metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­(dicyanamido-κN1)(2,9-di­methyl-1,10-phenanthroline-κ2N,N′)(nitrato-κ2O,O′)cobalt(II)–2,9-di­methyl-1,10-phenanthroline–water (2/1/2)

aCollege of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, People's Republic of China, and bDepartment of Engineering and Technology, Xinxiang Vocational and Technical College, Xinxiang 453007, People's Republic of China
*Correspondence e-mail: pz_zhao@hotmail.com

(Received 6 July 2011; accepted 27 August 2011; online 14 September 2011)

In the title compound, 2[Co(C2N3)(NO3)(C14H12N2)(H2O)]·C14H12N2·2H2O, the CoII ion is coordinated by a bidentate 2,9-dimethyl-1,10-phenanthroline (dmphen) ligand, a bidentate nitrate anion, a water mol­ecule and a monodentate dicyan­amide group in a distorted octa­hedral geometry. One uncoordinated dmphen mol­ecule is situated on a crystallographic twofold axis and the asymmetric unit is completed by one water mol­ecule. In the crystal, mol­ecules form a one-dimensional framework in the [001] direction through O—H⋯N and O—H⋯O hydrogen bonds. The crystal packing is further stabilized by ππ stacking inter­actions between the dmphen rings of neighboring mol­ecules, with a centroid–centroid separation of 3.5641 (8) Å and a partially overlapped arrangement of parallel dmphen rings with a distance of 3.407 (2) Å.

Related literature

For background to metal–phenanthroline complexes, see: Naing et al. (1995[Naing, K., Takahashi, M., Taniguchi, M. & Yamagishi, A. (1995). Inorg. Chem. 34, 350-356.]); Wang et al. (1996[Wang, J., Cai, X., Rivas, G., Shiraishi, H., Farias, P. A. M. & Dontha, N. (1996). Anal. Chem. 68, 2629-2634.]); Wall et al. (1999[Wall, M., Linkletter, B., Williams, D., Lebuis, A.-M., Hynes, R. C. & Chin, J. (1999). J. Am. Chem. Soc. 121, 4710-4711.]). For related Co(II)–phenanthroline structures, see: Ding et al. (2006[Ding, C.-F., Zhang, M.-L., Li, X.-M. & Zhang, S.-S. (2006). Acta Cryst. E62, m2540-m2542.]); Xuan & Zhao (2007[Xuan, X. & Zhao, P. (2007). Acta Cryst. E63, m3009.]); Zhao et al. (2008[Zhao, P.-Z., Xuan, X.-P. & Tang, Q.-H. (2008). Acta Cryst. E64, m327.]).

[Scheme 1]

Experimental

Crystal data
  • 2[Co(C2N3)(NO3)(C14H12N2)(H2O)]·C14H12N2·2H2O

  • Mr = 1070.82

  • Monoclinic, C 2/c

  • a = 17.993 (6) Å

  • b = 11.770 (4) Å

  • c = 23.428 (7) Å

  • β = 106.981 (4)°

  • V = 4745 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 291 K

  • 0.34 × 0.18 × 0.11 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.781, Tmax = 0.917

  • 17592 measured reflections

  • 4400 independent reflections

  • 2862 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.196

  • S = 1.04

  • 4400 reflections

  • 328 parameters

  • 36 restraints

  • H-atom parameters constrained

  • Δρmax = 1.06 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H1W⋯O5i 0.85 2.57 3.111 (9) 123
O4—H2W⋯N7 0.85 1.97 2.810 (6) 167
O5—H4W⋯N5ii 0.85 2.25 2.830 (15) 126
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Metal-phenanthroline complexes and their derivatives have attracted much attention because of their peculiar features (Wang et al., 1996; Wall et al., 1999; Naing et al., 1995). Some Co(II)-phenanthroline complexes have been synthesized and structures were determined (Ding et al., 2006; Xuan & Zhao, 2007; Zhao et al., 2008). Recently, we obtained the title cobalt(II) complex, by reacting 2,9-dimethyl-1,10-phenanthroline, NaN(CN)2 and Co(NO3)2 in an ethanol/water mixture. The structure of the title compound, 2[Co(C14H12N2)N(CN)2NO3H2O].C14H12N2.2H2O is described below.

Each CoII ion is six-coordinated by two N atoms from a 2,9-dimethyl-1,10-phenanthroline ligand, two O atoms from a nitrate anion, one O atom from a water molecule and one N from a dicyanamide anion. The water and N3/C15/N4/C16/N5 ligands occupy the axial positions, with a N3—Co1—O4 bond angle of 171.71 (16)°. The CoII ion locates in the center, and CoO3N3 unit forms a distorted octahedral geometry. The uncoordinated dmphen molecule is placed on a crystallographic twofold axis (Fig. 1).

In the crystal structure, molecules are linked into a one-dimensional framework by O—H···N and O—H···O hydrogen bonds (Fig. 2). A partially overlapped arrangement of neighboring parallel Co1A-dmphen and Co1B-dmphen [symmetry code: (A) -x + 1, y, -z + 1/2; (B) -x + 1, -y + 1, -z + 1] rings with distance of 3.4065 (20) Å is observed. The shorter face-to-face separation clearly indicates the existence of π-π stacking between the dmphen rings. Uncoordinated N7A-dmphen and N7B-dmphen rings are also parallel with distance of 10.4286 (19) Å. In addition, the distance between the ring centroids Cg (C4A···C7A/C11A/C12A) and Cg (C17A···C20A/C22A/N7A) is 3.5641 (8) Å (Fig. 3). This value is close to the van der Waals thickness of the π-π stacking between nearly parallel dmphen (N7A-dmphen with Co1A-dmphen and Co1B-dmphen with N7B-dmphen) rings [dihedral angle: 3.4 (1)°].

Related literature top

For background to metal–phenanthroline complexes, see: Naing et al. (1995); Wang et al. (1996); Wall et al. (1999). For related Co(II)–phenanthroline structures, see: Ding et al. (2006); Xuan & Zhao (2007); Zhao et al. (2008).

Experimental top

NaN(CN)2 (0.0892 g, 1 mmol) was dissolved in distilled water (10 ml) and Co(NO3)2.6H2O (0.1456 g, 0.5 mmol) was added. This solution was added to a solution of 2,9-dimethyl-1,10-phenanthroline hemihydrate (C14H12N2.0.5H2O, 0.1088 g, 0.5 mmol) in ethanol (10 ml). The mixture was stirred at 323 K and then refluxed for 5 h, cooled to room temperature and filtered. Pink single crystals appeared over a period of 8 days by slow evaporation at room temperature.

Refinement top

Methyl H atoms were placed in calculated positions, with C—H = 0.96 Å, and refined with free torsion angles to fit the electron density; Uiso(H) = 1.5Ueq(carrier C). The water H atoms were located in a differemce map and refined in the riding approximation in their as-found positions and Uiso(H) = 1.5Ueq(carrier O). Other H atoms were placed in calculated positions, with C—H=0.93 Å, and refined in the riding-model approximation with Uiso(H) = 1.2Ueq(carrier C). The final refinement was carried out with 36 restraints on anisotropic displacement parameters for atoms N4, C16, N5, C17, C18, C19, C20 and C21, in order to approximate an isotropic behaviour.

Structure description top

Metal-phenanthroline complexes and their derivatives have attracted much attention because of their peculiar features (Wang et al., 1996; Wall et al., 1999; Naing et al., 1995). Some Co(II)-phenanthroline complexes have been synthesized and structures were determined (Ding et al., 2006; Xuan & Zhao, 2007; Zhao et al., 2008). Recently, we obtained the title cobalt(II) complex, by reacting 2,9-dimethyl-1,10-phenanthroline, NaN(CN)2 and Co(NO3)2 in an ethanol/water mixture. The structure of the title compound, 2[Co(C14H12N2)N(CN)2NO3H2O].C14H12N2.2H2O is described below.

Each CoII ion is six-coordinated by two N atoms from a 2,9-dimethyl-1,10-phenanthroline ligand, two O atoms from a nitrate anion, one O atom from a water molecule and one N from a dicyanamide anion. The water and N3/C15/N4/C16/N5 ligands occupy the axial positions, with a N3—Co1—O4 bond angle of 171.71 (16)°. The CoII ion locates in the center, and CoO3N3 unit forms a distorted octahedral geometry. The uncoordinated dmphen molecule is placed on a crystallographic twofold axis (Fig. 1).

In the crystal structure, molecules are linked into a one-dimensional framework by O—H···N and O—H···O hydrogen bonds (Fig. 2). A partially overlapped arrangement of neighboring parallel Co1A-dmphen and Co1B-dmphen [symmetry code: (A) -x + 1, y, -z + 1/2; (B) -x + 1, -y + 1, -z + 1] rings with distance of 3.4065 (20) Å is observed. The shorter face-to-face separation clearly indicates the existence of π-π stacking between the dmphen rings. Uncoordinated N7A-dmphen and N7B-dmphen rings are also parallel with distance of 10.4286 (19) Å. In addition, the distance between the ring centroids Cg (C4A···C7A/C11A/C12A) and Cg (C17A···C20A/C22A/N7A) is 3.5641 (8) Å (Fig. 3). This value is close to the van der Waals thickness of the π-π stacking between nearly parallel dmphen (N7A-dmphen with Co1A-dmphen and Co1B-dmphen with N7B-dmphen) rings [dihedral angle: 3.4 (1)°].

For background to metal–phenanthroline complexes, see: Naing et al. (1995); Wang et al. (1996); Wall et al. (1999). For related Co(II)–phenanthroline structures, see: Ding et al. (2006); Xuan & Zhao (2007); Zhao et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 30% probability displacement ellipsoids. [Symmetry code: (A) -x + 1, y, -z + 1/2].
[Figure 2] Fig. 2. The hydrogen-bonding motifs in the crystal structure. Dashed lines indicate the hydrogen bonds.
[Figure 3] Fig. 3. The π-π interaction between the dmphen rings of neighboring molecules in the crystal structure [Symmetry codes: (A) -x + 1, y, -z + 1/2; (B) -x + 1, -y + 1, -z + 1; (C) x, -y + 1, z + 1/2].
Aqua(dicyanamido-κN1)(2,9-dimethyl-1,10-phenanthroline- κ2N,N')(nitrato-κ2O,O')cobalt(II)– 2,9-dimethyl-1,10-phenanthroline–water (2/1/2) top
Crystal data top
2[Co(C2N3)(NO3)(C14H12N2)(H2O)]·C14H12N2·2H2OF(000) = 2208
Mr = 1070.82Dx = 1.499 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2628 reflections
a = 17.993 (6) Åθ = 2.4–21.2°
b = 11.770 (4) ŵ = 0.77 mm1
c = 23.428 (7) ÅT = 291 K
β = 106.981 (4)°Block, pink
V = 4745 (3) Å30.34 × 0.18 × 0.11 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4400 independent reflections
Radiation source: fine-focus sealed tube2862 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
φ and ω scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2121
Tmin = 0.781, Tmax = 0.917k = 1314
17592 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.196H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1026P)2 + 4.8562P]
where P = (Fo2 + 2Fc2)/3
4400 reflections(Δ/σ)max < 0.001
328 parametersΔρmax = 1.06 e Å3
36 restraintsΔρmin = 0.58 e Å3
0 constraints
Crystal data top
2[Co(C2N3)(NO3)(C14H12N2)(H2O)]·C14H12N2·2H2OV = 4745 (3) Å3
Mr = 1070.82Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.993 (6) ŵ = 0.77 mm1
b = 11.770 (4) ÅT = 291 K
c = 23.428 (7) Å0.34 × 0.18 × 0.11 mm
β = 106.981 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4400 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2862 reflections with I > 2σ(I)
Tmin = 0.781, Tmax = 0.917Rint = 0.070
17592 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06636 restraints
wR(F2) = 0.196H-atom parameters constrained
S = 1.04Δρmax = 1.06 e Å3
4400 reflectionsΔρmin = 0.58 e Å3
328 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.42687 (4)0.19148 (5)0.38145 (3)0.0453 (3)
O10.3472 (2)0.0602 (3)0.32847 (17)0.0706 (10)
O20.3720 (3)0.1178 (3)0.3477 (2)0.1070 (17)
O30.4528 (2)0.0107 (3)0.39358 (17)0.0648 (10)
O40.4792 (3)0.1851 (3)0.31525 (17)0.0672 (11)
H1W0.44500.17470.28190.101*
H2W0.51240.23440.31240.101*
O50.5612 (6)0.0066 (7)0.2802 (4)0.233 (5)
H3W0.57310.05720.29750.350*
H4W0.56020.03590.31320.350*
N10.5202 (2)0.2867 (3)0.43700 (16)0.0443 (9)
N20.3892 (2)0.3599 (3)0.35623 (16)0.0434 (9)
N30.3653 (3)0.1776 (4)0.4424 (2)0.0694 (13)
N40.2925 (4)0.1214 (6)0.5087 (3)0.114 (2)
N50.3362 (7)0.1052 (7)0.6164 (4)0.172 (4)
N60.3906 (3)0.0181 (4)0.3558 (2)0.0667 (12)
N70.5696 (2)0.3653 (4)0.29332 (18)0.0534 (10)
C10.5844 (3)0.2489 (5)0.4772 (2)0.0568 (13)
C20.6423 (3)0.3248 (7)0.5087 (3)0.0753 (18)
H20.68660.29660.53630.090*
C30.6345 (3)0.4380 (6)0.4995 (3)0.0701 (16)
H30.67370.48710.52000.084*
C40.5662 (3)0.4812 (5)0.4582 (2)0.0582 (14)
C50.5522 (4)0.5994 (5)0.4464 (3)0.0696 (16)
H50.58870.65220.46690.084*
C60.4872 (4)0.6351 (5)0.4062 (3)0.0694 (16)
H60.47930.71250.39910.083*
C70.4299 (3)0.5567 (4)0.3738 (2)0.0534 (13)
C80.3608 (4)0.5883 (4)0.3314 (3)0.0639 (15)
H80.35040.66470.32260.077*
C90.3089 (3)0.5090 (5)0.3029 (3)0.0651 (15)
H90.26330.53080.27450.078*
C100.3242 (3)0.3931 (4)0.3164 (2)0.0504 (12)
C110.4419 (3)0.4398 (4)0.38500 (19)0.0433 (11)
C120.5111 (3)0.4015 (4)0.4278 (2)0.0455 (11)
C130.5937 (4)0.1235 (5)0.4881 (3)0.0800 (18)
H13A0.55820.09830.50910.120*
H13B0.64600.10730.51150.120*
H13C0.58270.08440.45050.120*
C140.2674 (3)0.3042 (5)0.2860 (3)0.0705 (16)
H14A0.29200.25210.26580.106*
H14B0.22400.33940.25760.106*
H14C0.24950.26380.31510.106*
C150.3341 (4)0.1530 (5)0.4758 (3)0.0691 (16)
C160.3184 (6)0.1179 (7)0.5646 (5)0.110 (3)
C170.6397 (4)0.3631 (7)0.3335 (3)0.0808 (18)
C180.6784 (4)0.4641 (8)0.3554 (3)0.099 (2)
H180.72740.46120.38300.118*
C190.6457 (5)0.5651 (8)0.3371 (3)0.101 (2)
H190.67120.63150.35340.121*
C200.5729 (5)0.5711 (6)0.2933 (3)0.0904 (19)
C210.5337 (5)0.6744 (6)0.2707 (4)0.105 (3)
H210.55650.74330.28560.127*
C220.5374 (3)0.4659 (4)0.2729 (2)0.0542 (13)
C230.6749 (4)0.2515 (8)0.3539 (3)0.111 (3)
H23A0.65220.19490.32450.167*
H23B0.66550.23200.39100.167*
H23C0.72990.25500.35950.167*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0533 (5)0.0302 (4)0.0530 (4)0.0039 (3)0.0165 (3)0.0007 (3)
O10.075 (3)0.048 (2)0.079 (3)0.002 (2)0.007 (2)0.0021 (19)
O20.133 (4)0.035 (2)0.144 (4)0.020 (2)0.026 (3)0.015 (2)
O30.070 (3)0.043 (2)0.078 (2)0.0033 (18)0.017 (2)0.0042 (17)
O40.104 (3)0.041 (2)0.071 (2)0.0056 (19)0.048 (2)0.0030 (16)
O50.371 (15)0.145 (7)0.204 (9)0.066 (8)0.118 (9)0.001 (6)
N10.047 (2)0.040 (2)0.047 (2)0.0035 (17)0.0147 (18)0.0012 (16)
N20.047 (2)0.035 (2)0.051 (2)0.0026 (18)0.0189 (19)0.0007 (17)
N30.078 (3)0.060 (3)0.082 (3)0.016 (2)0.041 (3)0.010 (2)
N40.129 (5)0.110 (5)0.136 (5)0.022 (4)0.092 (5)0.001 (4)
N50.295 (11)0.124 (7)0.147 (7)0.022 (7)0.141 (8)0.015 (5)
N60.084 (4)0.032 (3)0.082 (3)0.010 (2)0.022 (3)0.004 (2)
N70.043 (2)0.062 (3)0.058 (2)0.001 (2)0.020 (2)0.004 (2)
C10.054 (3)0.064 (3)0.051 (3)0.004 (3)0.014 (2)0.001 (3)
C20.049 (3)0.112 (6)0.059 (3)0.008 (3)0.007 (3)0.003 (3)
C30.055 (3)0.078 (4)0.075 (4)0.022 (3)0.017 (3)0.017 (3)
C40.060 (3)0.057 (3)0.064 (3)0.023 (3)0.028 (3)0.017 (3)
C50.082 (4)0.050 (3)0.083 (4)0.032 (3)0.034 (4)0.026 (3)
C60.097 (5)0.037 (3)0.087 (4)0.015 (3)0.048 (4)0.013 (3)
C70.071 (4)0.030 (2)0.069 (3)0.001 (2)0.036 (3)0.006 (2)
C80.085 (4)0.034 (3)0.081 (4)0.015 (3)0.037 (3)0.009 (3)
C90.066 (4)0.054 (3)0.076 (4)0.016 (3)0.021 (3)0.008 (3)
C100.057 (3)0.042 (3)0.053 (3)0.006 (2)0.017 (2)0.002 (2)
C110.052 (3)0.034 (2)0.050 (3)0.005 (2)0.023 (2)0.0062 (19)
C120.050 (3)0.041 (3)0.052 (3)0.009 (2)0.025 (2)0.007 (2)
C130.078 (4)0.073 (4)0.078 (4)0.012 (3)0.007 (3)0.021 (3)
C140.061 (4)0.066 (4)0.074 (4)0.002 (3)0.003 (3)0.001 (3)
C150.079 (4)0.045 (3)0.098 (4)0.009 (3)0.049 (4)0.010 (3)
C160.160 (6)0.081 (5)0.128 (6)0.018 (4)0.105 (6)0.018 (5)
C170.054 (4)0.130 (6)0.065 (3)0.010 (4)0.028 (3)0.011 (4)
C180.066 (4)0.145 (6)0.088 (4)0.038 (4)0.028 (3)0.032 (4)
C190.096 (5)0.118 (5)0.106 (5)0.066 (4)0.057 (4)0.047 (4)
C200.114 (5)0.072 (4)0.112 (5)0.040 (4)0.075 (4)0.027 (3)
C210.152 (7)0.053 (3)0.139 (7)0.025 (4)0.085 (5)0.023 (4)
C220.061 (3)0.046 (3)0.071 (3)0.014 (2)0.043 (3)0.012 (2)
C230.073 (5)0.174 (8)0.084 (5)0.046 (5)0.019 (4)0.030 (5)
Geometric parameters (Å, º) top
Co1—O42.037 (4)C5—H50.9300
Co1—N32.053 (5)C6—C71.425 (8)
Co1—N12.120 (4)C6—H60.9300
Co1—N22.122 (4)C7—C81.397 (7)
Co1—O32.180 (4)C7—C111.405 (7)
Co1—O12.224 (4)C8—C91.350 (8)
O1—N61.256 (6)C8—H80.9300
O2—N61.220 (5)C9—C101.408 (7)
O3—N61.253 (6)C9—H90.9300
O4—H1W0.8501C10—C141.491 (7)
O4—H2W0.8500C11—C121.425 (7)
O5—H3W0.8500C13—H13A0.9600
O5—H4W0.8501C13—H13B0.9600
N1—C11.336 (6)C13—H13C0.9600
N1—C121.371 (6)C14—H14A0.9600
N2—C101.325 (6)C14—H14B0.9600
N2—C111.366 (6)C14—H14C0.9600
N3—C151.126 (7)C17—C181.398 (10)
N4—C161.256 (11)C17—C231.476 (11)
N4—C151.276 (8)C18—C191.339 (11)
N5—C161.172 (11)C18—H180.9300
N7—C171.336 (7)C19—C201.410 (11)
N7—C221.344 (7)C19—H190.9300
C1—C21.406 (8)C20—C221.411 (8)
C1—C131.499 (8)C20—C211.427 (10)
C2—C31.349 (9)C21—C21i1.314 (17)
C2—H20.9300C21—H210.9300
C3—C41.419 (8)C22—C22i1.455 (11)
C3—H30.9300C23—H23A0.9600
C4—C121.398 (7)C23—H23B0.9600
C4—C51.426 (8)C23—H23C0.9600
C5—C61.337 (9)
O4—Co1—N3171.71 (16)C9—C8—C7120.8 (5)
O4—Co1—N191.57 (16)C9—C8—H8119.6
N3—Co1—N196.13 (17)C7—C8—H8119.6
O4—Co1—N290.19 (14)C8—C9—C10119.8 (5)
N3—Co1—N294.27 (17)C8—C9—H9120.1
N1—Co1—N278.95 (14)C10—C9—H9120.1
O4—Co1—O386.23 (14)N2—C10—C9121.2 (5)
N3—Co1—O388.30 (17)N2—C10—C14118.1 (4)
N1—Co1—O3109.58 (15)C9—C10—C14120.7 (5)
N2—Co1—O3170.81 (15)N2—C11—C7122.4 (4)
O4—Co1—O185.13 (16)N2—C11—C12117.9 (4)
N3—Co1—O186.69 (17)C7—C11—C12119.7 (4)
N1—Co1—O1167.45 (15)N1—C12—C4123.1 (5)
N2—Co1—O1113.10 (14)N1—C12—C11117.5 (4)
O3—Co1—O158.18 (14)C4—C12—C11119.3 (5)
N6—O1—Co191.2 (3)C1—C13—H13A109.5
N6—O3—Co193.4 (3)C1—C13—H13B109.5
Co1—O4—H1W109.6H13A—C13—H13B109.5
Co1—O4—H2W121.9C1—C13—H13C109.5
H1W—O4—H2W111.2H13A—C13—H13C109.5
H3W—O5—H4W89.8H13B—C13—H13C109.5
C1—N1—C12118.6 (4)C10—C14—H14A109.5
C1—N1—Co1128.6 (3)C10—C14—H14B109.5
C12—N1—Co1112.8 (3)H14A—C14—H14B109.5
C10—N2—C11119.2 (4)C10—C14—H14C109.5
C10—N2—Co1128.1 (3)H14A—C14—H14C109.5
C11—N2—Co1112.8 (3)H14B—C14—H14C109.5
C15—N3—Co1169.5 (5)N3—C15—N4173.6 (8)
C16—N4—C15122.4 (8)N5—C16—N4172.3 (10)
O2—N6—O3121.2 (5)N7—C17—C18120.5 (7)
O2—N6—O1121.6 (5)N7—C17—C23118.3 (7)
O3—N6—O1117.1 (4)C18—C17—C23121.2 (7)
C17—N7—C22119.3 (5)C19—C18—C17120.9 (7)
N1—C1—C2120.9 (5)C19—C18—H18119.6
N1—C1—C13118.5 (5)C17—C18—H18119.6
C2—C1—C13120.6 (5)C18—C19—C20120.3 (7)
C3—C2—C1121.1 (6)C18—C19—H19119.8
C3—C2—H2119.4C20—C19—H19119.8
C1—C2—H2119.4C19—C20—C22115.8 (7)
C2—C3—C4119.4 (5)C19—C20—C21124.5 (7)
C2—C3—H3120.3C22—C20—C21119.7 (7)
C4—C3—H3120.3C21i—C21—C20121.6 (4)
C12—C4—C3116.8 (5)C21i—C21—H21119.2
C12—C4—C5119.8 (5)C20—C21—H21119.2
C3—C4—C5123.4 (5)N7—C22—C20123.2 (6)
C6—C5—C4120.8 (5)N7—C22—C22i118.2 (3)
C6—C5—H5119.6C20—C22—C22i118.7 (4)
C4—C5—H5119.6C17—C23—H23A109.5
C5—C6—C7121.3 (5)C17—C23—H23B109.5
C5—C6—H6119.4H23A—C23—H23B109.5
C7—C6—H6119.4C17—C23—H23C109.5
C8—C7—C11116.7 (5)H23A—C23—H23C109.5
C8—C7—C6124.2 (5)H23B—C23—H23C109.5
C11—C7—C6119.1 (5)
O4—Co1—O1—N690.4 (3)C5—C6—C7—C8179.8 (5)
N3—Co1—O1—N688.2 (3)C5—C6—C7—C110.5 (8)
N1—Co1—O1—N615.2 (8)C11—C7—C8—C90.1 (8)
N2—Co1—O1—N6178.5 (3)C6—C7—C8—C9179.5 (5)
O3—Co1—O1—N61.8 (3)C7—C8—C9—C100.5 (8)
O4—Co1—O3—N688.4 (3)C11—N2—C10—C90.6 (7)
N3—Co1—O3—N685.3 (3)Co1—N2—C10—C9177.4 (4)
N1—Co1—O3—N6178.8 (3)C11—N2—C10—C14179.6 (4)
O1—Co1—O3—N61.8 (3)Co1—N2—C10—C142.4 (7)
O4—Co1—N1—C190.8 (4)C8—C9—C10—N20.8 (8)
N3—Co1—N1—C186.1 (4)C8—C9—C10—C14179.3 (5)
N2—Co1—N1—C1179.3 (4)C10—N2—C11—C70.1 (6)
O3—Co1—N1—C14.3 (4)Co1—N2—C11—C7178.2 (3)
O1—Co1—N1—C116.3 (9)C10—N2—C11—C12179.8 (4)
O4—Co1—N1—C1287.9 (3)Co1—N2—C11—C121.9 (5)
N3—Co1—N1—C1295.2 (3)C8—C7—C11—N20.1 (7)
N2—Co1—N1—C122.0 (3)C6—C7—C11—N2179.3 (4)
O3—Co1—N1—C12174.4 (3)C8—C7—C11—C12180.0 (4)
O1—Co1—N1—C12162.4 (6)C6—C7—C11—C120.6 (7)
O4—Co1—N2—C1088.7 (4)C1—N1—C12—C40.4 (7)
N3—Co1—N2—C1084.3 (4)Co1—N1—C12—C4178.4 (4)
N1—Co1—N2—C10179.8 (4)C1—N1—C12—C11179.5 (4)
O1—Co1—N2—C103.9 (4)Co1—N1—C12—C111.7 (5)
O4—Co1—N2—C1189.4 (3)C3—C4—C12—N11.1 (7)
N3—Co1—N2—C1197.5 (3)C5—C4—C12—N1179.5 (4)
N1—Co1—N2—C112.1 (3)C3—C4—C12—C11179.0 (4)
O1—Co1—N2—C11174.2 (3)C5—C4—C12—C110.4 (7)
N1—Co1—N3—C15113 (3)N2—C11—C12—N10.2 (6)
N2—Co1—N3—C15167 (3)C7—C11—C12—N1179.9 (4)
O3—Co1—N3—C154 (3)N2—C11—C12—C4179.7 (4)
O1—Co1—N3—C1555 (3)C7—C11—C12—C40.2 (6)
Co1—O3—N6—O2174.5 (5)C22—N7—C17—C181.8 (8)
Co1—O3—N6—O13.1 (5)C22—N7—C17—C23178.1 (5)
Co1—O1—N6—O2174.5 (5)N7—C17—C18—C190.8 (10)
Co1—O1—N6—O33.0 (5)C23—C17—C18—C19179.3 (6)
C12—N1—C1—C21.2 (7)C17—C18—C19—C202.9 (11)
Co1—N1—C1—C2177.4 (4)C18—C19—C20—C222.4 (10)
C12—N1—C1—C13178.9 (4)C18—C19—C20—C21179.6 (7)
Co1—N1—C1—C132.5 (7)C19—C20—C21—C21i179.3 (9)
N1—C1—C2—C30.4 (9)C22—C20—C21—C21i2.8 (14)
C13—C1—C2—C3179.8 (6)C17—N7—C22—C202.2 (7)
C1—C2—C3—C41.2 (9)C17—N7—C22—C22i177.2 (5)
C2—C3—C4—C121.9 (8)C19—C20—C22—N70.1 (8)
C2—C3—C4—C5178.8 (5)C21—C20—C22—N7177.9 (6)
C12—C4—C5—C60.5 (8)C19—C20—C22—C22i179.3 (6)
C3—C4—C5—C6178.8 (5)C21—C20—C22—C22i2.6 (9)
C4—C5—C6—C70.1 (9)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1W···O5i0.852.573.111 (9)123
O4—H2W···N70.851.972.810 (6)167
O5—H3W···O40.852.392.941 (11)123
O5—H4W···N5ii0.852.252.830 (15)126
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula2[Co(C2N3)(NO3)(C14H12N2)(H2O)]·C14H12N2·2H2O
Mr1070.82
Crystal system, space groupMonoclinic, C2/c
Temperature (K)291
a, b, c (Å)17.993 (6), 11.770 (4), 23.428 (7)
β (°) 106.981 (4)
V3)4745 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.34 × 0.18 × 0.11
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.781, 0.917
No. of measured, independent and
observed [I > 2σ(I)] reflections
17592, 4400, 2862
Rint0.070
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.196, 1.04
No. of reflections4400
No. of parameters328
No. of restraints36
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.06, 0.58

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1W···O5i0.852.573.111 (9)122.8
O4—H2W···N70.851.972.810 (6)167.3
O5—H4W···N5ii0.852.252.830 (15)125.5
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y, z+1.
 

Acknowledgements

Financial support from the National Natural Science Foundation of Henan Educational Committee (2011 A150018) is gratefully acknowledged.

References

First citationBruker (2004). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDing, C.-F., Zhang, M.-L., Li, X.-M. & Zhang, S.-S. (2006). Acta Cryst. E62, m2540–m2542.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaing, K., Takahashi, M., Taniguchi, M. & Yamagishi, A. (1995). Inorg. Chem. 34, 350–356.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWall, M., Linkletter, B., Williams, D., Lebuis, A.-M., Hynes, R. C. & Chin, J. (1999). J. Am. Chem. Soc. 121, 4710–4711.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, J., Cai, X., Rivas, G., Shiraishi, H., Farias, P. A. M. & Dontha, N. (1996). Anal. Chem. 68, 2629–2634.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXuan, X. & Zhao, P. (2007). Acta Cryst. E63, m3009.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, P.-Z., Xuan, X.-P. & Tang, Q.-H. (2008). Acta Cryst. E64, m327.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds