independent reflections
Radiation source: fine-focus sealed tube1105 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ϕ and ω scansθmax = 28.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.965, Tmax = 0.971k = 2315
9094 measured reflectionsl = 910
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0323P)2 + 0.1729P]
where P = (Fo2 + 2Fc2)/3
2072 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.15 e Å3
1 restraintΔρmin = 0.15 e Å3
Crystal data top
C21H15NOV = 1539.7 (2) Å3
Mr = 297.34Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 11.0679 (11) ŵ = 0.08 mm1
b = 17.6465 (16) ÅT = 298 K
c = 7.8835 (6) Å0.46 × 0.40 × 0.38 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2072 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1105 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.971Rint = 0.050
9094 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.097H-atom parameters constrained
S = 1.06Δρmax = 0.15 e Å3
2072 reflectionsΔρmin = 0.15 e Å3
208 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4749 (2)0.42487 (13)0.0945 (4)0.0564 (7)
H10.44390.46110.03610.068*
O10.5893 (2)0.49677 (11)0.2730 (3)0.0631 (6)
C10.5549 (3)0.43506 (16)0.2223 (4)0.0481 (8)
C20.5846 (3)0.35719 (15)0.2880 (4)0.0415 (7)
C30.5159 (2)0.30486 (15)0.1807 (4)0.0424 (7)
C40.4489 (3)0.34850 (16)0.0692 (4)0.0500 (8)
C50.3681 (3)0.3183 (2)0.0444 (5)0.0695 (10)
H50.32330.34900.11670.083*
C60.3564 (3)0.2406 (2)0.0468 (5)0.0728 (11)
H60.30120.21840.12060.087*
C70.4244 (3)0.19516 (18)0.0577 (5)0.0612 (9)
H70.41630.14280.05130.073*
C80.5051 (3)0.22649 (16)0.1725 (5)0.0523 (8)
H80.55110.19560.24280.063*
C90.6510 (2)0.34259 (15)0.4264 (4)0.0432 (7)
C100.6611 (2)0.26418 (15)0.4946 (4)0.0413 (7)
C110.7606 (3)0.22020 (16)0.4565 (4)0.0549 (9)
H110.82280.24030.39120.066*
C120.7683 (3)0.14681 (17)0.5144 (5)0.0624 (10)
H120.83550.11760.48730.075*
C130.6788 (3)0.11674 (17)0.6108 (5)0.0607 (9)
H130.68440.06710.64960.073*
C140.5802 (3)0.15989 (18)0.6504 (5)0.0643 (10)
H140.51870.13930.71620.077*
C150.5712 (3)0.23353 (16)0.5939 (4)0.0553 (8)
H150.50420.26260.62300.066*
C160.7198 (3)0.40090 (16)0.5234 (4)0.0458 (8)
C170.6978 (3)0.41196 (17)0.6938 (4)0.0562 (9)
H170.63950.38280.74800.067*
C180.7609 (4)0.46540 (19)0.7850 (5)0.0704 (10)
H180.74470.47250.89970.085*
C190.8472 (3)0.50795 (19)0.7065 (6)0.0702 (11)
H190.88910.54450.76770.084*
C200.8726 (3)0.49722 (19)0.5391 (6)0.0711 (11)
H200.93260.52580.48680.085*
C210.8093 (3)0.44404 (17)0.4473 (5)0.0611 (9)
H210.82670.43700.33300.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0730 (17)0.0451 (15)0.0510 (16)0.0083 (12)0.0133 (16)0.0055 (14)
O10.0791 (14)0.0400 (12)0.0703 (16)0.0001 (10)0.0080 (14)0.0016 (12)
C10.0563 (18)0.0438 (17)0.044 (2)0.0028 (15)0.0026 (16)0.0005 (16)
C20.0490 (15)0.0380 (15)0.0377 (16)0.0044 (13)0.0007 (14)0.0011 (14)
C30.0458 (16)0.0428 (16)0.0385 (16)0.0023 (13)0.0028 (14)0.0016 (15)
C40.0557 (17)0.0495 (18)0.0448 (19)0.0039 (15)0.0030 (15)0.0006 (16)
C50.083 (2)0.072 (2)0.054 (2)0.005 (2)0.024 (2)0.002 (2)
C60.081 (2)0.079 (3)0.059 (2)0.006 (2)0.020 (2)0.018 (2)
C70.073 (2)0.0549 (19)0.056 (2)0.0049 (18)0.0027 (19)0.0126 (19)
C80.0607 (18)0.0460 (17)0.0503 (19)0.0034 (15)0.0020 (17)0.0053 (16)
C90.0449 (16)0.0387 (16)0.0459 (18)0.0038 (12)0.0034 (15)0.0024 (14)
C100.0434 (15)0.0387 (15)0.0418 (18)0.0022 (13)0.0061 (15)0.0008 (14)
C110.0485 (17)0.0464 (17)0.070 (2)0.0011 (14)0.0129 (18)0.0042 (18)
C120.0601 (19)0.0455 (19)0.082 (3)0.0089 (16)0.003 (2)0.0042 (18)
C130.084 (2)0.0418 (18)0.057 (2)0.0001 (18)0.009 (2)0.0046 (18)
C140.075 (2)0.056 (2)0.062 (2)0.0100 (18)0.012 (2)0.0052 (18)
C150.0547 (17)0.0511 (18)0.060 (2)0.0013 (15)0.0083 (18)0.0024 (18)
C160.0508 (16)0.0371 (17)0.050 (2)0.0042 (14)0.0058 (16)0.0019 (14)
C170.072 (2)0.0472 (19)0.049 (2)0.0000 (16)0.0001 (18)0.0011 (16)
C180.101 (3)0.053 (2)0.057 (2)0.001 (2)0.014 (2)0.0124 (19)
C190.078 (2)0.050 (2)0.083 (3)0.0047 (18)0.027 (2)0.015 (2)
C200.067 (2)0.060 (2)0.086 (3)0.0166 (18)0.004 (2)0.010 (2)
C210.065 (2)0.060 (2)0.058 (2)0.0122 (17)0.0040 (19)0.0051 (18)
Geometric parameters (Å, º) top
N1—C11.353 (4)C11—C121.376 (4)
N1—C41.392 (4)C11—H110.9300
N1—H10.8600C12—C131.356 (4)
O1—C11.221 (3)C12—H120.9300
C1—C21.505 (4)C13—C141.366 (4)
C2—C91.341 (4)C13—H130.9300
C2—C31.465 (4)C14—C151.377 (4)
C3—C41.384 (4)C14—H140.9300
C3—C81.390 (4)C15—H150.9300
C4—C51.374 (4)C16—C171.379 (4)
C5—C61.377 (5)C16—C211.386 (4)
C5—H50.9300C17—C181.376 (4)
C6—C71.374 (5)C17—H170.9300
C6—H60.9300C18—C191.364 (5)
C7—C81.386 (4)C18—H180.9300
C7—H70.9300C19—C201.363 (6)
C8—H80.9300C19—H190.9300
C9—C101.489 (4)C20—C211.377 (5)
C9—C161.491 (4)C20—H200.9300
C10—C151.377 (4)C21—H210.9300
C10—C111.380 (4)
C1—N1—C4111.7 (2)C12—C11—C10120.4 (3)
C1—N1—H1124.1C12—C11—H11119.8
C4—N1—H1124.1C10—C11—H11119.8
O1—C1—N1124.5 (3)C13—C12—C11120.6 (3)
O1—C1—C2129.3 (3)C13—C12—H12119.7
N1—C1—C2106.1 (3)C11—C12—H12119.7
C9—C2—C3129.3 (2)C12—C13—C14119.5 (3)
C9—C2—C1125.1 (3)C12—C13—H13120.2
C3—C2—C1105.3 (2)C14—C13—H13120.2
C4—C3—C8118.6 (3)C13—C14—C15120.7 (3)
C4—C3—C2107.1 (2)C13—C14—H14119.7
C8—C3—C2134.4 (3)C15—C14—H14119.7
C5—C4—C3123.2 (3)C10—C15—C14120.1 (3)
C5—C4—N1127.1 (3)C10—C15—H15119.9
C3—C4—N1109.7 (3)C14—C15—H15119.9
C4—C5—C6117.2 (3)C17—C16—C21118.0 (3)
C4—C5—H5121.4C17—C16—C9120.5 (3)
C6—C5—H5121.4C21—C16—C9121.5 (3)
C7—C6—C5121.4 (3)C18—C17—C16121.1 (3)
C7—C6—H6119.3C18—C17—H17119.4
C5—C6—H6119.3C16—C17—H17119.4
C6—C7—C8120.8 (3)C19—C18—C17119.7 (4)
C6—C7—H7119.6C19—C18—H18120.1
C8—C7—H7119.6C17—C18—H18120.1
C7—C8—C3118.9 (3)C20—C19—C18120.5 (4)
C7—C8—H8120.6C20—C19—H19119.8
C3—C8—H8120.6C18—C19—H19119.8
C2—C9—C10120.9 (3)C19—C20—C21119.9 (4)
C2—C9—C16124.4 (3)C19—C20—H20120.0
C10—C9—C16114.7 (3)C21—C20—H20120.0
C15—C10—C11118.7 (3)C20—C21—C16120.7 (4)
C15—C10—C9121.1 (2)C20—C21—H21119.6
C11—C10—C9120.3 (3)C16—C21—H21119.6
C4—N1—C1—O1177.5 (3)C1—C2—C9—C168.8 (4)
C4—N1—C1—C20.1 (3)C2—C9—C10—C1580.4 (4)
O1—C1—C2—C94.6 (5)C16—C9—C10—C1599.8 (3)
N1—C1—C2—C9172.6 (3)C2—C9—C10—C1198.5 (3)
O1—C1—C2—C3178.8 (3)C16—C9—C10—C1181.3 (3)
N1—C1—C2—C31.6 (3)C15—C10—C11—C121.1 (4)
C9—C2—C3—C4171.4 (3)C9—C10—C11—C12177.8 (3)
C1—C2—C3—C42.5 (3)C10—C11—C12—C130.5 (5)
C9—C2—C3—C87.5 (6)C11—C12—C13—C140.0 (5)
C1—C2—C3—C8178.6 (3)C12—C13—C14—C150.2 (5)
C8—C3—C4—C52.9 (5)C11—C10—C15—C141.3 (4)
C2—C3—C4—C5176.2 (3)C9—C10—C15—C14177.5 (3)
C8—C3—C4—N1178.4 (3)C13—C14—C15—C100.9 (5)
C2—C3—C4—N12.5 (3)C2—C9—C16—C17122.6 (3)
C1—N1—C4—C5177.1 (3)C10—C9—C16—C1757.6 (4)
C1—N1—C4—C31.6 (4)C2—C9—C16—C2159.1 (4)
C3—C4—C5—C61.1 (5)C10—C9—C16—C21120.6 (3)
N1—C4—C5—C6179.5 (3)C21—C16—C17—C181.5 (5)
C4—C5—C6—C71.3 (6)C9—C16—C17—C18179.8 (3)
C5—C6—C7—C81.8 (6)C16—C17—C18—C190.5 (5)
C6—C7—C8—C30.1 (5)C17—C18—C19—C200.8 (6)
C4—C3—C8—C72.4 (5)C18—C19—C20—C211.2 (6)
C2—C3—C8—C7176.4 (3)C19—C20—C21—C160.1 (5)
C3—C2—C9—C101.3 (5)C17—C16—C21—C201.2 (5)
C1—C2—C9—C10171.5 (3)C9—C16—C21—C20179.5 (3)
C3—C2—C9—C16178.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.232.974 (3)144
Symmetry code: (i) x+1, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC21H15NO
Mr297.34
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)298
a, b, c (Å)11.0679 (11), 17.6465 (16), 7.8835 (6)
V3)1539.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.46 × 0.40 × 0.38
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.965, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
9094, 2072, 1105
Rint0.050
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.097, 1.06
No. of reflections2072
No. of parameters208
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.15

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.232.974 (3)144
Symmetry code: (i) x+1, y+1, z1/2.
 

Acknowledgements

Financial support from the PhD Programs Foundation of the Ministry of Education of China (No. 20090204120033) is gratefully acknowledged.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationColgan, S. T., Haggan, G. R. & Reed, R. H. (1996). J. Pharm. Biomed. Anal. 14, 825–830.  CrossRef CAS PubMed Web of Science Google Scholar
First citationJi, L., Fang, Q., Yuan, M. S., Liu, Z. Q., Shen, Y. S. & Chen, H. F. (2010). Org. Lett. 12, 5192–5195.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpencer, J., Chowdhry, B. Z., Hamid, S., Mendham, A. P., Male, L., Coles, S. J. & Hursthouse, M. B. (2010). Acta Cryst. C66, o71–o78.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds