metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(2,2′-bi-1H-imidazole-κ2N3,N3′)cobalt(II) hydrogen phosphate

aState Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, Jilin Province, People's Republic of China, and bDepartment of Materials and Chemical Engineering, Ministry of Education Key Laboratory of Application Technology of Hainan Superior Resources Chemical Materials, Hainan University, Haikou 570228, Hainan Province, People's Republic of China
*Correspondence e-mail: panqinhe@163.com

(Received 1 August 2011; accepted 13 September 2011; online 17 September 2011)

The title compound, [Co(C6H6N4)3]HPO4, was synthesized under hydro­thermal conditions. In the cation, the CoII atom is octa­hedrally coordinated by six N atoms from three 2,2′-bi-1H-imidazole ligands [Co—N bond lengths are in the range 2.084 (5)–2.133 (6) Å]. Inter­molecular N—H⋯O hydrogen bonds form an extensive hydrogen-bonding network, which links cations and anions into a three-dimensional crystal structure.

Related literature

For related compounds, see Pan et al. (2005[Pan, Q. H., Yu, J. H. & Xu, R. R. (2005). Chem. J. Chin. Univ. 26, 2199-2202.], 2008[Pan, Q. H., Yu, J. H. & Xu, R. R. (2008). Chem. Mater. 20, 370-372.], 2010a[Pan, Q. H., Li, J. Y. & Bu, X.-H. (2010a). Micropor. Mesopor. Mater. 132, 453-457.],b[Pan, Q. H., Cheng, Q. & Bu, X.-H. (2010b). CrystEngComm, 12, 4198-4204.], 2011[Pan, Q. H., Cheng, Q. & Bu, X.-H. (2011). Chem. J. Chin. Univ. 32, 527-531.]); Rothammel et al. (1998[Rothammel, W., Spengler, R., Burzlaff, H., Jarraya, S. & Ben Salah, A. (1998). Acta Cryst. C54, IUC9800059.]); Stalder & Wilkinson (1997[Stalder, S. M. & Wilkinson, A. P. (1997). Chem. Mater. 9, 2168-2173.]); Tong & Pan (2011[Tong, J. & Pan, Q. (2011). Acta Cryst. E67, m579-m580.]); Wang et al. (2003a[Wang, Y., Yu, J. H. & Xu, R. R. (2003a). Angew. Chem. Int. Ed. 42, 4089-4092.],b[Wang, Y., Yu, J. H. & Xu, R. R. (2003b). Chem. Eur. J. 9, 5048-5055.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C6H6N4)3]HPO4

  • Mr = 557.35

  • Monoclinic, C c

  • a = 12.700 (3) Å

  • b = 21.447 (4) Å

  • c = 9.1140 (18) Å

  • β = 95.84 (3)°

  • V = 2469.6 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 293 K

  • 0.20 × 0.17 × 0.15 mm

Data collection
  • Rigaku R-AXIS RAPID-S diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructureand CrystalClear. Rigaku/MSC Inc., USA.]) Tmin = 0.850, Tmax = 0.886

  • 12597 measured reflections

  • 5593 independent reflections

  • 3373 reflections with I > 2σ(I)

  • Rint = 0.098

Refinement
  • R[F2 > 2σ(F2)] = 0.077

  • wR(F2) = 0.152

  • S = 1.06

  • 5593 reflections

  • 325 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.32 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2755 Friedel pairs

  • Flack parameter: −0.02 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4 0.86 1.82 2.678 (7) 172.1
N4—H4⋯O2 0.86 1.87 2.717 (7) 168.3
N6—H6A⋯O3i 0.86 1.96 2.725 (8) 148.3
N8—H8⋯O3i 0.86 1.89 2.669 (8) 149.3
N10—H10⋯O2ii 0.86 2.23 2.887 (7) 133.7
N10—H10⋯O4iii 0.86 2.39 3.034 (9) 132.5
N12—H12A⋯O4iii 0.86 1.93 2.685 (8) 146.0
Symmetry codes: (i) x+1, y, z; (ii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructureand CrystalClear. Rigaku/MSC Inc., USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, more attention has been paid to chiral metal complexes, which could be employed as an interesting template for the synthesis of novel materials, because they are versatile and can be made with a wide of shapes, charges and particularly chirality. Up to now, series of open-frameworks, such as metal phosphates (for example: Stalder & Wilkinson (1997); Wang et al. (2003a,b)) and germanates (for example: Pan et al. (2005, 2008)), have been synthesized with [M(dien)2]n+ or [M(en)3]n+ (M = Co, Ni; n = 2, 3; dien = diethylenediamine, en = ethylenediamine) cations. Recently the chiral metal complexes have been introduced into coordination polymers, see Pan et al. (2010a, 2010b, 2011), Tong et al. (2011). In this paper, we present an other metal complex [Co(biim)3]HPO4 (biim is 2,2'-biimidazole).

As shown in Fig. 1, the crystal structure of title compound consists of a discrete [Co(biim)3]2+ cations and HPO42- anions. In [Co(biim)3]2+, the CoII center is six coorinated and linked by six N atoms from three different biim ligands, resulting in a slightly distorted octahedral geometry. The CoII—N bond distances are in the range of 2.084 (5)–2.133 (6) Å. The P atom displays a slightly distorted tetrahedal geometry and is bonded to three O atoms and one OH group with the P—O distances of 1.484 (6)–1.564 (5) Å. N—H···O hydrogen bonds connect cations and anions into a three-dimensional network (see Table 1).

Related literature top

For related compounds, see Pan et al. (2005, 2008, 2010a,b, 2011); Rothammel et al. (1998); Stalder & Wilkinson (1997); Tong & Pan (2011); Wang et al. (2003a,b).

Experimental top

In a typical synthesis, a mixture of Co(OAc)2.2H2O (0.25 g), biimidazole (0.067 g), H3PO4 (0.12 ml) and H2O (10 ml) were added to a 25 ml Teflon-lined reactor and kept under autogenous pressure at 120 °C for 3 days.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93 Å, N—H = 0.86 Å and O—H = 0.82 Å) and allowed to ride on their parent atoms,with Uiso(H) = 1.2Ueq(parent atom).

Structure description top

Recently, more attention has been paid to chiral metal complexes, which could be employed as an interesting template for the synthesis of novel materials, because they are versatile and can be made with a wide of shapes, charges and particularly chirality. Up to now, series of open-frameworks, such as metal phosphates (for example: Stalder & Wilkinson (1997); Wang et al. (2003a,b)) and germanates (for example: Pan et al. (2005, 2008)), have been synthesized with [M(dien)2]n+ or [M(en)3]n+ (M = Co, Ni; n = 2, 3; dien = diethylenediamine, en = ethylenediamine) cations. Recently the chiral metal complexes have been introduced into coordination polymers, see Pan et al. (2010a, 2010b, 2011), Tong et al. (2011). In this paper, we present an other metal complex [Co(biim)3]HPO4 (biim is 2,2'-biimidazole).

As shown in Fig. 1, the crystal structure of title compound consists of a discrete [Co(biim)3]2+ cations and HPO42- anions. In [Co(biim)3]2+, the CoII center is six coorinated and linked by six N atoms from three different biim ligands, resulting in a slightly distorted octahedral geometry. The CoII—N bond distances are in the range of 2.084 (5)–2.133 (6) Å. The P atom displays a slightly distorted tetrahedal geometry and is bonded to three O atoms and one OH group with the P—O distances of 1.484 (6)–1.564 (5) Å. N—H···O hydrogen bonds connect cations and anions into a three-dimensional network (see Table 1).

For related compounds, see Pan et al. (2005, 2008, 2010a,b, 2011); Rothammel et al. (1998); Stalder & Wilkinson (1997); Tong & Pan (2011); Wang et al. (2003a,b).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of complex. Ellipsoids are drawn at the 30% probability level.
Tris(2,2'-bi-1H-imidazole-κ2N3,N3')cobalt(II) hydrogen phosphate top
Crystal data top
[Co(C6H6N4)3]HPO4F(000) = 1140
Mr = 557.35Dx = 1.499 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 12761 reflections
a = 12.700 (3) Åθ = 3.1–27.5°
b = 21.447 (4) ŵ = 0.81 mm1
c = 9.1140 (18) ÅT = 293 K
β = 95.84 (3)°Block, blue
V = 2469.6 (8) Å30.2 × 0.17 × 0.15 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
5593 independent reflections
Radiation source: fine-focus sealed tube3373 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.098
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2002)
h = 1616
Tmin = 0.850, Tmax = 0.886k = 2727
12597 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.077H-atom parameters constrained
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.0453P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.042
5593 reflectionsΔρmax = 0.40 e Å3
325 parametersΔρmin = 0.32 e Å3
2 restraintsAbsolute structure: Flack (1983), 2755 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (2)
Crystal data top
[Co(C6H6N4)3]HPO4V = 2469.6 (8) Å3
Mr = 557.35Z = 4
Monoclinic, CcMo Kα radiation
a = 12.700 (3) ŵ = 0.81 mm1
b = 21.447 (4) ÅT = 293 K
c = 9.1140 (18) Å0.2 × 0.17 × 0.15 mm
β = 95.84 (3)°
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
5593 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2002)
3373 reflections with I > 2σ(I)
Tmin = 0.850, Tmax = 0.886Rint = 0.098
12597 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.077H-atom parameters constrained
wR(F2) = 0.152Δρmax = 0.40 e Å3
S = 1.06Δρmin = 0.32 e Å3
5593 reflectionsAbsolute structure: Flack (1983), 2755 Friedel pairs
325 parametersAbsolute structure parameter: 0.02 (2)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.61255 (7)0.33459 (3)0.15859 (9)0.0466 (3)
P10.12445 (13)0.48617 (7)0.34051 (17)0.0397 (4)
O10.1291 (4)0.5348 (2)0.4686 (5)0.0560 (13)
H10.19000.53750.50770.067*
O20.1932 (4)0.5113 (2)0.2233 (4)0.0512 (12)
O30.0119 (4)0.4852 (3)0.2777 (6)0.0828 (17)
O40.1658 (4)0.4249 (2)0.4011 (5)0.0699 (15)
N10.4828 (5)0.3189 (3)0.2765 (7)0.0619 (18)
N20.3328 (5)0.3553 (3)0.3473 (7)0.0648 (18)
H20.27940.37920.35650.078*
N30.5206 (5)0.4153 (2)0.0992 (6)0.0513 (14)
N40.3842 (4)0.4723 (3)0.1484 (6)0.0566 (16)
H40.32740.48380.18470.068*
N50.7019 (4)0.3812 (2)0.3368 (6)0.0513 (15)
N60.8457 (5)0.4352 (3)0.4042 (7)0.0584 (16)
H6A0.90470.45440.39930.070*
N70.7434 (4)0.3656 (3)0.0530 (6)0.0477 (14)
N80.8950 (4)0.4176 (2)0.0763 (7)0.0482 (14)
H80.94730.43950.11500.058*
N90.6751 (5)0.2470 (3)0.2311 (8)0.0603 (17)
N100.6751 (6)0.1449 (3)0.1916 (9)0.074 (2)
H100.66360.10930.14980.089*
N110.5563 (4)0.2775 (3)0.0218 (8)0.0625 (18)
N120.5553 (5)0.1820 (3)0.1166 (9)0.077 (2)
H12A0.56520.14260.12440.092*
C10.4432 (7)0.2771 (4)0.3717 (12)0.095 (3)
H1A0.47480.23950.40150.114*
C20.3535 (7)0.2987 (4)0.4145 (12)0.097 (3)
H2A0.31180.27900.47870.116*
C30.4129 (5)0.3662 (3)0.2641 (8)0.0511 (18)
C40.4347 (5)0.4180 (3)0.1736 (8)0.0449 (17)
C50.4392 (7)0.5059 (4)0.0548 (10)0.078 (3)
H50.42260.54540.01770.094*
C60.5240 (6)0.4697 (3)0.0261 (9)0.063 (2)
H60.57560.48110.03420.076*
C70.7044 (7)0.3963 (3)0.4839 (9)0.064 (2)
H70.65290.38530.54470.077*
C80.7923 (8)0.4291 (4)0.5266 (9)0.071 (2)
H8A0.81280.44460.62050.086*
C90.7899 (5)0.4063 (3)0.2959 (8)0.0446 (16)
C100.8109 (5)0.3975 (3)0.1443 (8)0.0415 (16)
C110.8805 (6)0.3960 (3)0.0667 (8)0.0520 (17)
H110.92540.40180.14000.062*
C120.7866 (6)0.3645 (3)0.0789 (8)0.0562 (19)
H120.75630.34520.16430.067*
C130.7277 (7)0.2186 (4)0.3508 (9)0.070 (2)
H130.75830.23880.43480.083*
C140.7284 (8)0.1565 (4)0.3283 (12)0.078 (3)
H140.75930.12680.39330.094*
C150.6450 (5)0.2012 (3)0.1372 (9)0.057 (2)
C160.5860 (6)0.2179 (3)0.0014 (10)0.061 (2)
C170.5049 (8)0.2208 (5)0.2230 (12)0.094 (3)
H170.47560.20880.31640.113*
C180.5058 (7)0.2797 (4)0.1671 (12)0.086 (3)
H180.47810.31510.21580.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0401 (4)0.0300 (4)0.0746 (6)0.0043 (5)0.0292 (4)0.0064 (5)
P10.0473 (10)0.0415 (9)0.0323 (8)0.0023 (8)0.0134 (8)0.0013 (8)
O10.075 (4)0.048 (3)0.046 (3)0.005 (3)0.012 (3)0.004 (2)
O20.057 (3)0.051 (3)0.048 (3)0.002 (2)0.014 (2)0.009 (2)
O30.058 (3)0.100 (4)0.091 (4)0.007 (3)0.011 (3)0.023 (3)
O40.104 (4)0.042 (3)0.068 (3)0.020 (3)0.028 (3)0.011 (2)
N10.053 (4)0.043 (3)0.098 (5)0.005 (3)0.047 (4)0.000 (3)
N20.055 (4)0.047 (3)0.100 (5)0.002 (3)0.043 (4)0.002 (4)
N30.049 (3)0.045 (3)0.063 (4)0.004 (3)0.020 (3)0.001 (3)
N40.047 (4)0.060 (4)0.064 (4)0.018 (3)0.013 (3)0.009 (3)
N50.055 (4)0.038 (3)0.065 (4)0.004 (3)0.026 (3)0.007 (3)
N60.059 (4)0.054 (4)0.064 (4)0.014 (3)0.016 (4)0.006 (3)
N70.040 (3)0.048 (3)0.057 (4)0.006 (3)0.016 (3)0.004 (3)
N80.036 (3)0.044 (3)0.066 (4)0.005 (2)0.016 (3)0.005 (3)
N90.057 (4)0.046 (4)0.084 (5)0.002 (3)0.038 (4)0.004 (4)
N100.079 (5)0.034 (3)0.115 (6)0.005 (3)0.036 (5)0.005 (4)
N110.040 (3)0.040 (4)0.112 (6)0.001 (3)0.026 (4)0.015 (4)
N120.063 (4)0.038 (3)0.129 (6)0.006 (3)0.012 (4)0.022 (4)
C10.076 (6)0.051 (5)0.171 (9)0.006 (4)0.075 (7)0.029 (6)
C20.084 (6)0.053 (5)0.167 (10)0.006 (5)0.082 (7)0.029 (6)
C30.053 (4)0.035 (4)0.070 (5)0.008 (3)0.028 (4)0.011 (4)
C40.030 (4)0.046 (4)0.060 (5)0.002 (3)0.013 (3)0.007 (3)
C50.086 (6)0.070 (6)0.084 (6)0.015 (5)0.037 (6)0.031 (5)
C60.060 (5)0.058 (5)0.077 (5)0.006 (4)0.033 (4)0.022 (4)
C70.079 (6)0.056 (5)0.062 (5)0.003 (4)0.031 (5)0.009 (4)
C80.089 (6)0.069 (6)0.060 (5)0.010 (5)0.025 (5)0.010 (4)
C90.037 (4)0.038 (4)0.060 (5)0.001 (3)0.014 (4)0.006 (3)
C100.043 (4)0.032 (3)0.052 (4)0.002 (3)0.019 (4)0.002 (3)
C110.043 (4)0.063 (5)0.052 (4)0.009 (4)0.016 (4)0.000 (4)
C120.061 (5)0.055 (5)0.053 (5)0.007 (4)0.009 (4)0.007 (4)
C130.080 (6)0.058 (5)0.074 (6)0.006 (4)0.023 (5)0.004 (4)
C140.090 (7)0.042 (5)0.107 (8)0.007 (4)0.029 (6)0.005 (5)
C150.046 (4)0.035 (4)0.094 (6)0.003 (3)0.027 (4)0.002 (4)
C160.041 (4)0.035 (4)0.111 (7)0.005 (3)0.031 (5)0.009 (5)
C170.081 (7)0.064 (6)0.134 (9)0.013 (5)0.007 (6)0.029 (6)
C180.059 (6)0.079 (7)0.116 (8)0.001 (5)0.006 (6)0.003 (6)
Geometric parameters (Å, º) top
Co1—N12.084 (5)N9—C151.332 (9)
Co1—N72.110 (5)N9—C131.364 (10)
Co1—N112.115 (7)N10—C151.346 (9)
Co1—N92.120 (6)N10—C141.379 (11)
Co1—N32.127 (6)N10—H100.8600
Co1—N52.133 (6)N11—C161.344 (9)
P1—O31.485 (6)N11—C181.412 (11)
P1—O41.500 (4)N12—C161.348 (10)
P1—O21.544 (4)N12—C171.384 (11)
P1—O11.563 (5)N12—H12A0.8600
O1—H10.8200C1—C21.325 (10)
N1—C31.344 (9)C1—H1A0.9300
N1—C11.378 (9)C2—H2A0.9300
N2—C31.350 (8)C3—C41.429 (9)
N2—C21.373 (9)C5—C61.373 (10)
N2—H20.8600C5—H50.9300
N3—C41.343 (8)C6—H60.9300
N3—C61.347 (8)C7—C81.343 (11)
N4—C41.337 (8)C7—H70.9300
N4—C51.363 (9)C8—H8A0.9300
N4—H40.8600C9—C101.446 (9)
N5—C91.327 (8)C11—C121.365 (9)
N5—C71.376 (8)C11—H110.9300
N6—C91.311 (8)C12—H120.9300
N6—C81.370 (9)C13—C141.347 (10)
N6—H6A0.8600C13—H130.9300
N7—C101.323 (8)C14—H140.9300
N7—C121.372 (8)C15—C161.426 (11)
N8—C101.358 (8)C17—C181.361 (11)
N8—C111.377 (9)C17—H170.9300
N8—H80.8600C18—H180.9300
N1—Co1—N7170.6 (2)C16—N12—H12A126.5
N1—Co1—N1194.9 (2)C17—N12—H12A126.5
N7—Co1—N1192.7 (2)C2—C1—N1109.8 (7)
N1—Co1—N989.3 (2)C2—C1—H1A125.1
N7—Co1—N997.7 (2)N1—C1—H1A125.1
N11—Co1—N979.4 (3)C1—C2—N2108.0 (7)
N1—Co1—N379.6 (2)C1—C2—H2A126.0
N7—Co1—N393.7 (2)N2—C2—H2A126.0
N11—Co1—N398.0 (2)N1—C3—N2110.6 (6)
N9—Co1—N3168.4 (2)N1—C3—C4118.0 (6)
N1—Co1—N594.0 (2)N2—C3—C4131.3 (7)
N7—Co1—N579.5 (2)N4—C4—N3110.6 (6)
N11—Co1—N5167.1 (2)N4—C4—C3131.2 (6)
N9—Co1—N591.4 (2)N3—C4—C3118.2 (6)
N3—Co1—N592.8 (2)N4—C5—C6106.4 (6)
O3—P1—O4114.6 (4)N4—C5—H5126.8
O3—P1—O2109.2 (3)C6—C5—H5126.8
O4—P1—O2111.0 (3)N3—C6—C5109.3 (6)
O3—P1—O1105.1 (3)N3—C6—H6125.4
O4—P1—O1109.0 (3)C5—C6—H6125.4
O2—P1—O1107.6 (3)C8—C7—N5110.0 (7)
P1—O1—H1109.5C8—C7—H7125.0
C3—N1—C1105.3 (6)N5—C7—H7125.0
C3—N1—Co1112.7 (5)C7—C8—N6106.3 (7)
C1—N1—Co1142.0 (5)C7—C8—H8A126.9
C3—N2—C2106.4 (6)N6—C8—H8A126.9
C3—N2—H2126.8N6—C9—N5112.7 (6)
C2—N2—H2126.8N6—C9—C10130.0 (6)
C4—N3—C6106.3 (6)N5—C9—C10117.3 (6)
C4—N3—Co1111.1 (4)N7—C10—N8111.5 (6)
C6—N3—Co1141.9 (5)N7—C10—C9119.8 (6)
C4—N4—C5107.4 (6)N8—C10—C9128.7 (7)
C4—N4—H4126.3C12—C11—N8106.0 (6)
C5—N4—H4126.3C12—C11—H11127.0
C9—N5—C7104.0 (6)N8—C11—H11127.0
C9—N5—Co1112.0 (5)C11—C12—N7110.2 (6)
C7—N5—Co1144.1 (5)C11—C12—H12124.9
C9—N6—C8107.0 (6)N7—C12—H12124.9
C9—N6—H6A126.5C14—C13—N9109.3 (8)
C8—N6—H6A126.5C14—C13—H13125.4
C10—N7—C12105.5 (5)N9—C13—H13125.4
C10—N7—Co1111.5 (4)C13—C14—N10107.8 (8)
C12—N7—Co1143.0 (5)C13—C14—H14126.1
C10—N8—C11106.8 (6)N10—C14—H14126.1
C10—N8—H8126.6N9—C15—N10111.8 (8)
C11—N8—H8126.6N9—C15—C16117.7 (7)
C15—N9—C13105.7 (6)N10—C15—C16130.5 (7)
C15—N9—Co1112.2 (6)N11—C16—N12111.3 (8)
C13—N9—Co1141.6 (6)N11—C16—C15119.3 (7)
C15—N10—C14105.5 (7)N12—C16—C15129.3 (7)
C15—N10—H10127.3C18—C17—N12108.0 (9)
C14—N10—H10127.3C18—C17—H17126.0
C16—N11—C18105.8 (7)N12—C17—H17126.0
C16—N11—Co1111.2 (6)C17—C18—N11107.9 (8)
C18—N11—Co1142.7 (6)C17—C18—H18126.1
C16—N12—C17107.0 (7)N11—C18—H18126.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O40.861.822.678 (7)172.1
N4—H4···O20.861.872.717 (7)168.3
N6—H6A···O3i0.861.962.725 (8)148.3
N8—H8···O3i0.861.892.669 (8)149.3
N10—H10···O2ii0.862.232.887 (7)133.7
N10—H10···O4iii0.862.393.034 (9)132.5
N12—H12A···O4iii0.861.932.685 (8)146.0
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y1/2, z; (iii) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Co(C6H6N4)3]HPO4
Mr557.35
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)12.700 (3), 21.447 (4), 9.1140 (18)
β (°) 95.84 (3)
V3)2469.6 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.2 × 0.17 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID-S
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2002)
Tmin, Tmax0.850, 0.886
No. of measured, independent and
observed [I > 2σ(I)] reflections
12597, 5593, 3373
Rint0.098
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.152, 1.06
No. of reflections5593
No. of parameters325
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.32
Absolute structureFlack (1983), 2755 Friedel pairs
Absolute structure parameter0.02 (2)

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O40.861.822.678 (7)172.1
N4—H4···O20.861.872.717 (7)168.3
N6—H6A···O3i0.861.962.725 (8)148.3
N8—H8···O3i0.861.892.669 (8)149.3
N10—H10···O2ii0.862.232.887 (7)133.7
N10—H10···O4iii0.862.393.034 (9)132.5
N12—H12A···O4iii0.861.932.685 (8)146.0
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y1/2, z; (iii) x+1/2, y+1/2, z1/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21001052 and 21101047), the Natural Science Foundation of Hainan Province (No. 211010) and the Priming Scientific Research Foundation of Hainan University (No. kyqd1051).

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPan, Q. H., Cheng, Q. & Bu, X.-H. (2010b). CrystEngComm, 12, 4198–4204.  Web of Science CSD CrossRef CAS Google Scholar
First citationPan, Q. H., Cheng, Q. & Bu, X.-H. (2011). Chem. J. Chin. Univ. 32, 527–531.  CAS Google Scholar
First citationPan, Q. H., Li, J. Y. & Bu, X.-H. (2010a). Micropor. Mesopor. Mater. 132, 453–457.  Web of Science CSD CrossRef CAS Google Scholar
First citationPan, Q. H., Yu, J. H. & Xu, R. R. (2005). Chem. J. Chin. Univ. 26, 2199–2202.  CAS Google Scholar
First citationPan, Q. H., Yu, J. H. & Xu, R. R. (2008). Chem. Mater. 20, 370–372.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructureand CrystalClear. Rigaku/MSC Inc., USA.  Google Scholar
First citationRothammel, W., Spengler, R., Burzlaff, H., Jarraya, S. & Ben Salah, A. (1998). Acta Cryst. C54, IUC9800059.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStalder, S. M. & Wilkinson, A. P. (1997). Chem. Mater. 9, 2168–2173.  CSD CrossRef CAS Web of Science Google Scholar
First citationTong, J. & Pan, Q. (2011). Acta Cryst. E67, m579–m580.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y., Yu, J. H. & Xu, R. R. (2003a). Angew. Chem. Int. Ed. 42, 4089–4092.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, Y., Yu, J. H. & Xu, R. R. (2003b). Chem. Eur. J. 9, 5048–5055.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds