organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(4-pyrid­yl) di­sulfide–2,2′-[(p-phenyl­enebis(­­oxy)]di­acetic acid (1/1)

aDepartment of Chemistry, Dezhou University, Dezhou, Shandong 253023, People's Republic of China
*Correspondence e-mail: dzgywang@126.com

(Received 24 June 2011; accepted 29 June 2011; online 6 July 2011)

The asymmetric unit of the title 1:1 co-crystal, C10H8N2S2·C10H10O6, comprises two half-mol­ecules, the bis­(4-pyrid­yl) disulfide having twofold rotational symmetry and the 2,2′-[(p-phenyl­enebis(­oxy)]diacetic acid having crystallographic inversion symmetry. In the disulfide mol­ecule, the dihedral angle between the two pyridine rings is 86.8 (1)°, while the carboxyl groups of the substituted quinone lie essentially in the plane of the benzene ring [dihedral angle = 5.3 (1)°]. In the crystal, the components are linked via inter­molecular O—H⋯N hydrogen bonds into zigzag chains which extend along c and are inter­linked through C—H⋯π associations.

Related literature

For the use of bis­(4-pyrid­yl)disulfide (bpds) as a linker in the construction of coordination polymers, see: Kondo et al. (2000[Kondo, M., Shimamura, M., Noro, S., Kimura, Y., Uemura, K. & Kitagawa, S. (2000). J. Solid State Chem. 152, 113-119.]); Zhu et al. (2010[Zhu, H.-L., Zhang, J. & Lin, J.-L. (2010). Acta Cryst. E66, m185.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8N2S2·C10H10O6

  • Mr = 446.50

  • Monoclinic, C 2/c

  • a = 14.331 (1) Å

  • b = 5.057 (1) Å

  • c = 28.003 (3) Å

  • β = 90.200 (5)°

  • V = 2029.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 296 K

  • 0.31 × 0.21 × 0.09 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.912, Tmax = 0.974

  • 4893 measured reflections

  • 1761 independent reflections

  • 1450 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.114

  • S = 1.05

  • 1761 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C8–C10/C8′–C10′ ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N1i 0.82 1.81 2.629 (3) 174
C7—H7BCg1ii 0.97 2.76 3.528 (2) 136
Symmetry codes: (i) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Bis(4-pyridyl)disulfide (bpds) is often used as a linker in the construction of coordination polymers because of its flexibility (Kondo et al., 2000; Zhu et al., 2010). The attempt at synthesizing a CdII coordination polymer using bis(4-pyridyl)disulfide and hydroquinone-O,O'-diacetic acid (H2qda) as ligands gave instead the 1:1 title co-crystal C10H8N2S2 . C10H10O6, and the crystal structure is reported here.

In the title compound, the asymmetric unit comprises two half molecules, the bis(4-pyridyl)disulfide having twofold rotational symmetry and the hydroquinone-O,O'-diacetic acid having crystallographic inversion symmetry (Fig. 1). In the disulfide molecule, the dihedral angle between the two pyridine rings is 93.2 (1)° while the carboxylic acid groups of the substituted quinone molecule lie essentially in the plane of the benzene ring [dihedral angle, 5.3 (1)°]. In the crystal, the two components are linked via intermolecular O—H···N hydrogen bonds into one-dimensional zigzag chains which extend along c (Fig. 2) and are inter-linked through C—H···π associations (Table 1, Fig. 3).

Related literature top

For the use of bis(4-pyridyl)disulfide (bpds) as a linker in the construction of coordination polymers, see: Kondo et al. (2000); Zhu et al. (2010).

Experimental top

A mixture of hydroquinone-O,O'-diacetic acid (H2qda) (0.023 g, 0.1 mmol), bis(4-pyridyl)disulfide (bpds) (0.022 g, 0.1 mmol) and Cd(NO3)2 . 4H2O (0.038 g, 0.1 mmol) in H2O (7.0 ml) was placed in a 16 ml Teflon-lined stainless steel vessel and heated to 160 °C for 48 h, then cooled to room temperature at a rate of -5 °C/h. The solution was filtered and the colorless filtrate was allowed to stand at room temperature. Slow evaporation for about one week afforded colorless block crystals.

Refinement top

All H atoms bonded to C atoms were added according to theoretical models, assigned isotropic displacement parameters and allowed to ride on their respective parent atoms [C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C)]. The carboxylic acid H atom was located from the Fourier map and allowed to ride on the parent O atom in the final cycles of refinement, with the O—H distance being fixed at 0.82 Å with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Atom numbering scheme and anisotropic displacement ellipsoid plot of (I) at the 50% probability level. H atoms are represented by circles of arbitrary size. Symmetry codes: (i) -x + 2, y, -z + 1/2; (ii) -x, -y + 2, -z.
[Figure 2] Fig. 2. The one-dimensional zigzag chain structure of the title compound. Non-associative H atoms are omitted and hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. The packing diagram of the title compound showing C—H···π interactions.
Bis(4-pyridyl) disulfide–2,2'-[(p-phenylenebis(oxy)]diacetic acid (1/1) top
Crystal data top
C10H8N2S2·C10H10O6F(000) = 928
Mr = 446.50Dx = 1.461 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1634 reflections
a = 14.331 (1) Åθ = 2.8–25.2°
b = 5.057 (1) ŵ = 0.30 mm1
c = 28.003 (3) ÅT = 296 K
β = 90.200 (5)°Block, colorless
V = 2029.4 (5) Å30.31 × 0.21 × 0.09 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1761 independent reflections
Radiation source: fine-focus sealed tube1450 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1016
Tmin = 0.912, Tmax = 0.974k = 55
4893 measured reflectionsl = 3332
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0548P)2 + 1.8236P]
where P = (Fo2 + 2Fc2)/3
1761 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C10H8N2S2·C10H10O6V = 2029.4 (5) Å3
Mr = 446.50Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.331 (1) ŵ = 0.30 mm1
b = 5.057 (1) ÅT = 296 K
c = 28.003 (3) Å0.31 × 0.21 × 0.09 mm
β = 90.200 (5)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1761 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1450 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 0.974Rint = 0.026
4893 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.05Δρmax = 0.62 e Å3
1761 reflectionsΔρmin = 0.29 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.92972 (4)0.22476 (13)0.24909 (2)0.0514 (2)
O10.07968 (11)0.6344 (3)0.06109 (5)0.0485 (4)
O20.15067 (12)0.2818 (4)0.12321 (6)0.0596 (5)
N10.83733 (14)0.3882 (5)0.14055 (7)0.0543 (6)
O30.26328 (12)0.1757 (4)0.07197 (7)0.0683 (6)
H30.28430.09230.09470.102*
C80.04234 (15)0.8125 (4)0.02905 (8)0.0389 (5)
C90.02803 (15)0.9711 (5)0.04649 (8)0.0440 (6)
H90.04710.95190.07800.053*
C70.15542 (15)0.4802 (5)0.04525 (8)0.0465 (6)
H7A0.20610.59450.03530.056*
H7B0.13640.37370.01810.056*
C30.89942 (16)0.0216 (4)0.20664 (8)0.0425 (5)
C60.18774 (15)0.3037 (5)0.08524 (9)0.0462 (6)
C10.92798 (17)0.3451 (5)0.14718 (8)0.0517 (6)
H10.97030.44080.12890.062*
C20.96216 (16)0.1654 (5)0.17981 (8)0.0476 (6)
H21.02610.14140.18370.057*
C100.07061 (15)1.1580 (5)0.01785 (8)0.0443 (6)
H100.11811.26360.03000.053*
C40.80519 (17)0.0660 (6)0.19985 (10)0.0584 (7)
H40.76120.02830.21730.070*
C50.77771 (19)0.2495 (6)0.16724 (11)0.0639 (8)
H50.71420.28000.16330.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0554 (4)0.0495 (4)0.0492 (4)0.0077 (3)0.0039 (3)0.0034 (3)
O10.0518 (10)0.0482 (10)0.0455 (9)0.0114 (8)0.0044 (7)0.0065 (8)
O20.0509 (10)0.0769 (13)0.0511 (10)0.0127 (9)0.0051 (8)0.0143 (9)
N10.0542 (13)0.0617 (14)0.0470 (11)0.0169 (11)0.0012 (9)0.0002 (10)
O30.0555 (11)0.0901 (15)0.0593 (11)0.0314 (10)0.0075 (9)0.0199 (10)
C80.0398 (12)0.0344 (12)0.0426 (12)0.0008 (9)0.0022 (9)0.0013 (9)
C90.0490 (13)0.0446 (14)0.0384 (12)0.0034 (11)0.0044 (10)0.0003 (10)
C70.0410 (12)0.0475 (15)0.0508 (13)0.0035 (10)0.0000 (10)0.0048 (11)
C30.0492 (13)0.0423 (13)0.0361 (11)0.0021 (10)0.0012 (9)0.0069 (10)
C60.0397 (13)0.0484 (14)0.0504 (14)0.0009 (11)0.0047 (11)0.0023 (11)
C10.0531 (15)0.0570 (16)0.0451 (13)0.0090 (12)0.0057 (11)0.0037 (12)
C20.0424 (13)0.0553 (15)0.0452 (13)0.0083 (11)0.0005 (10)0.0001 (11)
C100.0426 (12)0.0420 (13)0.0481 (13)0.0054 (10)0.0044 (10)0.0011 (10)
C40.0454 (14)0.0656 (18)0.0643 (16)0.0013 (13)0.0037 (12)0.0045 (14)
C50.0468 (15)0.075 (2)0.0701 (18)0.0106 (14)0.0039 (13)0.0013 (16)
Geometric parameters (Å, º) top
S1—C31.775 (2)C7—C61.504 (3)
S1—S1i2.0150 (14)C7—H7A0.9700
O1—C81.378 (3)C7—H7B0.9700
O1—C71.409 (3)C3—C21.381 (3)
O2—C61.195 (3)C3—C41.381 (3)
N1—C11.330 (3)C1—C21.378 (3)
N1—C51.336 (4)C1—H10.9300
O3—C61.316 (3)C2—H20.9300
O3—H30.8200C10—C8ii1.384 (3)
C8—C91.379 (3)C10—H100.9300
C8—C10ii1.384 (3)C4—C51.359 (4)
C9—C101.380 (3)C4—H40.9300
C9—H90.9300C5—H50.9300
C3—S1—S1i105.02 (8)O2—C6—O3125.0 (2)
C8—O1—C7117.02 (17)O2—C6—C7125.5 (2)
C1—N1—C5117.5 (2)O3—C6—C7109.5 (2)
C6—O3—H3109.5N1—C1—C2123.1 (2)
C9—C8—O1115.61 (19)N1—C1—H1118.5
C9—C8—C10ii119.4 (2)C2—C1—H1118.5
O1—C8—C10ii125.0 (2)C1—C2—C3118.5 (2)
C8—C9—C10121.0 (2)C1—C2—H2120.7
C8—C9—H9119.5C3—C2—H2120.7
C10—C9—H9119.5C9—C10—C8ii119.7 (2)
O1—C7—C6109.23 (19)C9—C10—H10120.2
O1—C7—H7A109.8C8ii—C10—H10120.2
C6—C7—H7A109.8C5—C4—C3119.0 (2)
O1—C7—H7B109.8C5—C4—H4120.5
C6—C7—H7B109.8C3—C4—H4120.5
H7A—C7—H7B108.3N1—C5—C4123.4 (2)
C2—C3—C4118.5 (2)N1—C5—H5118.3
C2—C3—S1125.16 (18)C4—C5—H5118.3
C4—C3—S1116.30 (18)
C7—O1—C8—C9176.4 (2)C5—N1—C1—C20.3 (4)
C7—O1—C8—C10ii3.2 (3)N1—C1—C2—C30.5 (4)
O1—C8—C9—C10179.7 (2)C4—C3—C2—C10.5 (3)
C10ii—C8—C9—C100.1 (4)S1—C3—C2—C1178.12 (18)
C8—O1—C7—C6178.70 (18)C8—C9—C10—C8ii0.1 (4)
S1i—S1—C3—C23.2 (2)C2—C3—C4—C50.2 (4)
S1i—S1—C3—C4178.13 (17)S1—C3—C4—C5179.0 (2)
O1—C7—C6—O25.5 (3)C1—N1—C5—C41.1 (4)
O1—C7—C6—O3174.7 (2)C3—C4—C5—N11.1 (4)
Symmetry codes: (i) x+2, y, z+1/2; (ii) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C8–C10/C8'–C10' ring.
D—H···AD—HH···AD···AD—H···A
O3—H3···N1iii0.821.812.629 (3)174
C7—H7B···Cg1iv0.972.763.528 (2)136
Symmetry codes: (iii) x1/2, y1/2, z; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formulaC10H8N2S2·C10H10O6
Mr446.50
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)14.331 (1), 5.057 (1), 28.003 (3)
β (°) 90.200 (5)
V3)2029.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.31 × 0.21 × 0.09
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.912, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
4893, 1761, 1450
Rint0.026
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.114, 1.05
No. of reflections1761
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.29

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C8–C10/C8'–C10' ring.
D—H···AD—HH···AD···AD—H···A
O3—H3···N1i0.821.812.629 (3)174
C7—H7B···Cg1ii0.972.763.528 (2)136
Symmetry codes: (i) x1/2, y1/2, z; (ii) x, y1, z.
 

Acknowledgements

This work was supported financially by the Project of Shandong Province Higher Educational Science and Technology Program (grant No. J11LB56).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKondo, M., Shimamura, M., Noro, S., Kimura, Y., Uemura, K. & Kitagawa, S. (2000). J. Solid State Chem. 152, 113–119.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, H.-L., Zhang, J. & Lin, J.-L. (2010). Acta Cryst. E66, m185.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds