metal-organic compounds
Diiodidobis{4-[2-(2-methylphenyl)ethenyl]pyridine-κN}cadmium
aCollege of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui, People's Republic of China
*Correspondence e-mail: dongliu@chnu.edu.cn
In the title complex, [CdI2(C14H13N)2], the Cd atom lies on a twofold rotation axis that relates the I atom and the 4-(2-methylstyryl)pyridine ligand to their counterparts. Therefore the contains one crystallographically independent half-molecule. The Cd atom adopts a tetrahedral coordination geometry, coordinated by two I atoms and two N atoms from the symmetry-related 4-(2-methylstyryl)pyridine ligands.
Related literature
For Cd complexes with similar structures, see: Hu & Englert (2002); Hu et al. (2003). Park et al. (2010). For Cd—I and Cd—N bond lengths, see: Pickardt & Staub (1999); Deng et al. (2009); Deiters et al. (2006); Amoedo-Portela et al. (2003).
Experimental
Crystal data
|
Data collection: CrystalClear (Rigaku, 2001); cell CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536811037573/bq2302sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811037573/bq2302Isup2.hkl
To a 10 mL Pyrex glass tube was loaded CdI2 (37 mg, 0.1 mmol), 4-(2-methylstyryl)pyridine (20 mg, 0.1 mmol) and 3 ml of H2O. The tube was sealed and heated in an oven to 160 °C for 3 d, and then cooled to ambient temperature at the rate of 5°C h-1 to form yellow crystals.
All the H atoms were placed in geometrically idealized positions (C–H = 0.95 Å for phenyl/pyridyl/vinyl groups and C–H = 0.98 Å for methyl groups) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) for phenyl/pyridyl/vinyl groups and Uiso(H) = 1.5Ueq(C) for methyl groups.
In the past decades, the chemistry of cadmium coordination compounds has attracted much attention owing to their interesting synthetic chemistry and potential applications to luminescence. In this paper, we report the
of the title compound, a new cadmium complex obtained by the reaction of CdI2 and 4-(2-methylstyryl)pyridine.The title complex crystallizes in the triclinic
Pī, and the consists of one crystallographically independent half-molecule. As shown in Fig. 1, each Cd atom is tetrahedrally coordinated by two I atoms and two N atoms from two 4-(2-methylstyryl)pyridine ligands. The mean Cd–I and Cd–N bond lengths are similar with those of the reported complexes (Park et al., 2010; Pickardt et al., 1999; Deng et al., 2009; Deiters et al., 2006; Amoedo-Portela et al., 2003).For Cd complexes with similar structures, see: Hu & Englert (2002); Hu et al. (2003). Park et al. (2010). For Cd—I and Cd—N bond lengths, see: Pickardt & Staub (1999); Deng et al. (2009); Deiters et al. (2006); Amoedo-Portela et al. (2003).
Data collection: CrystalClear (Rigaku, 2001); cell
CrystalClear (Rigaku, 2001); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).[CdI2(C14H13N)2] | F(000) = 1448 |
Mr = 756.72 | Dx = 1.847 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 6049 reflections |
a = 26.739 (5) Å | θ = 3.1–27.5° |
b = 7.3613 (15) Å | µ = 3.09 mm−1 |
c = 16.072 (3) Å | T = 223 K |
β = 120.67 (3)° | Block, yellow |
V = 2721.0 (12) Å3 | 0.35 × 0.30 × 0.25 mm |
Z = 4 |
Rigaku MercuryCCD area-detector diffractometer | 3106 independent reflections |
Radiation source: fine-focus sealed tube | 2204 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.051 |
ω scans | θmax = 27.5°, θmin = 3.3° |
Absorption correction: multi-scan (REQAB; Jacobson, 1998) | h = −33→31 |
Tmin = 0.354, Tmax = 0.452 | k = −9→6 |
11814 measured reflections | l = −20→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.058 | H-atom parameters constrained |
S = 0.83 | w = 1/[σ2(Fo2) + (0.0229P)2] where P = (Fo2 + 2Fc2)/3 |
3106 reflections | (Δ/σ)max = 0.001 |
151 parameters | Δρmax = 0.92 e Å−3 |
0 restraints | Δρmin = −0.57 e Å−3 |
[CdI2(C14H13N)2] | V = 2721.0 (12) Å3 |
Mr = 756.72 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 26.739 (5) Å | µ = 3.09 mm−1 |
b = 7.3613 (15) Å | T = 223 K |
c = 16.072 (3) Å | 0.35 × 0.30 × 0.25 mm |
β = 120.67 (3)° |
Rigaku MercuryCCD area-detector diffractometer | 3106 independent reflections |
Absorption correction: multi-scan (REQAB; Jacobson, 1998) | 2204 reflections with I > 2σ(I) |
Tmin = 0.354, Tmax = 0.452 | Rint = 0.051 |
11814 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.058 | H-atom parameters constrained |
S = 0.83 | Δρmax = 0.92 e Å−3 |
3106 reflections | Δρmin = −0.57 e Å−3 |
151 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cd1 | 0.0000 | 1.22721 (5) | 0.7500 | 0.03840 (11) | |
I1 | 0.053615 (12) | 1.38570 (3) | 0.66568 (2) | 0.05147 (10) | |
N1 | 0.06294 (12) | 1.0045 (4) | 0.8449 (2) | 0.0370 (7) | |
C1 | 0.04379 (17) | 0.8800 (5) | 0.8835 (3) | 0.0472 (10) | |
H1 | 0.0067 | 0.8965 | 0.8753 | 0.057* | |
C2 | 0.07507 (16) | 0.7311 (5) | 0.9338 (3) | 0.0427 (9) | |
H2 | 0.0594 | 0.6495 | 0.9595 | 0.051* | |
C3 | 0.12992 (16) | 0.6994 (4) | 0.9473 (3) | 0.0387 (8) | |
C4 | 0.14992 (16) | 0.8297 (5) | 0.9084 (3) | 0.0462 (10) | |
H4 | 0.1870 | 0.8169 | 0.9161 | 0.055* | |
C5 | 0.11640 (16) | 0.9759 (5) | 0.8594 (3) | 0.0447 (9) | |
H5 | 0.1315 | 1.0611 | 0.8345 | 0.054* | |
C6 | 0.16459 (16) | 0.5436 (5) | 0.9986 (3) | 0.0442 (9) | |
H6 | 0.2028 | 0.5398 | 1.0102 | 0.053* | |
C7 | 0.14763 (16) | 0.4041 (4) | 1.0314 (3) | 0.0386 (8) | |
H7 | 0.1096 | 0.4109 | 1.0206 | 0.046* | |
C8 | 0.18089 (16) | 0.2417 (4) | 1.0822 (2) | 0.0383 (8) | |
C9 | 0.23779 (17) | 0.2147 (5) | 1.1024 (3) | 0.0468 (9) | |
H9 | 0.2551 | 0.3034 | 1.0831 | 0.056* | |
C10 | 0.26921 (18) | 0.0622 (6) | 1.1497 (3) | 0.0553 (11) | |
H10 | 0.3074 | 0.0467 | 1.1626 | 0.066* | |
C11 | 0.2436 (2) | −0.0677 (5) | 1.1780 (3) | 0.0577 (11) | |
H11 | 0.2644 | −0.1731 | 1.2100 | 0.069* | |
C12 | 0.18815 (18) | −0.0439 (5) | 1.1597 (3) | 0.0491 (10) | |
H12 | 0.1716 | −0.1337 | 1.1798 | 0.059* | |
C13 | 0.15574 (16) | 0.1084 (4) | 1.1126 (3) | 0.0386 (8) | |
C14 | 0.09544 (18) | 0.1297 (5) | 1.0972 (3) | 0.0544 (11) | |
H14A | 0.0833 | 0.0160 | 1.1121 | 0.082* | |
H14B | 0.0685 | 0.1622 | 1.0304 | 0.082* | |
H14C | 0.0957 | 0.2244 | 1.1394 | 0.082* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.0410 (2) | 0.03176 (19) | 0.0471 (3) | 0.000 | 0.0258 (2) | 0.000 |
I1 | 0.05478 (19) | 0.04516 (15) | 0.0666 (2) | 0.00138 (12) | 0.03979 (17) | 0.01120 (12) |
N1 | 0.0339 (17) | 0.0353 (16) | 0.0432 (18) | −0.0012 (13) | 0.0207 (16) | 0.0020 (13) |
C1 | 0.042 (2) | 0.048 (2) | 0.063 (3) | 0.0021 (18) | 0.035 (2) | 0.0091 (19) |
C2 | 0.044 (2) | 0.040 (2) | 0.053 (3) | −0.0016 (17) | 0.031 (2) | 0.0103 (18) |
C3 | 0.045 (2) | 0.0332 (18) | 0.041 (2) | −0.0024 (16) | 0.025 (2) | −0.0014 (16) |
C4 | 0.039 (2) | 0.043 (2) | 0.066 (3) | 0.0038 (17) | 0.033 (2) | 0.0090 (19) |
C5 | 0.045 (2) | 0.041 (2) | 0.054 (3) | −0.0046 (18) | 0.029 (2) | 0.0058 (18) |
C6 | 0.034 (2) | 0.052 (2) | 0.046 (2) | 0.0045 (17) | 0.019 (2) | 0.0080 (18) |
C7 | 0.040 (2) | 0.0359 (19) | 0.040 (2) | −0.0001 (16) | 0.021 (2) | 0.0009 (16) |
C8 | 0.047 (2) | 0.0330 (18) | 0.037 (2) | 0.0022 (16) | 0.023 (2) | −0.0013 (15) |
C9 | 0.049 (3) | 0.046 (2) | 0.045 (3) | 0.0011 (19) | 0.023 (2) | 0.0017 (18) |
C10 | 0.048 (3) | 0.063 (3) | 0.046 (3) | 0.012 (2) | 0.018 (2) | 0.000 (2) |
C11 | 0.071 (3) | 0.049 (2) | 0.043 (3) | 0.019 (2) | 0.022 (3) | 0.0122 (19) |
C12 | 0.063 (3) | 0.040 (2) | 0.044 (2) | 0.0043 (19) | 0.028 (2) | 0.0044 (18) |
C13 | 0.049 (2) | 0.0348 (18) | 0.032 (2) | 0.0034 (17) | 0.021 (2) | −0.0007 (15) |
C14 | 0.068 (3) | 0.040 (2) | 0.073 (3) | 0.0037 (19) | 0.049 (3) | 0.0068 (19) |
Cd1—N1i | 2.286 (3) | C7—C8 | 1.464 (5) |
Cd1—N1 | 2.286 (3) | C7—H7 | 0.9400 |
Cd1—I1i | 2.6898 (5) | C8—C9 | 1.398 (5) |
Cd1—I1 | 2.6898 (5) | C8—C13 | 1.410 (4) |
N1—C5 | 1.342 (4) | C9—C10 | 1.376 (5) |
N1—C1 | 1.346 (4) | C9—H9 | 0.9400 |
C1—C2 | 1.366 (5) | C10—C11 | 1.380 (5) |
C1—H1 | 0.9400 | C10—H10 | 0.9400 |
C2—C3 | 1.389 (4) | C11—C12 | 1.369 (5) |
C2—H2 | 0.9400 | C11—H11 | 0.9400 |
C3—C4 | 1.391 (4) | C12—C13 | 1.383 (5) |
C3—C6 | 1.441 (5) | C12—H12 | 0.9400 |
C4—C5 | 1.365 (5) | C13—C14 | 1.510 (5) |
C4—H4 | 0.9400 | C14—H14A | 0.9700 |
C5—H5 | 0.9400 | C14—H14B | 0.9700 |
C6—C7 | 1.335 (4) | C14—H14C | 0.9700 |
C6—H6 | 0.9400 | ||
N1i—Cd1—N1 | 88.38 (14) | C6—C7—C8 | 128.0 (3) |
N1i—Cd1—I1i | 104.30 (6) | C6—C7—H7 | 116.0 |
N1—Cd1—I1i | 112.03 (6) | C8—C7—H7 | 116.0 |
N1i—Cd1—I1 | 112.03 (6) | C9—C8—C13 | 118.3 (3) |
N1—Cd1—I1 | 104.29 (6) | C9—C8—C7 | 121.7 (3) |
I1i—Cd1—I1 | 128.59 (2) | C13—C8—C7 | 120.0 (3) |
C5—N1—C1 | 115.8 (3) | C10—C9—C8 | 122.0 (3) |
C5—N1—Cd1 | 125.8 (2) | C10—C9—H9 | 119.0 |
C1—N1—Cd1 | 118.2 (2) | C8—C9—H9 | 119.0 |
N1—C1—C2 | 123.9 (3) | C9—C10—C11 | 118.8 (4) |
N1—C1—H1 | 118.1 | C9—C10—H10 | 120.6 |
C2—C1—H1 | 118.1 | C11—C10—H10 | 120.6 |
C1—C2—C3 | 120.4 (3) | C12—C11—C10 | 120.3 (4) |
C1—C2—H2 | 119.8 | C12—C11—H11 | 119.8 |
C3—C2—H2 | 119.8 | C10—C11—H11 | 119.8 |
C2—C3—C4 | 115.5 (3) | C11—C12—C13 | 122.0 (3) |
C2—C3—C6 | 122.9 (3) | C11—C12—H12 | 119.0 |
C4—C3—C6 | 121.6 (3) | C13—C12—H12 | 119.0 |
C5—C4—C3 | 120.9 (3) | C12—C13—C8 | 118.5 (3) |
C5—C4—H4 | 119.6 | C12—C13—C14 | 119.5 (3) |
C3—C4—H4 | 119.6 | C8—C13—C14 | 122.0 (3) |
N1—C5—C4 | 123.5 (3) | C13—C14—H14A | 109.5 |
N1—C5—H5 | 118.3 | C13—C14—H14B | 109.5 |
C4—C5—H5 | 118.3 | H14A—C14—H14B | 109.5 |
C7—C6—C3 | 126.2 (3) | C13—C14—H14C | 109.5 |
C7—C6—H6 | 116.9 | H14A—C14—H14C | 109.5 |
C3—C6—H6 | 116.9 | H14B—C14—H14C | 109.5 |
Symmetry code: (i) −x, y, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | [CdI2(C14H13N)2] |
Mr | 756.72 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 223 |
a, b, c (Å) | 26.739 (5), 7.3613 (15), 16.072 (3) |
β (°) | 120.67 (3) |
V (Å3) | 2721.0 (12) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.09 |
Crystal size (mm) | 0.35 × 0.30 × 0.25 |
Data collection | |
Diffractometer | Rigaku MercuryCCD area-detector |
Absorption correction | Multi-scan (REQAB; Jacobson, 1998) |
Tmin, Tmax | 0.354, 0.452 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11814, 3106, 2204 |
Rint | 0.051 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.058, 0.83 |
No. of reflections | 3106 |
No. of parameters | 151 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.92, −0.57 |
Computer programs: CrystalClear (Rigaku, 2001), CrystalStructure (Rigaku/MSC, 2004), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
Acknowledgements
This work was supported by the Research Start-Up Fund for New Staff of Huaibei Normal University.
References
Amoedo-Portela, A., Carballo, R., Casas, J. S., Garcia-Martinez, E., Sanchez-Gonzalez, A., Sordo, J. & E. M. Vazquez-Lopez, (2003). Polyhedron, 22, 1077–1083. Google Scholar
Deiters, E., Bulach, V. & Hosseini, M. W. (2006). New J. Chem. 30, 1289–1294. Web of Science CSD CrossRef CAS Google Scholar
Deng, H. Y., He, J. R., Pan, M., Li, L. & Su, C. Y. (2009). CrystEngComm, 11, 909–917. Web of Science CSD CrossRef CAS Google Scholar
Hu, C. H. & Englert, U. (2002). CrystEngComm, 4, 20–25. CSD CrossRef Google Scholar
Hu, C. H., Li, Q. & Englert, U. (2003). CrystEngComm, 5, 519–529. Web of Science CSD CrossRef CAS Google Scholar
Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan. Google Scholar
Park, B. K., Eom, G. H., Kim, S. H., Kwak, H., Yoo, S. M., Lee, Y. J., Kim, C., Kim, S. J. & Kim, Y. (2010). Polyhedron, 29, 773–786. Web of Science CSD CrossRef CAS Google Scholar
Pickardt, J. & Staub, B. (1999). Z. Naturforsch. Teil B, 54, 329–336. CAS Google Scholar
Rigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the past decades, the chemistry of cadmium coordination compounds has attracted much attention owing to their interesting synthetic chemistry and potential applications to luminescence. In this paper, we report the crystal structure of the title compound, a new cadmium complex obtained by the reaction of CdI2 and 4-(2-methylstyryl)pyridine.
The title complex crystallizes in the triclinic space group Pī, and the asymmetric unit consists of one crystallographically independent half-molecule. As shown in Fig. 1, each Cd atom is tetrahedrally coordinated by two I atoms and two N atoms from two 4-(2-methylstyryl)pyridine ligands. The mean Cd–I and Cd–N bond lengths are similar with those of the reported complexes (Park et al., 2010; Pickardt et al., 1999; Deng et al., 2009; Deiters et al., 2006; Amoedo-Portela et al., 2003).