metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{μ-1,2-Bis[bis­­(4-meth­­oxy­phen­yl)phosphan­yl]-1,2-di­ethyl­hydrazine-κ2P:P′}bis­­[chloridogold(I)] tetra­hydro­furan disolvate

aAuTEK, Mintek, Private Bag X3015, Randburg, 2125, South Africa, and bMolecular Science Institute, School of Chemistry, University of the Witwatersrand, PO Wits, 2050, Johannesburg, South Africa
*Correspondence e-mail: erikk@mintek.co.za

(Received 30 August 2011; accepted 20 September 2011; online 30 September 2011)

The title compound, [Au2Cl2(C32H38N2O4P2)]·2C4H8O, is formed from a bidentate phosphine ligand complexed to two linear gold(I) nuclei [P—Au—Cl = 175.98 (3)°]. The nuclei are 3.1414 (2) Å apart. The mol­ecule exhibits a twofold symmetry axis. Stacks of the compound are formed through inter­molecular C—H⋯Cl inter­actions, while the tetra­hydro­furan (THF) solvate is further attached to the stacks through weak C—H⋯O hydrogen bonding from the THF O atom to two separate H atoms on the complex.

Related literature

For the synthesis of the parent ligand and related structures utilizing alternative metals see: Reddy et al. (1994[Reddy, V. S., Katti, K. V. & Barnes, C. L. (1994). Chem. Ber. 127, 1355-1357.], 1995[Reddy, V. S., Katti, K. V. & Barnes, C. L. (1995). Inorg. Chem. 34, 5483-5488.]); Slawin et al. (2002[Slawin, A. M. Z., Wainwright, M. & Woollins, J. D. (2002). J. Chem. Soc. Dalton Trans. pp. 513-519.]); Kriel et al. (2011a[Kriel, F. H., Fernandes, M. A. & Coates, J. (2011a). Acta Cryst. E67, m42.],b[Kriel, F. H., Fernandes, M. A. & Coates, J. (2011b). Acta Cryst. E67, m155.],c[Kriel, F. H., Fernandes, M. A. & Coates, J. (2011c). Acta Cryst. E67, m1163.]). For Au⋯Au inter­actions, see: Holleman & Wiberg (2001[Holleman, A. F. & Wiberg, E. (2001). Inorganic Chemistry, p. 1248. San-Diego: Academic Press.]). For the biological activity of the title complex, see: Fonteh & Meyer (2009[Fonteh, P. & Meyer, D. (2009). Metallomics, 1, 427-433.]).

[Scheme 1]

Experimental

Crystal data
  • [Au2Cl2(C32H38N2O4P2)]·2C4H8O

  • Mr = 1185.63

  • Monoclinic, C 2/c

  • a = 23.6375 (4) Å

  • b = 9.1260 (1) Å

  • c = 20.2269 (3) Å

  • β = 93.976 (1)°

  • V = 4352.76 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.98 mm−1

  • T = 173 K

  • 0.36 × 0.20 × 0.07 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: integration (SADABS; Bruker, 1999[Bruker (1999). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.188, Tmax = 0.641

  • 38471 measured reflections

  • 5253 independent reflections

  • 4694 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.059

  • S = 1.05

  • 5253 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 1.74 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯Cli 0.99 2.80 3.592 (3) 137
C15—H15⋯O3ii 0.95 2.63 3.497 (5) 152
C17—H17B⋯O3ii 0.98 2.53 3.444 (7) 156
Symmetry codes: (i) [-x+2, y-1, -z+{\script{3\over 2}}]; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 1999[Bruker (1999). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound, C32H38Au2Cl2N2O4P2.2(C4H8O), formed from a bidentate phosphine ligand complexed to two linear gold(I) nuclei, readily crystallizes out of dichloromethane (DCM) with the addition of a few drops of tetrahydrofuran (THF). The crystal structure includes two THF solvent molecules. The complex molecule is bisected by a twofold axis through the N—N' and Au—Au' lines (Fig. 1). Gold(I) has an almost linear coordination with a P—Au—Cl angle of 175.98 (3)°. The Au—Au distance within the complex is 3.141 (2) Å, well within the range of aurophilic interactions (described in Holleman & Wiberg, 2001, as being normally between 2.7 Å and 3.4 Å). Other bond lengths are within expected ranges.

The structure exhibits columns of complexes arranged head-to-tail along b, forming channels filled with THF. There is an intracolumnar contact involving Cl atoms in one molecule and H atoms on the ethyl substituted hydrazine bridge of a neighboring one, in the same column (Cl···H1Ai: 2.80 Å, (i): 2-x, -1+y, 3/2-z; site A in Fig. 2). There are also weak intercolumnar H-bonding contacts (O1···H13ii: 2.61 Å, (ii): 3/2-x, 1/2-y, 1-z; site B in Fig. 2). Finally, the THF solvate molecule is weakly attached to the columns by a pair of O···H contacts (O3···H15 = 2.63 Å, O3···H17B = 2.53 Å; site C in Fig. 2).

The biological activity of the title complex is discussed in Fonteh & Meyer (2009), and related structures with other dialkyl hydrazine derivatives have been also reported (Kriel et al., 2011a,b,c; Reddy et al., 1994, 1995; Slawin et al., 2002).

Related literature top

For the synthesis of the parent ligand and related structures utilizing alternative metals see: Reddy et al. (1994, 1995); Slawin et al. (2002); Kriel et al. (2011a,b,c). For Au···Au interactions, see: Holleman & Wiberg (2001). For the biological activity of the title complex, see: Fonteh & Meyer (2009).

Experimental top

The complex was synthesized by dissolving tetrahydrothiophenegold(I) chloride [(THT)AuCl] in DCM and adding 0.5 equivalents of the corresponding ligand, bis(di(4-methoxyphenyl)phosphino)-1,2-diethylhydrazine. The addition of a few drops of THF led to the growth of crystals suitable for use in single-crystal X-Ray analysis. The presence of THF during the initial complexation led to undesirable side products as a result of the breakdown of the ligand.

Refinement top

The H atoms were positioned geometrically and allowed to ride on their respective parent atoms, with C—H = 0.95 (aromatic CH), 0.99 (CH2) or 0.98 (CH3) Å, and with Ueq = 1.2 (CH, CH2) or 1.5 (CH3) times Ueq(C).

Structure description top

The title compound, C32H38Au2Cl2N2O4P2.2(C4H8O), formed from a bidentate phosphine ligand complexed to two linear gold(I) nuclei, readily crystallizes out of dichloromethane (DCM) with the addition of a few drops of tetrahydrofuran (THF). The crystal structure includes two THF solvent molecules. The complex molecule is bisected by a twofold axis through the N—N' and Au—Au' lines (Fig. 1). Gold(I) has an almost linear coordination with a P—Au—Cl angle of 175.98 (3)°. The Au—Au distance within the complex is 3.141 (2) Å, well within the range of aurophilic interactions (described in Holleman & Wiberg, 2001, as being normally between 2.7 Å and 3.4 Å). Other bond lengths are within expected ranges.

The structure exhibits columns of complexes arranged head-to-tail along b, forming channels filled with THF. There is an intracolumnar contact involving Cl atoms in one molecule and H atoms on the ethyl substituted hydrazine bridge of a neighboring one, in the same column (Cl···H1Ai: 2.80 Å, (i): 2-x, -1+y, 3/2-z; site A in Fig. 2). There are also weak intercolumnar H-bonding contacts (O1···H13ii: 2.61 Å, (ii): 3/2-x, 1/2-y, 1-z; site B in Fig. 2). Finally, the THF solvate molecule is weakly attached to the columns by a pair of O···H contacts (O3···H15 = 2.63 Å, O3···H17B = 2.53 Å; site C in Fig. 2).

The biological activity of the title complex is discussed in Fonteh & Meyer (2009), and related structures with other dialkyl hydrazine derivatives have been also reported (Kriel et al., 2011a,b,c; Reddy et al., 1994, 1995; Slawin et al., 2002).

For the synthesis of the parent ligand and related structures utilizing alternative metals see: Reddy et al. (1994, 1995); Slawin et al. (2002); Kriel et al. (2011a,b,c). For Au···Au interactions, see: Holleman & Wiberg (2001). For the biological activity of the title complex, see: Fonteh & Meyer (2009).

Computing details top

Data collection: APEX2 (Bruker, 1999); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title complex drawn with displacement ellipsoids at the 50% probability level. Hydrogen atoms and solvent THF have been omitted for clarity.
[Figure 2] Fig. 2. Packing of the title compound showing short contacts (dashed lines).
{µ-1,2-Bis[bis(4-methoxyphenyl)phosphanyl]-1,2-diethylhydrazine- κ2P:P'}bis[chloridogold(I)] tetrahydrofuran disolvate top
Crystal data top
[Au2Cl2(C32H38N2O4P2)]·2C4H8OF(000) = 2312
Mr = 1185.63Dx = 1.809 Mg m3
Monoclinic, C2/cMelting point: 369 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 23.6375 (4) ÅCell parameters from 7364 reflections
b = 9.1260 (1) Åθ = 2.4–34.2°
c = 20.2269 (3) ŵ = 6.98 mm1
β = 93.976 (1)°T = 173 K
V = 4352.76 (11) Å3Plate, colourless
Z = 40.36 × 0.20 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
5253 independent reflections
Radiation source: fine-focus sealed tube4694 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
φ and ω scansθmax = 28.0°, θmin = 1.7°
Absorption correction: integration
(SADABS; Bruker, 1999)
h = 3131
Tmin = 0.188, Tmax = 0.641k = 1212
38471 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0337P)2 + 7.339P]
where P = (Fo2 + 2Fc2)/3
5253 reflections(Δ/σ)max = 0.011
244 parametersΔρmax = 1.74 e Å3
0 restraintsΔρmin = 0.64 e Å3
0 constraints
Crystal data top
[Au2Cl2(C32H38N2O4P2)]·2C4H8OV = 4352.76 (11) Å3
Mr = 1185.63Z = 4
Monoclinic, C2/cMo Kα radiation
a = 23.6375 (4) ŵ = 6.98 mm1
b = 9.1260 (1) ÅT = 173 K
c = 20.2269 (3) Å0.36 × 0.20 × 0.07 mm
β = 93.976 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5253 independent reflections
Absorption correction: integration
(SADABS; Bruker, 1999)
4694 reflections with I > 2σ(I)
Tmin = 0.188, Tmax = 0.641Rint = 0.046
38471 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.05Δρmax = 1.74 e Å3
5253 reflectionsΔρmin = 0.64 e Å3
244 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.93455 (12)0.1681 (3)0.72815 (16)0.0287 (6)
H1A0.95260.08140.75020.034*
H1B0.92170.13930.68240.034*
C20.88305 (13)0.2110 (4)0.76481 (18)0.0385 (8)
H2A0.85640.12860.76430.058*
H2B0.86440.29580.74300.058*
H2C0.89510.23620.81070.058*
C110.91251 (13)0.4084 (3)0.62384 (15)0.0247 (6)
C120.88945 (13)0.3154 (4)0.57400 (16)0.0335 (7)
H120.91320.24720.55370.040*
C130.83239 (14)0.3221 (4)0.55403 (18)0.0415 (8)
H130.81710.25840.52020.050*
C140.79741 (14)0.4216 (4)0.58318 (18)0.0365 (7)
C150.81971 (14)0.5188 (4)0.63099 (16)0.0336 (7)
H150.79620.59020.64960.040*
C160.87698 (13)0.5096 (3)0.65111 (15)0.0287 (6)
H160.89230.57450.68450.034*
C170.70206 (17)0.4959 (6)0.5975 (3)0.0676 (14)
H17A0.66360.48170.57720.101*
H17B0.71180.60030.59660.101*
H17C0.70380.46170.64350.101*
C211.01949 (12)0.2838 (3)0.59644 (14)0.0245 (6)
C221.02334 (13)0.1309 (3)0.59963 (15)0.0268 (6)
H221.00680.07990.63440.032*
C231.05087 (13)0.0534 (3)0.55277 (16)0.0288 (6)
H231.05400.05020.55600.035*
C241.07393 (13)0.1270 (4)0.50081 (16)0.0294 (6)
C251.07051 (14)0.2790 (4)0.49653 (16)0.0341 (7)
H251.08620.32940.46100.041*
C261.04377 (13)0.3562 (3)0.54489 (16)0.0295 (6)
H261.04210.46010.54270.035*
C271.1244 (3)0.1104 (5)0.4032 (3)0.0730 (17)
H27A1.14200.03680.37590.109*
H27B1.15330.18060.42010.109*
H27C1.09470.16230.37630.109*
C440.7033 (5)0.0784 (7)0.5960 (4)0.128 (4)
H44A0.72090.06440.55340.154*
H44B0.66780.13520.58770.154*
O30.74324 (16)0.1558 (4)0.6450 (2)0.0791 (10)
C410.75325 (17)0.0776 (5)0.7055 (2)0.0461 (9)
H41A0.79410.07310.71980.055*
H41B0.73210.12020.74150.055*
C420.7289 (4)0.0785 (8)0.6826 (4)0.115 (3)
H42A0.70780.12290.71830.138*
H42B0.76030.14500.67290.138*
N0.97751 (9)0.2854 (3)0.72518 (11)0.0227 (5)
P0.98471 (3)0.38920 (7)0.65760 (4)0.02138 (14)
Cl1.08170 (4)0.80680 (9)0.70523 (5)0.0473 (2)
Au1.029954 (5)0.597871 (11)0.683068 (5)0.02524 (5)
O10.74131 (11)0.4147 (3)0.56141 (16)0.0535 (8)
O21.10005 (11)0.0398 (3)0.45758 (13)0.0411 (6)
C430.6922 (5)0.0576 (11)0.6251 (5)0.165 (5)
H43A0.65230.06080.63700.198*
H43B0.69790.13740.59300.198*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0257 (14)0.0246 (14)0.0351 (16)0.0070 (11)0.0025 (12)0.0033 (12)
C20.0240 (14)0.0454 (19)0.0458 (19)0.0060 (14)0.0009 (13)0.0105 (16)
C110.0255 (13)0.0239 (14)0.0241 (13)0.0025 (11)0.0019 (11)0.0018 (11)
C120.0314 (15)0.0355 (17)0.0331 (16)0.0056 (13)0.0025 (13)0.0108 (14)
C130.0344 (17)0.047 (2)0.0407 (19)0.0064 (15)0.0116 (14)0.0181 (16)
C140.0280 (15)0.0442 (19)0.0360 (18)0.0052 (14)0.0073 (13)0.0009 (14)
C150.0317 (16)0.0338 (17)0.0350 (16)0.0087 (13)0.0009 (13)0.0030 (14)
C160.0304 (15)0.0286 (15)0.0262 (14)0.0046 (12)0.0028 (12)0.0043 (12)
C170.0301 (19)0.080 (3)0.091 (4)0.018 (2)0.009 (2)0.020 (3)
C210.0239 (13)0.0236 (14)0.0256 (14)0.0011 (11)0.0011 (11)0.0025 (11)
C220.0289 (15)0.0243 (14)0.0273 (15)0.0001 (11)0.0017 (12)0.0004 (11)
C230.0283 (15)0.0234 (14)0.0344 (16)0.0030 (12)0.0003 (12)0.0045 (12)
C240.0251 (14)0.0310 (15)0.0324 (16)0.0009 (12)0.0033 (12)0.0081 (13)
C250.0397 (17)0.0331 (17)0.0304 (16)0.0013 (14)0.0099 (13)0.0006 (13)
C260.0338 (16)0.0249 (14)0.0301 (16)0.0027 (12)0.0051 (13)0.0019 (12)
C270.097 (4)0.057 (3)0.073 (3)0.025 (3)0.058 (3)0.029 (2)
C440.237 (11)0.060 (4)0.077 (4)0.002 (5)0.059 (6)0.001 (3)
O30.071 (2)0.072 (2)0.094 (3)0.0068 (19)0.001 (2)0.015 (2)
C410.0394 (19)0.057 (2)0.042 (2)0.0079 (17)0.0039 (16)0.0123 (18)
C420.172 (9)0.085 (5)0.087 (5)0.024 (5)0.011 (5)0.013 (4)
N0.0215 (11)0.0234 (11)0.0228 (11)0.0029 (9)0.0022 (9)0.0016 (9)
P0.0227 (3)0.0190 (3)0.0222 (3)0.0010 (3)0.0003 (3)0.0005 (3)
Cl0.0596 (6)0.0271 (4)0.0557 (5)0.0170 (4)0.0083 (4)0.0046 (4)
Au0.03037 (7)0.01883 (7)0.02676 (7)0.00279 (4)0.00365 (4)0.00018 (4)
O10.0284 (12)0.069 (2)0.0603 (18)0.0115 (12)0.0135 (12)0.0204 (14)
O20.0434 (14)0.0348 (13)0.0473 (14)0.0030 (11)0.0187 (11)0.0139 (11)
C430.239 (12)0.156 (8)0.101 (6)0.127 (9)0.019 (7)0.032 (6)
Geometric parameters (Å, º) top
C1—N1.480 (4)C23—H230.9500
C1—C21.520 (5)C24—O21.362 (4)
C1—H1A0.9900C24—C251.392 (5)
C1—H1B0.9900C25—C261.393 (4)
C2—H2A0.9800C25—H250.9500
C2—H2B0.9800C26—H260.9500
C2—H2C0.9800C27—O21.430 (5)
C11—C161.389 (4)C27—H27A0.9800
C11—C121.399 (4)C27—H27B0.9800
C11—P1.802 (3)C27—H27C0.9800
C12—C131.382 (4)C44—C431.406 (10)
C12—H120.9500C44—O31.498 (8)
C13—C141.387 (5)C44—H44A0.9900
C13—H130.9500C44—H44B0.9900
C14—O11.369 (4)O3—C411.423 (5)
C14—C151.389 (5)C41—C421.594 (8)
C15—C161.389 (4)C41—H41A0.9900
C15—H150.9500C41—H41B0.9900
C16—H160.9500C42—C431.415 (12)
C17—O11.427 (5)C42—H42A0.9900
C17—H17A0.9800C42—H42B0.9900
C17—H17B0.9800N—Ni1.411 (4)
C17—H17C0.9800N—P1.681 (2)
C21—C261.392 (4)P—Au2.2269 (7)
C21—C221.400 (4)Cl—Au2.2927 (8)
C21—P1.809 (3)Au—Aui3.1414 (2)
C22—C231.381 (4)C43—H43A0.9900
C22—H220.9500C43—H43B0.9900
C23—C241.390 (5)
N—C1—C2114.1 (3)C26—C25—H25120.4
N—C1—H1A108.7C21—C26—C25121.1 (3)
C2—C1—H1A108.7C21—C26—H26119.4
N—C1—H1B108.7C25—C26—H26119.4
C2—C1—H1B108.7O2—C27—H27A109.5
H1A—C1—H1B107.6O2—C27—H27B109.5
C1—C2—H2A109.5H27A—C27—H27B109.5
C1—C2—H2B109.5O2—C27—H27C109.5
H2A—C2—H2B109.5H27A—C27—H27C109.5
C1—C2—H2C109.5H27B—C27—H27C109.5
H2A—C2—H2C109.5C43—C44—O3105.4 (6)
H2B—C2—H2C109.5C43—C44—H44A110.7
C16—C11—C12118.3 (3)O3—C44—H44A110.7
C16—C11—P119.8 (2)C43—C44—H44B110.7
C12—C11—P121.7 (2)O3—C44—H44B110.7
C13—C12—C11120.5 (3)H44A—C44—H44B108.8
C13—C12—H12119.8C41—O3—C44113.2 (4)
C11—C12—H12119.8O3—C41—C4299.3 (4)
C12—C13—C14120.2 (3)O3—C41—H41A111.9
C12—C13—H13119.9C42—C41—H41A111.9
C14—C13—H13119.9O3—C41—H41B111.9
O1—C14—C13115.2 (3)C42—C41—H41B111.9
O1—C14—C15124.4 (3)H41A—C41—H41B109.6
C13—C14—C15120.4 (3)C43—C42—C41107.9 (6)
C16—C15—C14118.7 (3)C43—C42—H42A110.1
C16—C15—H15120.6C41—C42—H42A110.1
C14—C15—H15120.6C43—C42—H42B110.1
C11—C16—C15121.9 (3)C41—C42—H42B110.1
C11—C16—H16119.1H42A—C42—H42B108.4
C15—C16—H16119.1Ni—N—C1117.2 (2)
O1—C17—H17A109.5Ni—N—P117.71 (19)
O1—C17—H17B109.5C1—N—P123.29 (19)
H17A—C17—H17B109.5N—P—C11102.49 (13)
O1—C17—H17C109.5N—P—C21109.45 (13)
H17A—C17—H17C109.5C11—P—C21104.82 (13)
H17B—C17—H17C109.5N—P—Au111.57 (9)
C26—C21—C22118.6 (3)C11—P—Au115.57 (9)
C26—C21—P119.4 (2)C21—P—Au112.28 (10)
C22—C21—P122.0 (2)P—Au—Cl175.98 (3)
C23—C22—C21120.8 (3)P—Au—Aui87.787 (19)
C23—C22—H22119.6Cl—Au—Aui95.61 (3)
C21—C22—H22119.6C14—O1—C17117.4 (3)
C22—C23—C24119.9 (3)C24—O2—C27117.1 (3)
C22—C23—H23120.0C44—C43—C42110.0 (7)
C24—C23—H23120.0C44—C43—H43A109.7
O2—C24—C23114.9 (3)C42—C43—H43A109.7
O2—C24—C25124.7 (3)C44—C43—H43B109.7
C23—C24—C25120.3 (3)C42—C43—H43B109.7
C24—C25—C26119.2 (3)H43A—C43—H43B108.2
C24—C25—H25120.4
C16—C11—C12—C131.8 (5)Ni—N—P—C11160.78 (18)
P—C11—C12—C13173.0 (3)C1—N—P—C1135.1 (3)
C11—C12—C13—C140.2 (6)Ni—N—P—C2188.37 (19)
C12—C13—C14—O1177.5 (4)C1—N—P—C2175.8 (2)
C12—C13—C14—C152.3 (6)Ni—N—P—Au36.5 (2)
O1—C14—C15—C16176.8 (3)C1—N—P—Au159.4 (2)
C13—C14—C15—C163.0 (5)C16—C11—P—N79.6 (3)
C12—C11—C16—C151.1 (5)C12—C11—P—N95.1 (3)
P—C11—C16—C15173.8 (3)C16—C11—P—C21166.2 (2)
C14—C15—C16—C111.3 (5)C12—C11—P—C2119.2 (3)
C26—C21—C22—C230.3 (5)C16—C11—P—Au42.0 (3)
P—C21—C22—C23179.1 (2)C12—C11—P—Au143.3 (2)
C21—C22—C23—C241.5 (5)C26—C21—P—N162.5 (2)
C22—C23—C24—O2180.0 (3)C22—C21—P—N16.8 (3)
C22—C23—C24—C251.4 (5)C26—C21—P—C1188.2 (3)
O2—C24—C25—C26178.4 (3)C22—C21—P—C1192.5 (3)
C23—C24—C25—C260.0 (5)C26—C21—P—Au38.0 (3)
C22—C21—C26—C251.2 (5)C22—C21—P—Au141.3 (2)
P—C21—C26—C25179.5 (2)C13—C14—O1—C17169.4 (4)
C24—C25—C26—C211.3 (5)C15—C14—O1—C1710.4 (6)
C43—C44—O3—C415.1 (10)C23—C24—O2—C27179.9 (4)
C44—O3—C41—C4214.9 (7)C25—C24—O2—C271.5 (6)
O3—C41—C42—C4320.2 (8)O3—C44—C43—C429.3 (13)
C2—C1—N—Ni93.9 (3)C41—C42—C43—C4418.8 (12)
C2—C1—N—P101.9 (3)
Symmetry code: (i) x+2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Clii0.992.803.592 (3)137
C13—H13···O1iii0.952.613.549 (4)170
C15—H15···O3iv0.952.633.497 (5)152
C17—H17B···O3iv0.982.533.444 (7)156
Symmetry codes: (ii) x+2, y1, z+3/2; (iii) x+3/2, y+1/2, z+1; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Au2Cl2(C32H38N2O4P2)]·2C4H8O
Mr1185.63
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)23.6375 (4), 9.1260 (1), 20.2269 (3)
β (°) 93.976 (1)
V3)4352.76 (11)
Z4
Radiation typeMo Kα
µ (mm1)6.98
Crystal size (mm)0.36 × 0.20 × 0.07
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionIntegration
(SADABS; Bruker, 1999)
Tmin, Tmax0.188, 0.641
No. of measured, independent and
observed [I > 2σ(I)] reflections
38471, 5253, 4694
Rint0.046
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.059, 1.05
No. of reflections5253
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.74, 0.64

Computer programs: APEX2 (Bruker, 1999), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cli0.992.803.592 (3)137.2
C15—H15···O3ii0.952.633.497 (5)151.6
C17—H17B···O3ii0.982.533.444 (7)155.7
Symmetry codes: (i) x+2, y1, z+3/2; (ii) x, y+1, z.
 

Acknowledgements

The authors would like to thank Project AuTEK (Mintek and Harmony) for financial support and the University of the Witwatersrand for the use of their facilities.

References

First citationBruker (1999). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFonteh, P. & Meyer, D. (2009). Metallomics, 1, 427–433.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHolleman, A. F. & Wiberg, E. (2001). Inorganic Chemistry, p. 1248. San-Diego: Academic Press.  Google Scholar
First citationKriel, F. H., Fernandes, M. A. & Coates, J. (2011a). Acta Cryst. E67, m42.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKriel, F. H., Fernandes, M. A. & Coates, J. (2011b). Acta Cryst. E67, m155.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKriel, F. H., Fernandes, M. A. & Coates, J. (2011c). Acta Cryst. E67, m1163.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationReddy, V. S., Katti, K. V. & Barnes, C. L. (1994). Chem. Ber. 127, 1355–1357.  CrossRef CAS Google Scholar
First citationReddy, V. S., Katti, K. V. & Barnes, C. L. (1995). Inorg. Chem. 34, 5483–5488.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSlawin, A. M. Z., Wainwright, M. & Woollins, J. D. (2002). J. Chem. Soc. Dalton Trans. pp. 513–519.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds