organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Chloro­butano­yl)-N′-(2,5-dimeth­­oxy­phen­yl)thio­urea

aDepartment of Chemical Sciences, Faculty of Science and Technology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia, and bSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, UKM 43500 Bangi Selangor, Malaysia
*Correspondence e-mail: mohdsukeri@umt.edu.my

(Received 24 August 2011; accepted 4 September 2011; online 14 September 2011)

The title mol­ecule, C13H17ClN2O3S, shows an anti and syn disposition of the butanoyl and 2,5-dimethoxyphenyl groups with respect to the thione and is stabilized by intra­molecular N—H⋯O and weak C—H⋯S hydrogen bonds. In the crystal, inter­molecular N—H⋯S hydrogen bonds link the mol­ecules into centrosymmetric dimers. The crystal structure is stabilized by weak C—H⋯O and C—H⋯S contacts.

Related literature

For the structures of related thio­ureas, see: Yamin et al. (2011[Yamin, B. M., Othman, N. E. A., Yusof, M. S. M. & Embong, F. (2011). Acta Cryst. E67, o419.]); Yusof et al. (2011[Yusof, M. S. M., Embong, N. F., Othman, E. A. & Yamin, B. M. (2011). Acta Cryst. E67, o1849.]).

[Scheme 1]

Experimental

Crystal data
  • C13H17ClN2O3S

  • Mr = 316.80

  • Triclinic, [P \overline 1]

  • a = 7.6882 (18) Å

  • b = 9.151 (2) Å

  • c = 10.939 (3) Å

  • α = 98.536 (5)°

  • β = 97.787 (5)°

  • γ = 101.489 (5)°

  • V = 734.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 298 K

  • 0.29 × 0.25 × 0.19 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.890, Tmax = 0.926

  • 9303 measured reflections

  • 3351 independent reflections

  • 2928 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.105

  • S = 1.06

  • 3351 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1 0.86 1.93 2.663 (2) 141
C7—H7A⋯S1 0.93 2.51 3.1853 (18) 129
N1—H1A⋯S1i 0.86 2.58 3.4058 (16) 161
C3—H3A⋯S1i 0.97 2.83 3.5633 (19) 133
C12—H12A⋯O2ii 0.96 2.50 3.259 (3) 136
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x, -y, -z+3.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound (Fig. 1) is analogous to the previously reported N-(4-chlorobutanoyl)-N'-(2-fluorophenyl)thiourea (Yusof et al., 2011) except that the methoxy groups are attached at the 2 and 5 positions of the phenyl ring. The carbonylthiourea fragment C4/O1/N1/C5/S1/N2 and the benzene ring, C6···C11, are each planar with the maximum deviation from the least-squares planes of 0.024 (2) Å for atom C4. The benzene ring and carbonylthiourea moiety form a dihedral angle of 5.67 (6)°, much smaller than angles observed in the previously reported thioureas N-(4-chlorobutanoyl)-N'-(2-fluorophenyl)thiourea [74.78 (19)° and 82.3 (2)° for two independent molecules] and N-(4-chlorobutanoyl)-N'-phenylthiourea [72.98 (12)° and 81.47 (14)° for two independent molecules] (Yusof et al., 2011; Yamin et al., 2011). The bond lengths and angles in the title thiourea are in normal ranges and comparable to those in the analogous compounds. The molecule maintains the trans-cis configuration with respect to the position of the butanoyl and 2,5-dimethoxyphenyl groups against the thiono C=S group bond across their C—N bonds.

The molecule is stabilized by three intramolecular contacts, N—H···O and C—H···S. In the crystal packing, the molecules are linked by N—H···S, C—H···S and C—H···O intermolecular hydrogen bonds (symmetry codes as in Table 1) and form dimers (Fig. 2).

Related literature top

For the structures of related thioureas, see: Yamin et al. (2011); Yusof et al. (2011).

Experimental top

A solution of 4-chlorobutanoylisothiocyanate (1.25 g, 6.33 mmol) in 30 ml of acetone was added into a flask containing 30 ml acetone solution of 2,5-dimethoxyaniline (0.82 g, 6.33 mmol). The mixture was refluxed for 1 h. Then, the solution was filtered-off and left to evaporate at room temperature. The colourless solid was obtained after one day of evaporation (yield 74%).

Refinement top

H atoms bonded to C atoms were positioned geometrically with C—H = 0.93–0.97 Å and constrained to ride on their parent atoms with Uiso(H)= xUeq(parent atom) where x=1.5 for CH3 group and 1.2 for CH and CH2 groups. Amine H atoms were also placed in idealized positions and refined with N—H bond lengths restrained to 0.86 Å and Uiso(H)= 1.2Ueq(parent N atom).

Structure description top

The title compound (Fig. 1) is analogous to the previously reported N-(4-chlorobutanoyl)-N'-(2-fluorophenyl)thiourea (Yusof et al., 2011) except that the methoxy groups are attached at the 2 and 5 positions of the phenyl ring. The carbonylthiourea fragment C4/O1/N1/C5/S1/N2 and the benzene ring, C6···C11, are each planar with the maximum deviation from the least-squares planes of 0.024 (2) Å for atom C4. The benzene ring and carbonylthiourea moiety form a dihedral angle of 5.67 (6)°, much smaller than angles observed in the previously reported thioureas N-(4-chlorobutanoyl)-N'-(2-fluorophenyl)thiourea [74.78 (19)° and 82.3 (2)° for two independent molecules] and N-(4-chlorobutanoyl)-N'-phenylthiourea [72.98 (12)° and 81.47 (14)° for two independent molecules] (Yusof et al., 2011; Yamin et al., 2011). The bond lengths and angles in the title thiourea are in normal ranges and comparable to those in the analogous compounds. The molecule maintains the trans-cis configuration with respect to the position of the butanoyl and 2,5-dimethoxyphenyl groups against the thiono C=S group bond across their C—N bonds.

The molecule is stabilized by three intramolecular contacts, N—H···O and C—H···S. In the crystal packing, the molecules are linked by N—H···S, C—H···S and C—H···O intermolecular hydrogen bonds (symmetry codes as in Table 1) and form dimers (Fig. 2).

For the structures of related thioureas, see: Yamin et al. (2011); Yusof et al. (2011).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound viewed down the b axis. Hydrogen bonds are shown as dashed lines.
N-(4-Chlorobutanoyl)-N'-(2,5-dimethoxyphenyl)thiourea top
Crystal data top
C13H17ClN2O3SZ = 2
Mr = 316.80F(000) = 332
Triclinic, P1Dx = 1.432 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6882 (18) ÅCell parameters from 934 reflections
b = 9.151 (2) Åθ = 1.9–27.5°
c = 10.939 (3) ŵ = 0.41 mm1
α = 98.536 (5)°T = 298 K
β = 97.787 (5)°Slab, colourless
γ = 101.489 (5)°0.29 × 0.25 × 0.19 mm
V = 734.9 (3) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3351 independent reflections
Radiation source: fine-focus sealed tube2928 reflections with I > 2/s(I)
Graphite monochromatorRint = 0.018
Detector resolution: 83.66 pixels mm-1θmax = 27.5°, θmin = 1.9°
ω scanh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1111
Tmin = 0.890, Tmax = 0.926l = 1414
9303 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.053P)2 + 0.1878P]
where P = (Fo2 + 2Fc2)/3
3351 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.22 e Å3
0 constraints
Crystal data top
C13H17ClN2O3Sγ = 101.489 (5)°
Mr = 316.80V = 734.9 (3) Å3
Triclinic, P1Z = 2
a = 7.6882 (18) ÅMo Kα radiation
b = 9.151 (2) ŵ = 0.41 mm1
c = 10.939 (3) ÅT = 298 K
α = 98.536 (5)°0.29 × 0.25 × 0.19 mm
β = 97.787 (5)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3351 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2928 reflections with I > 2/s(I)
Tmin = 0.890, Tmax = 0.926Rint = 0.018
9303 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.06Δρmax = 0.24 e Å3
3351 reflectionsΔρmin = 0.22 e Å3
181 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.76739 (8)0.42437 (6)0.51080 (5)0.06766 (17)
S10.35046 (6)0.36496 (4)1.10956 (4)0.04799 (14)
O10.38199 (19)0.05467 (12)0.74925 (12)0.0523 (3)
O20.0551 (2)0.00809 (15)1.36092 (13)0.0633 (4)
O30.23484 (18)0.21076 (12)0.90512 (12)0.0521 (3)
N10.40933 (18)0.27749 (13)0.88324 (12)0.0393 (3)
H1A0.44640.37390.89010.047*
N20.29315 (17)0.07994 (13)0.97717 (12)0.0379 (3)
H2A0.30460.02870.90730.045*
C10.5613 (3)0.2829 (2)0.45811 (17)0.0549 (4)
H1B0.46470.33190.43320.066*
H1C0.57430.21420.38510.066*
C20.5121 (3)0.19342 (19)0.55845 (15)0.0466 (4)
H2B0.60920.14450.58260.056*
H2C0.40520.11440.52350.056*
C30.4770 (3)0.28733 (18)0.67463 (15)0.0457 (4)
H3A0.58570.36300.71270.055*
H3B0.38370.34010.65060.055*
C40.4193 (2)0.19249 (17)0.76973 (15)0.0388 (3)
C50.3481 (2)0.22955 (16)0.98775 (14)0.0353 (3)
C60.2192 (2)0.00946 (16)1.06058 (14)0.0356 (3)
C70.1739 (2)0.04605 (17)1.17392 (15)0.0414 (3)
H7A0.19190.15001.20090.050*
C80.1013 (2)0.05441 (19)1.24712 (15)0.0435 (4)
C90.0757 (2)0.20879 (19)1.20822 (17)0.0475 (4)
H9A0.02920.27521.25840.057*
C100.1191 (2)0.26447 (18)1.09489 (17)0.0463 (4)
H10A0.10100.36861.06880.056*
C110.1893 (2)0.16674 (17)1.01961 (15)0.0394 (3)
C120.0271 (3)0.1408 (2)1.38725 (18)0.0584 (5)
H12A0.00430.15871.46930.088*
H12B0.06890.15221.32600.088*
H12C0.13540.21251.38430.088*
C130.1689 (3)0.36576 (19)0.84650 (18)0.0540 (4)
H13A0.20960.38250.76750.081*
H13B0.03960.38950.83290.081*
H13C0.21300.42960.89970.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0734 (3)0.0600 (3)0.0700 (3)0.0030 (2)0.0293 (3)0.0139 (2)
S10.0672 (3)0.0281 (2)0.0468 (2)0.00080 (17)0.0255 (2)0.00220 (16)
O10.0760 (8)0.0283 (6)0.0488 (7)0.0001 (5)0.0206 (6)0.0022 (5)
O20.1019 (11)0.0522 (7)0.0481 (7)0.0223 (7)0.0333 (7)0.0227 (6)
O30.0739 (8)0.0282 (5)0.0537 (7)0.0013 (5)0.0262 (6)0.0057 (5)
N10.0517 (8)0.0240 (6)0.0410 (7)0.0006 (5)0.0160 (6)0.0058 (5)
N20.0488 (7)0.0259 (6)0.0370 (6)0.0008 (5)0.0123 (5)0.0050 (5)
C10.0685 (12)0.0546 (11)0.0401 (9)0.0094 (9)0.0141 (8)0.0050 (8)
C20.0597 (10)0.0363 (8)0.0413 (9)0.0074 (7)0.0120 (7)0.0007 (6)
C30.0657 (11)0.0325 (8)0.0403 (8)0.0090 (7)0.0179 (7)0.0059 (6)
C40.0438 (8)0.0312 (7)0.0396 (8)0.0029 (6)0.0103 (6)0.0055 (6)
C50.0372 (7)0.0290 (7)0.0388 (7)0.0027 (6)0.0092 (6)0.0076 (5)
C60.0370 (7)0.0299 (7)0.0395 (8)0.0027 (6)0.0060 (6)0.0117 (6)
C70.0515 (9)0.0320 (7)0.0409 (8)0.0056 (6)0.0094 (7)0.0113 (6)
C80.0517 (9)0.0422 (8)0.0388 (8)0.0086 (7)0.0097 (7)0.0152 (7)
C90.0557 (10)0.0405 (8)0.0491 (9)0.0047 (7)0.0120 (8)0.0226 (7)
C100.0565 (10)0.0293 (7)0.0527 (9)0.0031 (7)0.0114 (8)0.0134 (7)
C110.0426 (8)0.0313 (7)0.0437 (8)0.0035 (6)0.0089 (6)0.0095 (6)
C120.0805 (13)0.0503 (10)0.0482 (10)0.0129 (9)0.0235 (9)0.0116 (8)
C130.0685 (12)0.0324 (8)0.0579 (11)0.0048 (8)0.0158 (9)0.0026 (7)
Geometric parameters (Å, º) top
Cl1—C11.798 (2)C3—C41.507 (2)
S1—C51.6750 (16)C3—H3A0.9700
O1—C41.2156 (19)C3—H3B0.9700
O2—C81.370 (2)C6—C71.385 (2)
O2—C121.415 (2)C6—C111.405 (2)
O3—C111.370 (2)C7—C81.390 (2)
O3—C131.4267 (19)C7—H7A0.9300
N1—C41.3839 (19)C8—C91.380 (2)
N1—C51.3905 (19)C9—C101.378 (3)
N1—H1A0.8600C9—H9A0.9300
N2—C51.3324 (18)C10—C111.384 (2)
N2—C61.4149 (18)C10—H10A0.9300
N2—H2A0.8600C12—H12A0.9600
C1—C21.508 (2)C12—H12B0.9600
C1—H1B0.9700C12—H12C0.9600
C1—H1C0.9700C13—H13A0.9600
C2—C31.513 (2)C13—H13B0.9600
C2—H2B0.9700C13—H13C0.9600
C2—H2C0.9700
C8—O2—C12117.89 (13)N1—C5—S1116.73 (10)
C11—O3—C13117.32 (13)C7—C6—C11119.81 (13)
C4—N1—C5129.36 (12)C7—C6—N2125.40 (13)
C4—N1—H1A115.3C11—C6—N2114.78 (13)
C5—N1—H1A115.3C6—C7—C8119.69 (14)
C5—N2—C6131.35 (13)C6—C7—H7A120.2
C5—N2—H2A114.3C8—C7—H7A120.2
C6—N2—H2A114.3O2—C8—C9116.42 (14)
C2—C1—Cl1112.05 (13)O2—C8—C7123.06 (15)
C2—C1—H1B109.2C9—C8—C7120.50 (15)
Cl1—C1—H1B109.2C10—C9—C8119.96 (15)
C2—C1—H1C109.2C10—C9—H9A120.0
Cl1—C1—H1C109.2C8—C9—H9A120.0
H1B—C1—H1C107.9C9—C10—C11120.59 (15)
C1—C2—C3114.17 (14)C9—C10—H10A119.7
C1—C2—H2B108.7C11—C10—H10A119.7
C3—C2—H2B108.7O3—C11—C10125.02 (14)
C1—C2—H2C108.7O3—C11—C6115.55 (13)
C3—C2—H2C108.7C10—C11—C6119.43 (15)
H2B—C2—H2C107.6O2—C12—H12A109.5
C4—C3—C2112.46 (13)O2—C12—H12B109.5
C4—C3—H3A109.1H12A—C12—H12B109.5
C2—C3—H3A109.1O2—C12—H12C109.5
C4—C3—H3B109.1H12A—C12—H12C109.5
C2—C3—H3B109.1H12B—C12—H12C109.5
H3A—C3—H3B107.8O3—C13—H13A109.5
O1—C4—N1122.66 (14)O3—C13—H13B109.5
O1—C4—C3123.84 (14)H13A—C13—H13B109.5
N1—C4—C3113.49 (13)O3—C13—H13C109.5
N2—C5—N1115.06 (13)H13A—C13—H13C109.5
N2—C5—S1128.21 (12)H13B—C13—H13C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.861.932.663 (2)141
N2—H2A···O30.862.152.5895 (18)112
C7—H7A···S10.932.513.1853 (18)129
N1—H1A···S1i0.862.583.4058 (16)161
C3—H3A···S1i0.972.833.5633 (19)133
C12—H12A···O2ii0.962.503.259 (3)136
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y, z+3.

Experimental details

Crystal data
Chemical formulaC13H17ClN2O3S
Mr316.80
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.6882 (18), 9.151 (2), 10.939 (3)
α, β, γ (°)98.536 (5), 97.787 (5), 101.489 (5)
V3)734.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.29 × 0.25 × 0.19
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.890, 0.926
No. of measured, independent and
observed [I > 2/s(I)] reflections
9303, 3351, 2928
Rint0.018
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.105, 1.06
No. of reflections3351
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.22

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.861.932.663 (2)141
C7—H7A···S10.932.513.1853 (18)129
N1—H1A···S1i0.862.583.4058 (16)161
C3—H3A···S1i0.972.833.5633 (19)133
C12—H12A···O2ii0.962.503.259 (3)136
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y, z+3.
 

Acknowledgements

The authors thank the Malaysian Government, Universiti Kebangsaan Malaysia, the Faculty of Science and Technology, Universiti Malaysia Terengganu, and the Ministry of Higher Education, Malaysia, for research grants UKM-GUP-NBT-08–27–110 and FRGS 59178.

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamin, B. M., Othman, N. E. A., Yusof, M. S. M. & Embong, F. (2011). Acta Cryst. E67, o419.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYusof, M. S. M., Embong, N. F., Othman, E. A. & Yamin, B. M. (2011). Acta Cryst. E67, o1849.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds