organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Benzyl-2-[(tri­phenyl-λ5-phosphanyl­­idene)amino]-4,5,6,7-tetra­hydro­thieno[2,3-c]pyridine-3-carbo­nitrile

aCollege of Chemistry and Life Science, China Three Gorges University, Yichang 443002, People's Republic of China, and bHubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang 443002, People's Republic of China
*Correspondence e-mail: chenhong3736@sina.com

(Received 14 July 2011; accepted 27 August 2011; online 3 September 2011)

In the title compound, C33H28N3PS, the P atom has a distorted tetra­hedral PNC3 environment, formed by the N atom and three aryl rings. No inter­molecular hydrogen-bonding inter­actions or ππ stacking inter­actions are present in the crystal structure.

Related literature

For general background to the potential use of imino­phospho­ranes in the synthesis of N-heterocyclic compounds by means of an aza-Wittig reaction, see: Bräse et al. (2005[Bräse, S., Gil, C., Knepper, K. & Zimmermann, V. (2005). Angew. Chem. Int. Ed. 44, 5188-5240.]); Ding et al. (2005[Ding, M. W., Huang, N. Y. & He, H. W. (2005). Synthesis, 10, 1601-1604.]); Huang et al. (2009a[Huang, N. Y., Liang, Y. J., Ding, M. W., Fu, L. W. & He, H. W. (2009a). Bioorg. Med. Chem. Lett. 19, 831-833.],b[Huang, N. Y., Liu, M. G. & Ding, M. W. (2009b). J. Org. Chem. 74, 6874-6877.]); Liu et al. (2008[Liu, M. G., Hu, Y. G. & Ding, M. W. (2008). Tetrahedron, 64, 9052-9059.]); Palacios et al. (2007[Palacios, F., Alonso, C., Aparicio, D., Rbbiales, G. & Santos, J. M. (2007). Tetrahedron, 63, 523-575.]). For a related structure, see: Muller (2011[Muller, A. (2011). Acta Cryst. E67, o45.]).

[Scheme 1]

Experimental

Crystal data
  • C33H28N3PS

  • Mr = 529.61

  • Monoclinic, P 21 /c

  • a = 8.926 (4) Å

  • b = 27.537 (12) Å

  • c = 11.719 (5) Å

  • β = 101.970 (4)°

  • V = 2818 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 296 K

  • 0.23 × 0.15 × 0.14 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.965, Tmax = 0.973

  • 25582 measured reflections

  • 6415 independent reflections

  • 5506 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.145

  • S = 1.09

  • 6415 reflections

  • 343 parameters

  • 14 restraints

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Over the past twenty years, the aza-Wittig reactions of iminophosphoranes have received increasing attention in view of their utility in the synthesis of N-heterocyclic compounds (Bräse et al., 2005; Palacios et al., 2007). Annelation of ring systems with N-heterocycles by means of an aza-Wittig reaction has been widely utilized because of the availability of functionalized iminophosphoranes. Consequently, the discovery of novel functionalized iminophosphoranes is important in this respect. Recently we have become interested in the synthesis of thienopyrimidinone, quinazolinones, and imidazolinones by an aza-Wittig reaction, with the aim of evaluating their fungicidal activities (Ding et al., 2005; Huang et al., 2009a,b; Liu et al., 2008). Meanwhile, the title compound can be used as a new precursor for obtaining of bioactive molecules with fluorescence properties. Herein we wish to report the efficient synthesis, structural characterization of the title compound.

The molecular structure of the title compound is shown in Fig.1. The molecule has a benzyl substituent at the N6 atom of the thienopyridine ring and an nitrile group substituent at C3. Within the molecule, the bond lengths and bond angles present no unusual features. In the fused thienopyridine ring system, the thiophene ring is essentially coplanar, with maximum deviation of -0.0052 and 0.0059 Å for C8 and C9, respectively. The dihedral angle between plane (N6, C5, C7) and plane (C4, C5, C7) is 61.69°. The thiophene ring forms dihedral angles of 84.67, 73.58, 2.35 and 65.29° with the adjacent 6-membered rings C12–C17, C18–C23, C24–C29 and C33–C38, respectively. Meanwhile, the P atom has a distorted PNC3 tetrahedral environment, formed by the N atom [PN = 1.5782 (16) Å] and three aryl rings. The crystal packing is determined by van der Waals forces. No intermolecular hydrogen bonding interaction or π-π stacking interactions are present in the crystal structure.

Related literature top

For general background to the potential use of iminophosphoranes in the synthesis of N-heterocyclic compounds by means of an aza-Wittig reaction, see: Bräse et al. (2005); Ding et al. (2005); Huang et al. (2009a,b); Liu et al. (2008); Palacios et al. (2007). For a related structure, see: Muller (2011).

Experimental top

A well stirred mixture of 1-benzylpiperidin-4-one (1.89 g, 10 mmol), sulfur (0.32 g, 10 mmol), malononitrile (0.66 g, 10 mmol) in EtOH (10 ml) was cooled in an ice bath and treated dropwise with Et3N (1.01 g, 10 mmol). When addition was complete, the reaction mixture was warmed to 333 K for 40 min and then stored in the cold place until crystallization occurred. The product, 2-amino-6-benzyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carbonitrile (2.29 g, yield 85%) was recrystallized from EtOH as colourless needles, M.p. 422–423 K.

To a mixture of 2-amino-6-benzyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carbonitrile (1.35 g, 5 mmol), PPh3 (3.94 g, 15 mmol) and C2Cl6 (3.55 g, 15 mmol) in anhydrous CH3CN (40 ml), were added dropwise Et3N (2.42 g, 24 mmol) at room temperature. The color of the reaction mixture quickly turned yellow. After stirring for 4–6 h, the solvent was removed under reduced pressure and the residue was recrystallized from EtOH to give iminophosphorane in light yellow crystals, 3.63 g (83%), M.p. 463 K; IR (KBr), cm-1 2190 (CN), 1490, 1346, 1100, 688; 1H NMR(CDCl3, 400 MHz) δ(p.p.m.): 7.78–7.23 (m, 20H, Ar—H), 3.62 (s, 2H, Ar—CH2), 3.24 (s, 2H, NCH2-thiophene), 2.75 (t, J = 8.7 Hz, 2H, NCH2CH2), 2.64 (t, J = 8.7 Hz, 2H, NCH2CH2); ESI-MS (m/z): 529.2 (M+), 530.2 ([M+H]+), 531.1 ([M+2H]+).

Refinement top

All H atoms were positioned geometrically [C—H = 0.93, 0.97 Å] and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The rigid bond restraint "DELU, SIMU" instructions are used to restrain the anisotropic displacement parameters of C32—C33 and C34—C35 in the direction of the bond between them to be equal within a given standard uncertainty.

Structure description top

Over the past twenty years, the aza-Wittig reactions of iminophosphoranes have received increasing attention in view of their utility in the synthesis of N-heterocyclic compounds (Bräse et al., 2005; Palacios et al., 2007). Annelation of ring systems with N-heterocycles by means of an aza-Wittig reaction has been widely utilized because of the availability of functionalized iminophosphoranes. Consequently, the discovery of novel functionalized iminophosphoranes is important in this respect. Recently we have become interested in the synthesis of thienopyrimidinone, quinazolinones, and imidazolinones by an aza-Wittig reaction, with the aim of evaluating their fungicidal activities (Ding et al., 2005; Huang et al., 2009a,b; Liu et al., 2008). Meanwhile, the title compound can be used as a new precursor for obtaining of bioactive molecules with fluorescence properties. Herein we wish to report the efficient synthesis, structural characterization of the title compound.

The molecular structure of the title compound is shown in Fig.1. The molecule has a benzyl substituent at the N6 atom of the thienopyridine ring and an nitrile group substituent at C3. Within the molecule, the bond lengths and bond angles present no unusual features. In the fused thienopyridine ring system, the thiophene ring is essentially coplanar, with maximum deviation of -0.0052 and 0.0059 Å for C8 and C9, respectively. The dihedral angle between plane (N6, C5, C7) and plane (C4, C5, C7) is 61.69°. The thiophene ring forms dihedral angles of 84.67, 73.58, 2.35 and 65.29° with the adjacent 6-membered rings C12–C17, C18–C23, C24–C29 and C33–C38, respectively. Meanwhile, the P atom has a distorted PNC3 tetrahedral environment, formed by the N atom [PN = 1.5782 (16) Å] and three aryl rings. The crystal packing is determined by van der Waals forces. No intermolecular hydrogen bonding interaction or π-π stacking interactions are present in the crystal structure.

For general background to the potential use of iminophosphoranes in the synthesis of N-heterocyclic compounds by means of an aza-Wittig reaction, see: Bräse et al. (2005); Ding et al. (2005); Huang et al. (2009a,b); Liu et al. (2008); Palacios et al. (2007). For a related structure, see: Muller (2011).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound projected along the c axis direction. H atoms are omitted for clarity.
[Figure 3] Fig. 3. Reaction scheme.
6-Benzyl-2-[(triphenyl-λ5-phosphanylidene)amino]-4,5,6,7- tetrahydrothieno[2,3-c]pyridine-3-carbonitrile top
Crystal data top
C33H28N3PSF(000) = 1112
Mr = 529.61Dx = 1.248 Mg m3
Monoclinic, P21/cMelting point: 463 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.926 (4) ÅCell parameters from 6648 reflections
b = 27.537 (12) Åθ = 2.7–27.5°
c = 11.719 (5) ŵ = 0.20 mm1
β = 101.970 (4)°T = 296 K
V = 2818 (2) Å3Block, yellow
Z = 40.23 × 0.15 × 0.14 mm
Data collection top
Bruker SMART CCD
diffractometer
6415 independent reflections
Radiation source: fine-focus sealed tube5506 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
CCD Profile fitting scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.965, Tmax = 0.973k = 3535
25582 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0593P)2 + 0.6222P]
where P = (Fo2 + 2Fc2)/3
6415 reflections(Δ/σ)max = 0.001
343 parametersΔρmax = 0.35 e Å3
14 restraintsΔρmin = 0.40 e Å3
Crystal data top
C33H28N3PSV = 2818 (2) Å3
Mr = 529.61Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.926 (4) ŵ = 0.20 mm1
b = 27.537 (12) ÅT = 296 K
c = 11.719 (5) Å0.23 × 0.15 × 0.14 mm
β = 101.970 (4)°
Data collection top
Bruker SMART CCD
diffractometer
6415 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5506 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.973Rint = 0.078
25582 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05414 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.09Δρmax = 0.35 e Å3
6415 reflectionsΔρmin = 0.40 e Å3
343 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.39018 (6)0.490734 (17)0.21538 (4)0.04728 (14)
P110.32811 (5)0.375360 (16)0.10480 (4)0.03695 (13)
C20.29442 (19)0.44156 (6)0.26335 (15)0.0385 (4)
N100.26996 (18)0.39751 (5)0.21202 (13)0.0430 (3)
C240.2666 (2)0.31289 (7)0.10029 (15)0.0423 (4)
C30.2455 (2)0.45503 (7)0.36345 (15)0.0409 (4)
C180.2416 (2)0.40262 (7)0.03330 (16)0.0433 (4)
C90.2855 (2)0.50376 (7)0.40134 (15)0.0431 (4)
C40.2442 (3)0.52902 (8)0.50410 (17)0.0533 (5)
H4A0.28220.51030.57420.064*
H4B0.13360.53100.49320.064*
C120.5327 (2)0.37745 (7)0.11612 (16)0.0431 (4)
C80.3613 (2)0.52716 (7)0.32988 (17)0.0467 (4)
C300.1641 (2)0.42171 (7)0.42103 (16)0.0482 (4)
C190.1165 (2)0.43269 (8)0.03768 (18)0.0526 (5)
H190.08190.43950.03020.063*
N60.3003 (2)0.60358 (7)0.40430 (17)0.0624 (5)
C70.4035 (3)0.57978 (8)0.3403 (2)0.0613 (6)
H7A0.50890.58350.38180.074*
H7B0.39320.59410.26350.074*
C290.1868 (3)0.29638 (8)0.18196 (19)0.0559 (5)
H290.17030.31710.24090.067*
N310.0979 (3)0.39483 (8)0.46615 (18)0.0729 (6)
C130.6239 (2)0.34442 (9)0.18892 (19)0.0573 (5)
H130.57890.31900.22210.069*
C50.3120 (3)0.58015 (9)0.5189 (2)0.0666 (6)
H5A0.25750.59940.56650.080*
H5B0.41870.57840.55860.080*
C330.3007 (3)0.67981 (8)0.2956 (2)0.0681 (6)
C270.1534 (3)0.21872 (9)0.0894 (3)0.0765 (8)
H270.11400.18740.08490.092*
C230.2916 (3)0.39258 (10)0.13584 (18)0.0643 (6)
H230.37610.37260.13410.077*
C250.2919 (3)0.28159 (8)0.0134 (2)0.0628 (6)
H250.34710.29200.04130.075*
C260.2338 (4)0.23443 (9)0.0087 (2)0.0775 (8)
H260.24990.21340.04980.093*
C170.6018 (3)0.41492 (9)0.0675 (2)0.0630 (6)
H170.54200.43720.01840.076*
C160.7602 (3)0.41936 (11)0.0916 (3)0.0805 (8)
H160.80630.44460.05870.097*
C360.2460 (5)0.72224 (11)0.0748 (3)0.0943 (9)
H360.22820.73640.00120.113*
C150.8486 (3)0.38665 (12)0.1639 (3)0.0797 (8)
H150.95460.38980.18030.096*
C140.7818 (3)0.34928 (11)0.2122 (2)0.0748 (7)
H140.84270.32710.26070.090*
C280.1311 (3)0.24919 (9)0.1766 (3)0.0753 (7)
H280.07860.23830.23240.090*
C220.2153 (3)0.41234 (12)0.2402 (2)0.0827 (9)
H220.24800.40530.30870.099*
C200.0417 (3)0.45287 (10)0.1435 (2)0.0723 (7)
H200.04160.47340.14620.087*
C210.0922 (3)0.44216 (12)0.2433 (2)0.0802 (8)
H210.04200.45530.31400.096*
C350.3784 (4)0.72998 (12)0.1508 (4)0.0936 (10)
H350.45200.74990.12920.112*
C320.3298 (4)0.65581 (9)0.4136 (3)0.0824 (8)
H32A0.43530.66130.45260.099*
H32B0.26430.67040.46070.099*
C380.1630 (3)0.67270 (10)0.2154 (3)0.0808 (8)
H380.08670.65360.23580.097*
C340.4080 (3)0.70931 (11)0.2599 (3)0.0888 (9)
H340.50130.71520.31030.107*
C370.1393 (4)0.69361 (12)0.1064 (3)0.0931 (10)
H370.04780.68790.05370.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0532 (3)0.0445 (3)0.0489 (3)0.00073 (19)0.0216 (2)0.00419 (18)
P110.0375 (2)0.0411 (2)0.0327 (2)0.00167 (17)0.00837 (17)0.00069 (16)
C20.0377 (8)0.0432 (9)0.0346 (8)0.0036 (7)0.0076 (7)0.0006 (6)
N100.0485 (8)0.0442 (8)0.0386 (8)0.0012 (6)0.0143 (7)0.0042 (6)
C240.0422 (9)0.0443 (9)0.0374 (9)0.0003 (7)0.0014 (7)0.0019 (7)
C30.0432 (9)0.0476 (9)0.0314 (8)0.0064 (7)0.0065 (7)0.0001 (7)
C180.0415 (9)0.0501 (10)0.0376 (9)0.0001 (7)0.0070 (7)0.0037 (7)
C90.0423 (9)0.0505 (10)0.0348 (9)0.0091 (8)0.0040 (7)0.0045 (7)
C40.0608 (12)0.0609 (12)0.0356 (9)0.0127 (9)0.0040 (9)0.0081 (8)
C120.0400 (9)0.0491 (10)0.0406 (9)0.0035 (7)0.0094 (7)0.0051 (7)
C80.0450 (9)0.0462 (9)0.0492 (10)0.0052 (8)0.0104 (8)0.0090 (8)
C300.0582 (11)0.0536 (10)0.0339 (9)0.0080 (9)0.0119 (8)0.0017 (7)
C190.0443 (10)0.0608 (12)0.0512 (11)0.0049 (9)0.0064 (9)0.0052 (9)
N60.0780 (13)0.0471 (9)0.0629 (11)0.0041 (9)0.0170 (10)0.0168 (8)
C70.0602 (12)0.0494 (11)0.0773 (15)0.0018 (10)0.0213 (11)0.0146 (10)
C290.0691 (13)0.0484 (11)0.0515 (11)0.0074 (9)0.0158 (10)0.0022 (8)
N310.0974 (16)0.0704 (13)0.0583 (12)0.0061 (11)0.0330 (12)0.0098 (9)
C130.0485 (11)0.0683 (13)0.0529 (12)0.0064 (10)0.0056 (9)0.0076 (10)
C50.0779 (15)0.0678 (14)0.0499 (12)0.0049 (12)0.0036 (11)0.0212 (10)
C330.0764 (15)0.0455 (11)0.0805 (16)0.0092 (10)0.0119 (13)0.0187 (10)
C270.0892 (18)0.0464 (12)0.0819 (18)0.0119 (12)0.0100 (15)0.0005 (11)
C230.0621 (13)0.0937 (17)0.0391 (11)0.0135 (12)0.0152 (10)0.0084 (10)
C250.0818 (15)0.0564 (12)0.0504 (12)0.0022 (11)0.0143 (11)0.0109 (9)
C260.103 (2)0.0541 (13)0.0662 (16)0.0051 (13)0.0043 (14)0.0223 (11)
C170.0470 (11)0.0652 (13)0.0806 (16)0.0025 (10)0.0220 (11)0.0123 (11)
C160.0498 (13)0.0850 (18)0.112 (2)0.0080 (12)0.0288 (14)0.0093 (16)
C360.119 (3)0.0695 (18)0.095 (2)0.0008 (18)0.025 (2)0.0063 (15)
C150.0403 (11)0.114 (2)0.0847 (19)0.0037 (13)0.0122 (12)0.0092 (16)
C140.0482 (12)0.105 (2)0.0668 (16)0.0173 (13)0.0017 (11)0.0068 (14)
C280.0913 (18)0.0535 (13)0.0814 (17)0.0172 (12)0.0187 (14)0.0079 (12)
C220.0768 (17)0.132 (3)0.0392 (12)0.0004 (17)0.0118 (12)0.0154 (13)
C200.0526 (12)0.0819 (16)0.0743 (17)0.0134 (12)0.0057 (12)0.0194 (13)
C210.0652 (15)0.113 (2)0.0549 (15)0.0024 (15)0.0054 (12)0.0301 (14)
C350.105 (2)0.0723 (18)0.115 (3)0.0176 (17)0.048 (2)0.0176 (17)
C320.1019 (19)0.0533 (13)0.0851 (17)0.0030 (13)0.0036 (15)0.0268 (11)
C380.0603 (14)0.0636 (15)0.116 (2)0.0038 (12)0.0126 (15)0.0062 (15)
C340.0697 (16)0.0736 (17)0.117 (3)0.0124 (14)0.0048 (17)0.0369 (17)
C370.086 (2)0.0790 (19)0.101 (2)0.0032 (16)0.0105 (18)0.0071 (17)
Geometric parameters (Å, º) top
S1—C81.737 (2)C33—C341.385 (4)
S1—C21.7550 (19)C33—C381.397 (4)
P11—N101.5782 (16)C33—C321.506 (4)
P11—C241.803 (2)C27—C281.368 (4)
P11—C121.804 (2)C27—C261.371 (4)
P11—C181.8057 (19)C27—H270.9300
C2—N101.351 (2)C23—C221.382 (3)
C2—C31.385 (2)C23—H230.9300
C24—C291.383 (3)C25—C261.395 (3)
C24—C251.388 (3)C25—H250.9300
C3—C301.424 (3)C26—H260.9300
C3—C91.435 (3)C17—C161.389 (3)
C18—C191.383 (3)C17—H170.9300
C18—C231.394 (3)C16—C151.369 (4)
C9—C81.345 (3)C16—H160.9300
C9—C41.501 (2)C36—C351.341 (5)
C4—C51.528 (3)C36—C371.347 (5)
C4—H4A0.9700C36—H360.9300
C4—H4B0.9700C15—C141.369 (4)
C12—C171.384 (3)C15—H150.9300
C12—C131.389 (3)C14—H140.9300
C8—C71.496 (3)C28—H280.9300
C30—N311.143 (3)C22—C211.367 (4)
C19—C201.396 (3)C22—H220.9300
C19—H190.9300C20—C211.370 (4)
N6—C71.458 (3)C20—H200.9300
N6—C321.462 (3)C21—H210.9300
N6—C51.474 (3)C35—C341.373 (5)
C7—H7A0.9700C35—H350.9300
C7—H7B0.9700C32—H32A0.9700
C29—C281.388 (3)C32—H32B0.9700
C29—H290.9300C38—C371.376 (4)
C13—C141.386 (3)C38—H380.9300
C13—H130.9300C34—H340.9300
C5—H5A0.9700C37—H370.9300
C5—H5B0.9700
C8—S1—C292.17 (9)C34—C33—C38116.4 (3)
N10—P11—C24104.09 (8)C34—C33—C32122.4 (3)
N10—P11—C12115.09 (8)C38—C33—C32121.1 (3)
C24—P11—C12109.28 (8)C28—C27—C26120.0 (2)
N10—P11—C18113.76 (9)C28—C27—H27120.0
C24—P11—C18107.42 (9)C26—C27—H27120.0
C12—P11—C18106.90 (9)C22—C23—C18119.8 (2)
N10—C2—C3124.56 (16)C22—C23—H23120.1
N10—C2—S1126.48 (13)C18—C23—H23120.1
C3—C2—S1108.96 (13)C24—C25—C26119.4 (2)
C2—N10—P11130.67 (13)C24—C25—H25120.3
C29—C24—C25119.31 (19)C26—C25—H25120.3
C29—C24—P11119.39 (15)C27—C26—C25120.7 (2)
C25—C24—P11121.24 (16)C27—C26—H26119.7
C2—C3—C30120.69 (17)C25—C26—H26119.7
C2—C3—C9114.23 (16)C12—C17—C16120.2 (2)
C30—C3—C9125.07 (16)C12—C17—H17119.9
C19—C18—C23119.18 (18)C16—C17—H17119.9
C19—C18—P11118.30 (15)C15—C16—C17120.0 (3)
C23—C18—P11122.44 (16)C15—C16—H16120.0
C8—C9—C3112.36 (16)C17—C16—H16120.0
C8—C9—C4121.09 (18)C35—C36—C37119.1 (3)
C3—C9—C4126.47 (17)C35—C36—H36120.5
C9—C4—C5111.13 (18)C37—C36—H36120.5
C9—C4—H4A109.4C16—C15—C14120.4 (2)
C5—C4—H4A109.4C16—C15—H15119.8
C9—C4—H4B109.4C14—C15—H15119.8
C5—C4—H4B109.4C15—C14—C13120.2 (2)
H4A—C4—H4B108.0C15—C14—H14119.9
C17—C12—C13119.13 (19)C13—C14—H14119.9
C17—C12—P11121.62 (15)C27—C28—C29120.1 (3)
C13—C12—P11118.64 (15)C27—C28—H28120.0
C9—C8—C7124.33 (18)C29—C28—H28120.0
C9—C8—S1112.26 (15)C21—C22—C23120.4 (2)
C7—C8—S1123.18 (16)C21—C22—H22119.8
N31—C30—C3179.3 (2)C23—C22—H22119.8
C18—C19—C20120.3 (2)C21—C20—C19119.4 (2)
C18—C19—H19119.8C21—C20—H20120.3
C20—C19—H19119.8C19—C20—H20120.3
C7—N6—C32110.9 (2)C22—C21—C20120.8 (2)
C7—N6—C5109.80 (19)C22—C21—H21119.6
C32—N6—C5112.64 (19)C20—C21—H21119.6
N6—C7—C8107.58 (18)C36—C35—C34121.7 (3)
N6—C7—H7A110.2C36—C35—H35119.1
C8—C7—H7A110.2C34—C35—H35119.1
N6—C7—H7B110.2N6—C32—C33111.7 (2)
C8—C7—H7B110.2N6—C32—H32A109.3
H7A—C7—H7B108.5C33—C32—H32A109.3
C24—C29—C28120.5 (2)N6—C32—H32B109.3
C24—C29—H29119.8C33—C32—H32B109.3
C28—C29—H29119.8H32A—C32—H32B107.9
C14—C13—C12120.0 (2)C37—C38—C33120.7 (3)
C14—C13—H13120.0C37—C38—H38119.7
C12—C13—H13120.0C33—C38—H38119.7
N6—C5—C4110.37 (17)C35—C34—C33120.8 (3)
N6—C5—H5A109.6C35—C34—H34119.6
C4—C5—H5A109.6C33—C34—H34119.6
N6—C5—H5B109.6C36—C37—C38121.2 (3)
C4—C5—H5B109.6C36—C37—H37119.4
H5A—C5—H5B108.1C38—C37—H37119.4
C8—S1—C2—N10179.48 (17)P11—C18—C19—C20177.18 (18)
C8—S1—C2—C30.05 (14)C32—N6—C7—C8177.4 (2)
C3—C2—N10—P11174.79 (14)C5—N6—C7—C857.4 (2)
S1—C2—N10—P115.7 (3)C9—C8—C7—N622.4 (3)
C24—P11—N10—C2173.39 (17)S1—C8—C7—N6151.68 (16)
C12—P11—N10—C253.8 (2)C25—C24—C29—C280.6 (3)
C18—P11—N10—C270.01 (19)P11—C24—C29—C28176.58 (19)
N10—P11—C24—C290.25 (18)C17—C12—C13—C140.1 (3)
C12—P11—C24—C29123.69 (16)P11—C12—C13—C14171.05 (19)
C18—P11—C24—C29120.68 (16)C7—N6—C5—C469.2 (2)
N10—P11—C24—C25177.42 (17)C32—N6—C5—C4166.6 (2)
C12—P11—C24—C2559.14 (19)C9—C4—C5—N639.9 (3)
C18—P11—C24—C2556.49 (19)C19—C18—C23—C220.5 (4)
N10—C2—C3—C300.5 (3)P11—C18—C23—C22176.3 (2)
S1—C2—C3—C30179.95 (14)C29—C24—C25—C261.3 (3)
N10—C2—C3—C9179.89 (16)P11—C24—C25—C26175.92 (18)
S1—C2—C3—C90.57 (19)C28—C27—C26—C250.9 (4)
N10—P11—C18—C1911.62 (19)C24—C25—C26—C270.5 (4)
C24—P11—C18—C19103.01 (17)C13—C12—C17—C160.2 (4)
C12—P11—C18—C19139.79 (16)P11—C12—C17—C16170.7 (2)
N10—P11—C18—C23171.61 (18)C12—C17—C16—C150.1 (4)
C24—P11—C18—C2373.8 (2)C17—C16—C15—C140.4 (5)
C12—P11—C18—C2343.4 (2)C16—C15—C14—C130.5 (5)
C2—C3—C9—C81.1 (2)C12—C13—C14—C150.2 (4)
C30—C3—C9—C8179.54 (17)C26—C27—C28—C291.5 (4)
C2—C3—C9—C4177.94 (17)C24—C29—C28—C270.8 (4)
C30—C3—C9—C42.7 (3)C18—C23—C22—C210.8 (4)
C8—C9—C4—C55.3 (3)C18—C19—C20—C210.8 (4)
C3—C9—C4—C5178.09 (18)C23—C22—C21—C200.2 (5)
N10—P11—C12—C1794.91 (19)C19—C20—C21—C220.6 (4)
C24—P11—C12—C17148.44 (18)C37—C36—C35—C340.3 (5)
C18—P11—C12—C1732.5 (2)C7—N6—C32—C3362.6 (3)
N10—P11—C12—C1376.04 (18)C5—N6—C32—C33173.9 (2)
C24—P11—C12—C1340.61 (18)C34—C33—C32—N6127.8 (3)
C18—P11—C12—C13156.57 (16)C38—C33—C32—N651.2 (3)
C3—C9—C8—C7173.52 (19)C34—C33—C38—C371.1 (4)
C4—C9—C8—C73.5 (3)C32—C33—C38—C37178.0 (3)
C3—C9—C8—S11.1 (2)C36—C35—C34—C330.5 (5)
C4—C9—C8—S1178.14 (14)C38—C33—C34—C350.2 (4)
C2—S1—C8—C90.68 (15)C32—C33—C34—C35179.0 (3)
C2—S1—C8—C7174.02 (18)C35—C36—C37—C380.7 (5)
C23—C18—C19—C200.3 (3)C33—C38—C37—C361.4 (5)

Experimental details

Crystal data
Chemical formulaC33H28N3PS
Mr529.61
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.926 (4), 27.537 (12), 11.719 (5)
β (°) 101.970 (4)
V3)2818 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.23 × 0.15 × 0.14
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.965, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
25582, 6415, 5506
Rint0.078
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.145, 1.09
No. of reflections6415
No. of parameters343
No. of restraints14
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.40

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported financially by the Science Foundation of Hubei Province Education Department, China (project No. D20091301) and the Excellent Fund for Scientific Research and Special Projects in China Three Gorges University, China (project No. KJ2009B004).

References

First citationBräse, S., Gil, C., Knepper, K. & Zimmermann, V. (2005). Angew. Chem. Int. Ed. 44, 5188–5240.  Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDing, M. W., Huang, N. Y. & He, H. W. (2005). Synthesis, 10, 1601–1604.  Web of Science CrossRef Google Scholar
First citationHuang, N. Y., Liang, Y. J., Ding, M. W., Fu, L. W. & He, H. W. (2009a). Bioorg. Med. Chem. Lett. 19, 831–833.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHuang, N. Y., Liu, M. G. & Ding, M. W. (2009b). J. Org. Chem. 74, 6874–6877.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, M. G., Hu, Y. G. & Ding, M. W. (2008). Tetrahedron, 64, 9052–9059.  Web of Science CSD CrossRef CAS Google Scholar
First citationMuller, A. (2011). Acta Cryst. E67, o45.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPalacios, F., Alonso, C., Aparicio, D., Rbbiales, G. & Santos, J. M. (2007). Tetrahedron, 63, 523–575.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds