organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Eucomic acid methanol monosolvate

aGuangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou 510632, People's Republic of China, and bAnalysis and Testing Center, Jinan University, Guangzhou 510632, People's Republic of China
*Correspondence e-mail: trwjiang@jnu.edu.cn

(Received 30 June 2011; accepted 25 July 2011; online 30 July 2011)

In the crystal structure of the title compound [systematic name: 2-hy­droxy-2-(4-hy­droxy­benz­yl)butane­dioic acid methanol monosolvate], C11H12O6·CH3OH, the dihedral angles between the planes of the carboxyl groups and the benzene ring are 51.23 (9) and 87.97 (9)°. Inter­molecular O—H⋯O hydrogen-bonding inter­actions involving the hy­droxy and carb­oxy­lic acid groups and the methanol solvent mol­ecule give a three-dimensional structure.

Related literature

For general background to natural existance and related structures, see: Jiang et al. (2006[Jiang, J. Q., Li, Y. F., Chen, Z., Min, Z. D. & Lou, F. C. (2006). Steroids, 71, 1073-1077.]); Li et al. (2008[Li, L., Zhou, G.-X. & Jiang, R.-W. (2008). Acta Cryst. E64, o1354.]). For the absolute configuration of eucomic acid, see: Heller & Tamm (1974[Heller, W. & Tamm, C. (1974). Helv. Chim. Acta, 57, 1766-1784.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12O6·CH4O

  • Mr = 272.25

  • Orthorhombic, P 21 21 21

  • a = 5.8970 (2) Å

  • b = 7.2088 (3) Å

  • c = 31.3290 (4) Å

  • V = 1331.81 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.60 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • 7417 measured reflections

  • 1408 independent reflections

  • 1184 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.081

  • S = 1.05

  • 1408 reflections

  • 178 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.82 1.97 2.781 (3) 170
O2—H2⋯O1ii 0.82 2.33 2.861 (2) 123
O4—H4⋯O2iii 0.82 1.85 2.639 (2) 162
O6—H6⋯O7 0.82 1.76 2.575 (4) 170
O7—H7⋯O5iv 0.82 1.93 2.694 (4) 156
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x+1, y, z; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART and SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: XPREP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

The title compound C11H12O6.CH3OH (Fig. 1) is the monomethanol solvate of eucomic acid [systematic name: 2-hydroxy-2-(4-hydroxybenzyl)butanedioic acid], and was originally isolated from the stems of Opuntia dillenii (Jiang et al., 2006) and the absolute configuration was established by synthesis (Heller & Tamm, 1974). With the present compound,which was isolated from the stems of the related species Opuntia vulgaris, the dihedral angle between the plane of the benzene ring and that of the carboxylic group at C8 is 51.23 (9)°, and 87.97 (9)° with that at C9. These values are similar to those in the methyl eucomate structure (Li et al., 2008).

Intermolecular O—H···O hydrogen-bonding interactions involving the hydroxy and carboxylic acid groups and the methanol molecule (Table 1) give a three-dimensional structure. A short intramolecular interaction between the C8 hydroxy group and a carboxyl O acceptor is also present [O2—H2···O3 = 2.655 (2) Å; <O—H···O = 117°].

Related literature top

For general background, see: Jiang et al. (2006); Li et al. (2008). For the absolute configuration of eucomic acid, see: Heller & Tamm (1974).

Experimental top

The title compound was isolated from the stems of Opuntia vulgaris, 1 kg of which was extracted with 95% ethanol at room temperature, then concentrated by rotary evaporator. The crude extract was suspended in distilled water and partitioned with petroleum ether, ethyl acetate and n-butanol. The title compound (22 mg) was isolated from the n-butanol fraction using silica-gel column chromatography. Crystals of the title compound were obtained after slow evaporation of a methanolic solution at room temperature.

Refinement top

The C-bound H atoms were positioned geometrically and were included in the refinement in the riding-model approximation, with C—H = 0.96 Å (CH3) and Uiso(H) = 1.5Ueq(C); 0.97 Å (CH2) and Uiso(H) = 1.2Ueq(C); 0.93 Å (aryl H) and Uiso(H)= 1.2Ueq(C); O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O). The absolute configuration determined by Heller & Tamm (1974) by analysis was invoked, having (for the numbering scheme used in this determination) C8(R). Friedel pairs in the data set (934) were merged.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART and SAINT (Bruker, 1998); data reduction: XPREP in SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme. The intermolecular hydrogen bond is shown as a dashed line.
2-hydroxy-2-(4-hydroxybenzyl)butanedioic acid methanol monosolvate top
Crystal data top
C11H12O6·CH4ODx = 1.358 Mg m3
Mr = 272.25Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 2341 reflections
a = 5.8970 (2) Åθ = 1.3–25.0°
b = 7.2088 (3) ŵ = 0.11 mm1
c = 31.3290 (4) ÅT = 293 K
V = 1331.81 (7) Å3Prism, colourless
Z = 40.60 × 0.20 × 0.10 mm
F(000) = 576
Data collection top
Bruker SMART 1000 CCD
diffractometer
1184 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 25.0°, θmin = 1.3°
ω scansh = 76
7417 measured reflectionsk = 86
1408 independent reflectionsl = 3637
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0459P)2 + 0.0811P]
where P = (Fo2 + 2Fc2)/3
1408 reflections(Δ/σ)max < 0.001
178 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C11H12O6·CH4OV = 1331.81 (7) Å3
Mr = 272.25Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.8970 (2) ŵ = 0.11 mm1
b = 7.2088 (3) ÅT = 293 K
c = 31.3290 (4) Å0.60 × 0.20 × 0.10 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
1184 reflections with I > 2σ(I)
7417 measured reflectionsRint = 0.036
1408 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.05Δρmax = 0.18 e Å3
1408 reflectionsΔρmin = 0.19 e Å3
178 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.5195 (3)0.2588 (3)0.38870 (6)0.0496 (5)
H40.63580.30810.37990.074*
O20.0623 (2)0.3712 (2)0.37354 (5)0.0399 (4)
H20.01750.44780.35610.060*
O10.2583 (3)0.1398 (3)0.18267 (5)0.0503 (5)
H10.38110.09620.17560.075*
O30.3496 (3)0.4842 (3)0.35125 (5)0.0465 (5)
C50.0136 (4)0.1541 (3)0.28608 (7)0.0390 (6)
H50.15360.18850.29720.047*
C40.1514 (4)0.0859 (3)0.31338 (7)0.0346 (5)
C10.2305 (4)0.1201 (3)0.22599 (7)0.0373 (5)
C80.1204 (4)0.2530 (3)0.38545 (7)0.0337 (5)
C30.3574 (4)0.0333 (3)0.29570 (7)0.0401 (6)
H30.47050.01390.31330.048*
O60.0015 (5)0.3883 (3)0.49413 (6)0.0750 (6)
H60.01240.48730.50680.112*
C60.0240 (4)0.1722 (3)0.24286 (7)0.0380 (6)
H6A0.08890.21930.22520.046*
O50.2358 (4)0.5185 (3)0.44936 (6)0.0769 (7)
C110.3419 (4)0.3486 (4)0.37382 (7)0.0361 (5)
C20.3976 (4)0.0497 (4)0.25230 (7)0.0420 (6)
H2A0.53650.01360.24090.050*
C70.1074 (4)0.0688 (3)0.36073 (7)0.0397 (6)
H7A0.21700.01670.37280.048*
H7B0.04210.01560.36490.048*
C100.1187 (4)0.3916 (4)0.45945 (7)0.0449 (6)
C90.0974 (4)0.2185 (4)0.43323 (7)0.0412 (6)
H9A0.04910.16220.43880.049*
H9B0.21340.13110.44210.049*
O70.0058 (6)0.6834 (4)0.54040 (10)0.1137 (10)
H70.07610.77300.53570.171*
C120.1744 (7)0.7337 (6)0.56770 (13)0.1048 (14)
H12A0.31670.68740.55730.157*
H12B0.14460.68280.59540.157*
H12C0.18080.86660.56960.157*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0228 (8)0.0617 (12)0.0644 (12)0.0021 (9)0.0012 (8)0.0092 (9)
O20.0262 (8)0.0491 (10)0.0446 (9)0.0002 (8)0.0008 (7)0.0065 (8)
O10.0462 (10)0.0669 (13)0.0378 (9)0.0088 (10)0.0061 (8)0.0085 (9)
O30.0389 (10)0.0530 (11)0.0474 (10)0.0084 (9)0.0064 (8)0.0099 (9)
C50.0297 (12)0.0451 (14)0.0421 (13)0.0043 (12)0.0037 (10)0.0067 (11)
C40.0293 (11)0.0371 (12)0.0374 (12)0.0031 (11)0.0008 (10)0.0057 (10)
C10.0362 (12)0.0398 (13)0.0360 (12)0.0020 (11)0.0037 (10)0.0075 (11)
C80.0232 (11)0.0434 (13)0.0345 (12)0.0004 (11)0.0002 (9)0.0034 (10)
C30.0312 (13)0.0442 (14)0.0449 (13)0.0002 (12)0.0058 (11)0.0028 (11)
O60.0911 (16)0.0758 (14)0.0580 (12)0.0167 (15)0.0377 (12)0.0163 (10)
C60.0336 (13)0.0430 (13)0.0375 (13)0.0072 (12)0.0018 (10)0.0022 (10)
O50.0892 (16)0.0762 (15)0.0653 (12)0.0429 (13)0.0272 (12)0.0222 (11)
C110.0272 (12)0.0485 (15)0.0325 (12)0.0041 (12)0.0018 (10)0.0049 (12)
C20.0287 (12)0.0488 (14)0.0485 (14)0.0006 (12)0.0033 (11)0.0114 (12)
C70.0344 (13)0.0416 (13)0.0430 (13)0.0068 (12)0.0000 (10)0.0015 (11)
C100.0399 (14)0.0588 (16)0.0361 (13)0.0049 (14)0.0047 (11)0.0011 (12)
C90.0361 (13)0.0501 (14)0.0373 (13)0.0072 (12)0.0027 (10)0.0033 (11)
O70.134 (2)0.0946 (19)0.112 (2)0.0550 (19)0.042 (2)0.0518 (17)
C120.101 (3)0.096 (3)0.118 (3)0.032 (3)0.028 (3)0.024 (3)
Geometric parameters (Å, º) top
O4—H40.8200C3—H30.9300
O4—C111.317 (3)C3—C21.385 (3)
O2—H20.8200O6—H60.8200
O2—C81.424 (3)O6—C101.298 (3)
O1—H10.8200C6—H6A0.9300
O1—C11.374 (3)O5—C101.189 (3)
O3—C111.207 (3)C2—H2A0.9300
C5—H50.9300C7—H7A0.9700
C5—C41.386 (3)C7—H7B0.9700
C5—C61.378 (3)C10—C91.499 (4)
C4—C31.388 (3)C9—H9A0.9700
C4—C71.511 (3)C9—H9B0.9700
C1—C61.380 (3)O7—H70.8200
C1—C21.381 (3)O7—C121.361 (4)
C8—C111.521 (3)C12—H12A0.9600
C8—C71.539 (3)C12—H12B0.9600
C8—C91.523 (3)C12—H12C0.9600
C11—O4—H4109.5O3—C11—C8122.6 (2)
C8—O2—H2109.5C1—C2—C3119.7 (2)
C1—O1—H1109.5C1—C2—H2A120.2
C4—C5—H5119.1C3—C2—H2A120.2
C6—C5—H5119.1C4—C7—C8114.53 (19)
C6—C5—C4121.8 (2)C4—C7—H7A108.6
C5—C4—C3117.7 (2)C4—C7—H7B108.6
C5—C4—C7120.9 (2)C8—C7—H7A108.6
C3—C4—C7121.3 (2)C8—C7—H7B108.6
O1—C1—C6117.1 (2)H7A—C7—H7B107.6
O1—C1—C2122.8 (2)O6—C10—C9113.4 (2)
C6—C1—C2120.1 (2)O5—C10—O6123.6 (2)
O2—C8—C11108.42 (17)O5—C10—C9122.9 (2)
O2—C8—C7110.29 (18)C8—C9—H9A108.9
O2—C8—C9106.74 (18)C8—C9—H9B108.9
C11—C8—C7108.24 (18)C10—C9—C8113.2 (2)
C11—C8—C9112.71 (18)C10—C9—H9A108.9
C9—C8—C7110.41 (19)C10—C9—H9B108.9
C4—C3—H3119.4H9A—C9—H9B107.7
C2—C3—C4121.2 (2)C12—O7—H7109.5
C2—C3—H3119.4O7—C12—H12A109.5
C10—O6—H6109.5O7—C12—H12B109.5
C5—C6—C1119.5 (2)O7—C12—H12C109.5
C5—C6—H6A120.2H12A—C12—H12B109.5
C1—C6—H6A120.2H12A—C12—H12C109.5
O4—C11—C8112.08 (19)H12B—C12—H12C109.5
O3—C11—O4125.1 (2)
O2—C8—C11—O4171.94 (19)C6—C5—C4—C7179.4 (2)
O2—C8—C11—O312.4 (3)C6—C1—C2—C30.5 (4)
O2—C8—C7—C468.0 (2)O5—C10—C9—C832.1 (4)
O2—C8—C9—C1062.6 (2)C11—C8—C7—C450.5 (3)
O1—C1—C6—C5179.5 (2)C11—C8—C9—C1056.3 (3)
O1—C1—C2—C3179.8 (2)C2—C1—C6—C50.2 (4)
C5—C4—C3—C20.6 (3)C7—C4—C3—C2179.7 (2)
C5—C4—C7—C877.1 (3)C7—C8—C11—O468.4 (2)
C4—C5—C6—C10.5 (4)C7—C8—C11—O3107.2 (2)
C4—C3—C2—C10.1 (4)C7—C8—C9—C10177.5 (2)
C3—C4—C7—C8103.2 (3)C9—C8—C11—O454.0 (3)
O6—C10—C9—C8148.3 (2)C9—C8—C11—O3130.3 (2)
C6—C5—C4—C30.9 (3)C9—C8—C7—C4174.29 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.821.972.781 (3)170
O2—H2···O30.822.192.655 (2)116
O2—H2···O1ii0.822.332.861 (2)123
O4—H4···O2iii0.821.852.639 (2)162
O6—H6···O70.821.762.575 (4)170
O7—H7···O5iv0.821.932.694 (4)156
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC11H12O6·CH4O
Mr272.25
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)5.8970 (2), 7.2088 (3), 31.3290 (4)
V3)1331.81 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.60 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7417, 1408, 1184
Rint0.036
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.081, 1.05
No. of reflections1408
No. of parameters178
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.19

Computer programs: SMART (Bruker, 1998), SMART and SAINT (Bruker, 1998), XPREP in SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.821.972.781 (3)170
O2—H2···O1ii0.822.332.861 (2)123
O4—H4···O2iii0.821.852.639 (2)162
O6—H6···O70.821.762.575 (4)170
O7—H7···O5iv0.821.932.694 (4)156
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x1/2, y+3/2, z+1.
 

Acknowledgements

This work was supported by a grant from the Natural Science Fund of Guangdong Province (grant No. 07005971) and by the Guangdong High Level Talent Scheme (to RWJ).

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHeller, W. & Tamm, C. (1974). Helv. Chim. Acta, 57, 1766–1784.  CrossRef CAS Web of Science Google Scholar
First citationJiang, J. Q., Li, Y. F., Chen, Z., Min, Z. D. & Lou, F. C. (2006). Steroids, 71, 1073–1077.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, L., Zhou, G.-X. & Jiang, R.-W. (2008). Acta Cryst. E64, o1354.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds