organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-N-(2,3-di­methyl­phen­yl)-2-methyl­benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 8 September 2011; accepted 14 September 2011; online 17 September 2011)

The asymmetric unit of the title compound, C15H16ClNO2S, contains two independent moleules. The conformation of the N—H bonds are anti to the ortho-methyl groups in the sulfonyl benzene rings of both the mol­ecules, while the N—H bonds are anti to the ortho- and meta-methyl groups in the aniline ring of one of the mol­ecules and syn in the other. Furthermore, the torsion angles of the C—SO2—NH—C segments in the two mol­ecules of are −66.8 (3) and 70.3 (3)°. The sulfonyl and the aniline benzene rings are oriented at angles of 44.1 (1) and 39.7 (1)° in the two mol­ecules. In the crystal, pairs of N—H⋯O hydrogen bonds link the mol­ecules into dimers.

Related literature

For the preparation of the title compound, see: Savitha & Gowda (2006[Savitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 61, 600-606.]). For hydrogen-bonding modes of sulfonamides, see; Adsmond & Grant (2001[Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058-2077.]). For studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Arjunan et al. (2004[Arjunan, V., Mohan, S., Subramanian, S. & Gowda, B. T. (2004). Spectrochim. Acta Part A, 60, 1141-1159.]); Gowda et al. (2006[Gowda, B. T., Kozisek, J. & Fuess, H. (2006). Z. Naturforsch. Teil A, 55, 588-594.]), on N-(ar­yl)-methane­sulfonamides, see: Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2337.]) and on N-(ar­yl)-aryl­sulfonamides, see: Gelbrich et al. (2007[Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]); Perlovich et al. (2006[Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780-o782.]); Gowda et al. (2010[Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o2329.]).

[Scheme 1]

Experimental

Crystal data
  • C15H16ClNO2S

  • Mr = 309.80

  • Triclinic, [P \overline 1]

  • a = 8.2747 (7) Å

  • b = 11.0464 (9) Å

  • c = 17.021 (1) Å

  • α = 82.722 (7)°

  • β = 79.529 (7)°

  • γ = 80.267 (7)°

  • V = 1500.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 293 K

  • 0.40 × 0.28 × 0.14 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.858, Tmax = 0.947

  • 10437 measured reflections

  • 6064 independent reflections

  • 4140 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.166

  • S = 1.12

  • 6064 reflections

  • 373 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3 0.85 (2) 2.15 (2) 2.971 (4) 162 (4)
N2—H2N⋯O2 0.85 (2) 2.12 (2) 2.954 (4) 166 (4)

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The amide and sulfonamide moieties are the constituents of many biologically significant compounds. The hydrogen bonding preferences of sulfonamides have been investigated (Adsmond & Grant, 2001). As part of our work on the substituent effects on the structures and other aspects of N-(aryl)-amides (Arjunan et al., 2004; Gowda et al., 2006), N-(aryl)-methanesulfonamides (Gowda et al., 2007) and N-(aryl)-arylsulfonamides (Gowda et al., 2010), in the present work, the crystal structure of 4-Chloro-2-methyl-N- (2,3-dimethylphenyl)benzenesulfonamide (I) has been determined (Fig. 1).

The asymmetric unit of (I) contains two independent moleules. The conformation of the N—H bonds are anti to the ortho-methyl groups in the sulfonyl benzene rings of both the molecules, while, the N—H bonds are anti to the ortho- and meta-methyl groups in the anilino benzene ring of one of the molecules and syn in the other.

The torsion angles of the C—SO2—NH—C segments in the two molecules of (I) are -66.8 (3)° and 70.3 (3)°, compared to the values of -61.9 (4)° and 69.7 (4)° in the two independent molecules of 4-chloro-2-methyl- N-(phenyl)-benzenesulfonamide (II) and -76.5 (5)° and -48.3 (4)° in 4-chloro-2-methyl-N-(4-methylphenyl)-benzenesulfonamide (III) (Gowda et al., 2010).

The sulfonyl and the aniline benzene rings in (I) are tilted relative to each other by 44.1 (1)° in molecule 1 and 39.7 (1)° in molecule 2, compared to the values of 86.6 (2)° and 83.0 (2)° in the two independent molecules of (II), and 76.6 (2)° in molecule 1 and 70.7 (2)° in molecule 2 of (III).

The other bond parameters in (I) are similar to those observed in (II), (III) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007).

In the crystal, the intermolecular N–H···O hydrogen bonds (Table 1) link the molecules as dimers (Fig. 2).

Related literature top

For the preparation of the title compound, see: Savitha & Gowda (2006). For hydrogen-bonding modes of sulfonamides, see; Adsmond & Grant (2001). For studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Arjunan et al. (2004); Gowda et al. (2006), on N-(aryl)-methanesulfonamides, see: Gowda et al. (2007) and on N-(aryl)-arylsulfonamides, see: Gelbrich et al. (2007); Perlovich et al. (2006); Gowda et al. (2010).

Experimental top

The solution of m-chlorotoluene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 2-methyl-4-chlorobenzenesulfonylchloride was treated with 2,3-dimethylaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 cc). The resultant solid 4-chloro-2-methyl-N- (2,3-dimethylphenyl)-benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Savitha & Gowda, 2006).

Prism like light pink single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement top

The H atoms of the NH groups were located in a difference map and later restrained to N—H = 0.86 (2) %A. The other H atoms were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93Å and methyl C—H = 0.96 Å. All H atoms were refined with isotropic displacement parameters. The Uiso(H) values were set at 1.2Ueq(C-aromatic, N) and 1.5Ueq(C-methyl).

Structure description top

The amide and sulfonamide moieties are the constituents of many biologically significant compounds. The hydrogen bonding preferences of sulfonamides have been investigated (Adsmond & Grant, 2001). As part of our work on the substituent effects on the structures and other aspects of N-(aryl)-amides (Arjunan et al., 2004; Gowda et al., 2006), N-(aryl)-methanesulfonamides (Gowda et al., 2007) and N-(aryl)-arylsulfonamides (Gowda et al., 2010), in the present work, the crystal structure of 4-Chloro-2-methyl-N- (2,3-dimethylphenyl)benzenesulfonamide (I) has been determined (Fig. 1).

The asymmetric unit of (I) contains two independent moleules. The conformation of the N—H bonds are anti to the ortho-methyl groups in the sulfonyl benzene rings of both the molecules, while, the N—H bonds are anti to the ortho- and meta-methyl groups in the anilino benzene ring of one of the molecules and syn in the other.

The torsion angles of the C—SO2—NH—C segments in the two molecules of (I) are -66.8 (3)° and 70.3 (3)°, compared to the values of -61.9 (4)° and 69.7 (4)° in the two independent molecules of 4-chloro-2-methyl- N-(phenyl)-benzenesulfonamide (II) and -76.5 (5)° and -48.3 (4)° in 4-chloro-2-methyl-N-(4-methylphenyl)-benzenesulfonamide (III) (Gowda et al., 2010).

The sulfonyl and the aniline benzene rings in (I) are tilted relative to each other by 44.1 (1)° in molecule 1 and 39.7 (1)° in molecule 2, compared to the values of 86.6 (2)° and 83.0 (2)° in the two independent molecules of (II), and 76.6 (2)° in molecule 1 and 70.7 (2)° in molecule 2 of (III).

The other bond parameters in (I) are similar to those observed in (II), (III) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007).

In the crystal, the intermolecular N–H···O hydrogen bonds (Table 1) link the molecules as dimers (Fig. 2).

For the preparation of the title compound, see: Savitha & Gowda (2006). For hydrogen-bonding modes of sulfonamides, see; Adsmond & Grant (2001). For studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Arjunan et al. (2004); Gowda et al. (2006), on N-(aryl)-methanesulfonamides, see: Gowda et al. (2007) and on N-(aryl)-arylsulfonamides, see: Gelbrich et al. (2007); Perlovich et al. (2006); Gowda et al. (2010).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
4-Chloro-N-(2,3-dimethylphenyl)-2-methylbenzenesulfonamide top
Crystal data top
C15H16ClNO2SZ = 4
Mr = 309.80F(000) = 648
Triclinic, P1Dx = 1.371 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2747 (7) ÅCell parameters from 3482 reflections
b = 11.0464 (9) Åθ = 2.5–27.9°
c = 17.021 (1) ŵ = 0.39 mm1
α = 82.722 (7)°T = 293 K
β = 79.529 (7)°Prism, light pink
γ = 80.267 (7)°0.40 × 0.28 × 0.14 mm
V = 1500.5 (2) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
6064 independent reflections
Radiation source: fine-focus sealed tube4140 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Rotation method data acquisition using ω scansθmax = 26.4°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 810
Tmin = 0.858, Tmax = 0.947k = 1313
10437 measured reflectionsl = 2021
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0505P)2 + 1.8811P]
where P = (Fo2 + 2Fc2)/3
6064 reflections(Δ/σ)max = 0.001
373 parametersΔρmax = 0.58 e Å3
2 restraintsΔρmin = 0.36 e Å3
Crystal data top
C15H16ClNO2Sγ = 80.267 (7)°
Mr = 309.80V = 1500.5 (2) Å3
Triclinic, P1Z = 4
a = 8.2747 (7) ÅMo Kα radiation
b = 11.0464 (9) ŵ = 0.39 mm1
c = 17.021 (1) ÅT = 293 K
α = 82.722 (7)°0.40 × 0.28 × 0.14 mm
β = 79.529 (7)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
6064 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
4140 reflections with I > 2σ(I)
Tmin = 0.858, Tmax = 0.947Rint = 0.016
10437 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0662 restraints
wR(F2) = 0.166H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.58 e Å3
6064 reflectionsΔρmin = 0.36 e Å3
373 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.52306 (16)1.04270 (13)0.11188 (11)0.1031 (5)
S10.01951 (12)0.67472 (8)0.25114 (5)0.0460 (2)
O10.1489 (3)0.7348 (2)0.26297 (15)0.0552 (7)
O20.0856 (4)0.6027 (2)0.31763 (14)0.0610 (7)
N10.0393 (4)0.5780 (3)0.18362 (17)0.0443 (7)
H1N0.134 (3)0.533 (3)0.182 (2)0.053*
C10.1528 (4)0.7859 (3)0.2117 (2)0.0437 (8)
C20.1054 (4)0.8924 (3)0.1619 (2)0.0494 (9)
C30.2245 (5)0.9684 (3)0.1318 (3)0.0590 (10)
H30.19711.03920.09820.071*
C40.3823 (5)0.9412 (4)0.1508 (3)0.0597 (10)
C50.4282 (5)0.8370 (4)0.2000 (3)0.0608 (11)
H50.53490.81950.21270.073*
C60.3138 (5)0.7598 (4)0.2299 (2)0.0519 (9)
H60.34360.68880.26290.062*
C70.0170 (4)0.6186 (3)0.10819 (19)0.0388 (7)
C80.0950 (4)0.6401 (3)0.0383 (2)0.0422 (8)
C90.0315 (5)0.6788 (3)0.0338 (2)0.0495 (9)
C100.1381 (5)0.6941 (4)0.0326 (3)0.0591 (10)
H100.17950.71910.08030.071*
C110.2468 (5)0.6733 (4)0.0370 (3)0.0597 (11)
H110.36070.68580.03660.072*
C120.1861 (4)0.6338 (3)0.1073 (2)0.0501 (9)
H120.25890.61720.15450.060*
C130.0679 (5)0.9320 (4)0.1388 (3)0.0660 (12)
H13A0.14520.95890.18480.079*
H13B0.10290.86340.12060.079*
H13C0.06410.99860.09670.079*
C140.2798 (4)0.6235 (4)0.0383 (2)0.0569 (10)
H14A0.30520.57430.08640.068*
H14B0.31410.70280.03620.068*
H14C0.33760.58300.00760.068*
C150.1476 (6)0.7027 (4)0.1115 (2)0.0740 (13)
H15A0.21660.62690.12530.089*
H15B0.21630.76150.10520.089*
H15C0.08390.73480.15340.089*
Cl20.09225 (15)0.06815 (12)0.40474 (9)0.0840 (4)
S20.39623 (11)0.31016 (8)0.26485 (5)0.0461 (2)
O30.3263 (3)0.3796 (2)0.19847 (15)0.0607 (7)
O40.5651 (3)0.2535 (2)0.25283 (15)0.0579 (7)
N20.3740 (4)0.4077 (3)0.33141 (18)0.0475 (7)
H2N0.282 (3)0.456 (3)0.334 (2)0.057*
C160.2681 (4)0.1958 (3)0.3046 (2)0.0424 (8)
C170.3215 (5)0.0878 (3)0.3519 (2)0.0489 (9)
C180.2057 (5)0.0090 (3)0.3816 (2)0.0558 (10)
H180.23680.06310.41330.067*
C190.0459 (5)0.0349 (3)0.3652 (2)0.0518 (9)
C200.0065 (5)0.1399 (4)0.3189 (2)0.0556 (10)
H200.11450.15620.30770.067*
C210.1047 (4)0.2201 (4)0.2893 (2)0.0511 (9)
H210.07060.29240.25850.061*
C220.4406 (4)0.3718 (3)0.4052 (2)0.0404 (7)
C230.6040 (4)0.3884 (3)0.4066 (2)0.0408 (8)
C240.6675 (5)0.3519 (3)0.4783 (2)0.0510 (9)
C250.5644 (6)0.3059 (4)0.5452 (2)0.0649 (12)
H250.60610.28270.59290.078*
C260.4023 (6)0.2936 (4)0.5431 (2)0.0649 (12)
H260.33580.26380.58910.078*
C270.3396 (5)0.3256 (3)0.4727 (2)0.0524 (9)
H270.23090.31640.47030.063*
C280.4975 (5)0.0499 (4)0.3714 (3)0.0690 (12)
H28A0.53070.11740.39180.083*
H28B0.57290.02870.32350.083*
H28C0.49940.02010.41110.083*
C290.7049 (5)0.4485 (4)0.3345 (2)0.0571 (10)
H29A0.63170.50080.30230.069*
H29B0.77200.38610.30330.069*
H29C0.77540.49710.35170.069*
C300.8441 (5)0.3647 (5)0.4836 (3)0.0803 (15)
H30A0.86360.44730.46420.096*
H30B0.91990.30730.45150.096*
H30C0.86100.34760.53850.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0637 (8)0.0905 (9)0.1610 (15)0.0338 (7)0.0213 (8)0.0007 (9)
S10.0517 (6)0.0501 (5)0.0345 (4)0.0050 (4)0.0070 (4)0.0013 (4)
O10.0483 (15)0.0622 (16)0.0507 (15)0.0037 (12)0.0005 (12)0.0073 (12)
O20.0770 (19)0.0663 (17)0.0369 (13)0.0031 (14)0.0143 (13)0.0025 (12)
N10.0492 (18)0.0428 (17)0.0386 (15)0.0028 (13)0.0090 (14)0.0018 (13)
C10.0432 (19)0.0454 (19)0.0437 (19)0.0010 (15)0.0113 (16)0.0107 (15)
C20.044 (2)0.0425 (19)0.064 (2)0.0018 (16)0.0161 (18)0.0065 (17)
C30.053 (2)0.044 (2)0.082 (3)0.0069 (18)0.020 (2)0.001 (2)
C40.044 (2)0.060 (2)0.079 (3)0.0130 (18)0.011 (2)0.016 (2)
C50.044 (2)0.070 (3)0.074 (3)0.000 (2)0.022 (2)0.023 (2)
C60.050 (2)0.057 (2)0.052 (2)0.0012 (18)0.0198 (18)0.0066 (18)
C70.0441 (19)0.0356 (17)0.0376 (17)0.0076 (14)0.0076 (15)0.0030 (14)
C80.0436 (19)0.0409 (18)0.0429 (19)0.0085 (15)0.0064 (15)0.0050 (15)
C90.067 (3)0.046 (2)0.0381 (19)0.0141 (18)0.0113 (17)0.0037 (15)
C100.070 (3)0.057 (2)0.057 (2)0.005 (2)0.031 (2)0.0062 (19)
C110.049 (2)0.064 (3)0.073 (3)0.0065 (19)0.025 (2)0.014 (2)
C120.045 (2)0.054 (2)0.053 (2)0.0141 (17)0.0053 (17)0.0083 (17)
C130.050 (2)0.045 (2)0.102 (3)0.0053 (18)0.030 (2)0.017 (2)
C140.046 (2)0.071 (3)0.051 (2)0.0146 (19)0.0008 (17)0.0053 (19)
C150.097 (4)0.081 (3)0.044 (2)0.026 (3)0.006 (2)0.003 (2)
Cl20.0711 (8)0.0751 (8)0.1086 (10)0.0281 (6)0.0147 (7)0.0035 (7)
S20.0475 (5)0.0498 (5)0.0412 (5)0.0046 (4)0.0127 (4)0.0012 (4)
O30.0714 (18)0.0662 (17)0.0443 (14)0.0072 (14)0.0201 (13)0.0061 (13)
O40.0504 (16)0.0676 (17)0.0542 (16)0.0069 (13)0.0039 (12)0.0093 (13)
N20.0470 (18)0.0454 (17)0.0506 (17)0.0005 (13)0.0177 (15)0.0029 (14)
C160.046 (2)0.0422 (19)0.0406 (18)0.0005 (15)0.0127 (15)0.0086 (15)
C170.049 (2)0.045 (2)0.054 (2)0.0033 (16)0.0197 (18)0.0062 (17)
C180.060 (2)0.044 (2)0.064 (2)0.0040 (18)0.017 (2)0.0008 (18)
C190.051 (2)0.051 (2)0.056 (2)0.0090 (17)0.0104 (18)0.0110 (18)
C200.043 (2)0.065 (3)0.063 (2)0.0058 (18)0.0175 (19)0.007 (2)
C210.046 (2)0.056 (2)0.051 (2)0.0028 (17)0.0205 (17)0.0029 (17)
C220.0439 (19)0.0348 (17)0.0418 (18)0.0046 (14)0.0056 (15)0.0050 (14)
C230.0441 (19)0.0369 (17)0.0418 (18)0.0088 (14)0.0051 (15)0.0044 (14)
C240.056 (2)0.048 (2)0.052 (2)0.0047 (17)0.0185 (18)0.0169 (17)
C250.098 (4)0.052 (2)0.041 (2)0.010 (2)0.022 (2)0.0056 (18)
C260.091 (3)0.053 (2)0.043 (2)0.012 (2)0.008 (2)0.0007 (18)
C270.055 (2)0.049 (2)0.052 (2)0.0155 (17)0.0028 (18)0.0066 (17)
C280.052 (2)0.055 (2)0.098 (3)0.0012 (19)0.032 (2)0.015 (2)
C290.050 (2)0.063 (2)0.060 (2)0.0185 (19)0.0006 (19)0.0093 (19)
C300.061 (3)0.098 (4)0.090 (3)0.011 (3)0.035 (3)0.036 (3)
Geometric parameters (Å, º) top
Cl1—C41.739 (4)Cl2—C191.738 (4)
S1—O11.429 (3)S2—O41.421 (3)
S1—O21.436 (2)S2—O31.438 (2)
S1—N11.635 (3)S2—N21.626 (3)
S1—C11.777 (4)S2—C161.776 (4)
N1—C71.438 (4)N2—C221.445 (4)
N1—H1N0.850 (18)N2—H2N0.848 (18)
C1—C61.396 (5)C16—C211.398 (5)
C1—C21.403 (5)C16—C171.405 (5)
C2—C31.387 (5)C17—C181.388 (5)
C2—C131.533 (5)C17—C281.530 (5)
C3—C41.377 (5)C18—C191.376 (5)
C3—H30.9300C18—H180.9300
C4—C51.376 (6)C19—C201.371 (5)
C5—C61.368 (5)C20—C211.371 (5)
C5—H50.9300C20—H200.9300
C6—H60.9300C21—H210.9300
C7—C121.384 (5)C22—C271.388 (5)
C7—C81.390 (5)C22—C231.400 (5)
C8—C91.410 (5)C23—C241.403 (5)
C8—C141.509 (5)C23—C291.500 (5)
C9—C101.382 (5)C24—C251.389 (6)
C9—C151.509 (5)C24—C301.512 (6)
C10—C111.372 (6)C25—C261.378 (6)
C10—H100.9300C25—H250.9300
C11—C121.374 (5)C26—C271.374 (6)
C11—H110.9300C26—H260.9300
C12—H120.9300C27—H270.9300
C13—H13A0.9600C28—H28A0.9600
C13—H13B0.9600C28—H28B0.9600
C13—H13C0.9600C28—H28C0.9600
C14—H14A0.9600C29—H29A0.9600
C14—H14B0.9600C29—H29B0.9600
C14—H14C0.9600C29—H29C0.9600
C15—H15A0.9600C30—H30A0.9600
C15—H15B0.9600C30—H30B0.9600
C15—H15C0.9600C30—H30C0.9600
O1—S1—O2119.33 (16)O4—S2—O3119.65 (17)
O1—S1—N1108.10 (16)O4—S2—N2107.93 (16)
O2—S1—N1104.79 (15)O3—S2—N2104.94 (16)
O1—S1—C1109.28 (16)O4—S2—C16109.10 (16)
O2—S1—C1107.43 (17)O3—S2—C16106.85 (16)
N1—S1—C1107.27 (16)N2—S2—C16107.82 (16)
C7—N1—S1120.3 (2)C22—N2—S2120.5 (2)
C7—N1—H1N117 (3)C22—N2—H2N118 (3)
S1—N1—H1N109 (3)S2—N2—H2N112 (3)
C6—C1—C2120.4 (3)C21—C16—C17120.1 (3)
C6—C1—S1116.4 (3)C21—C16—S2116.5 (3)
C2—C1—S1123.2 (3)C17—C16—S2123.3 (3)
C3—C2—C1117.3 (3)C18—C17—C16117.0 (3)
C3—C2—C13117.5 (3)C18—C17—C28118.0 (3)
C1—C2—C13125.2 (3)C16—C17—C28124.9 (3)
C4—C3—C2121.4 (4)C19—C18—C17121.6 (4)
C4—C3—H3119.3C19—C18—H18119.2
C2—C3—H3119.3C17—C18—H18119.2
C5—C4—C3121.2 (4)C20—C19—C18121.6 (4)
C5—C4—Cl1120.4 (3)C20—C19—Cl2119.5 (3)
C3—C4—Cl1118.4 (3)C18—C19—Cl2119.0 (3)
C6—C5—C4118.7 (4)C19—C20—C21118.1 (3)
C6—C5—H5120.7C19—C20—H20120.9
C4—C5—H5120.7C21—C20—H20120.9
C5—C6—C1121.1 (4)C20—C21—C16121.5 (3)
C5—C6—H6119.5C20—C21—H21119.2
C1—C6—H6119.5C16—C21—H21119.2
C12—C7—C8121.2 (3)C27—C22—C23122.2 (3)
C12—C7—N1117.8 (3)C27—C22—N2119.2 (3)
C8—C7—N1121.1 (3)C23—C22—N2118.6 (3)
C7—C8—C9118.2 (3)C22—C23—C24117.9 (3)
C7—C8—C14121.7 (3)C22—C23—C29120.8 (3)
C9—C8—C14120.1 (3)C24—C23—C29121.3 (3)
C10—C9—C8119.3 (4)C25—C24—C23118.9 (4)
C10—C9—C15120.3 (4)C25—C24—C30120.3 (4)
C8—C9—C15120.4 (4)C23—C24—C30120.8 (4)
C11—C10—C9121.7 (4)C26—C25—C24122.2 (4)
C11—C10—H10119.2C26—C25—H25118.9
C9—C10—H10119.2C24—C25—H25118.9
C10—C11—C12119.4 (4)C27—C26—C25119.6 (4)
C10—C11—H11120.3C27—C26—H26120.2
C12—C11—H11120.3C25—C26—H26120.2
C11—C12—C7120.2 (4)C26—C27—C22119.0 (4)
C11—C12—H12119.9C26—C27—H27120.5
C7—C12—H12119.9C22—C27—H27120.5
C2—C13—H13A109.5C17—C28—H28A109.5
C2—C13—H13B109.5C17—C28—H28B109.5
H13A—C13—H13B109.5H28A—C28—H28B109.5
C2—C13—H13C109.5C17—C28—H28C109.5
H13A—C13—H13C109.5H28A—C28—H28C109.5
H13B—C13—H13C109.5H28B—C28—H28C109.5
C8—C14—H14A109.5C23—C29—H29A109.5
C8—C14—H14B109.5C23—C29—H29B109.5
H14A—C14—H14B109.5H29A—C29—H29B109.5
C8—C14—H14C109.5C23—C29—H29C109.5
H14A—C14—H14C109.5H29A—C29—H29C109.5
H14B—C14—H14C109.5H29B—C29—H29C109.5
C9—C15—H15A109.5C24—C30—H30A109.5
C9—C15—H15B109.5C24—C30—H30B109.5
H15A—C15—H15B109.5H30A—C30—H30B109.5
C9—C15—H15C109.5C24—C30—H30C109.5
H15A—C15—H15C109.5H30A—C30—H30C109.5
H15B—C15—H15C109.5H30B—C30—H30C109.5
O1—S1—N1—C750.9 (3)O4—S2—N2—C2247.4 (3)
O2—S1—N1—C7179.2 (3)O3—S2—N2—C22176.0 (3)
C1—S1—N1—C766.8 (3)C16—S2—N2—C2270.3 (3)
O1—S1—C1—C6151.7 (3)O4—S2—C16—C21154.0 (3)
O2—S1—C1—C620.8 (3)O3—S2—C16—C2123.3 (3)
N1—S1—C1—C691.4 (3)N2—S2—C16—C2189.0 (3)
O1—S1—C1—C231.0 (3)O4—S2—C16—C1728.5 (3)
O2—S1—C1—C2161.8 (3)O3—S2—C16—C17159.2 (3)
N1—S1—C1—C286.0 (3)N2—S2—C16—C1788.4 (3)
C6—C1—C2—C30.5 (5)C21—C16—C17—C180.0 (5)
S1—C1—C2—C3176.7 (3)S2—C16—C17—C18177.4 (3)
C6—C1—C2—C13178.9 (4)C21—C16—C17—C28178.8 (4)
S1—C1—C2—C133.8 (5)S2—C16—C17—C283.8 (5)
C1—C2—C3—C40.7 (6)C16—C17—C18—C190.4 (6)
C13—C2—C3—C4178.7 (4)C28—C17—C18—C19178.5 (4)
C2—C3—C4—C50.3 (7)C17—C18—C19—C200.1 (6)
C2—C3—C4—Cl1178.9 (3)C17—C18—C19—Cl2179.9 (3)
C3—C4—C5—C60.3 (6)C18—C19—C20—C210.6 (6)
Cl1—C4—C5—C6179.6 (3)Cl2—C19—C20—C21179.2 (3)
C4—C5—C6—C10.5 (6)C19—C20—C21—C161.0 (6)
C2—C1—C6—C50.1 (6)C17—C16—C21—C200.7 (6)
S1—C1—C6—C5177.5 (3)S2—C16—C21—C20178.3 (3)
S1—N1—C7—C1276.7 (4)S2—N2—C22—C2792.8 (4)
S1—N1—C7—C8104.2 (3)S2—N2—C22—C2389.1 (4)
C12—C7—C8—C90.5 (5)C27—C22—C23—C242.7 (5)
N1—C7—C8—C9179.5 (3)N2—C22—C23—C24179.3 (3)
C12—C7—C8—C14179.8 (3)C27—C22—C23—C29174.8 (3)
N1—C7—C8—C140.8 (5)N2—C22—C23—C293.2 (5)
C7—C8—C9—C100.0 (5)C22—C23—C24—C252.6 (5)
C14—C8—C9—C10179.7 (3)C29—C23—C24—C25174.8 (3)
C7—C8—C9—C15179.6 (3)C22—C23—C24—C30178.7 (3)
C14—C8—C9—C150.7 (5)C29—C23—C24—C303.8 (5)
C8—C9—C10—C110.4 (6)C23—C24—C25—C260.8 (6)
C15—C9—C10—C11179.9 (4)C30—C24—C25—C26179.5 (4)
C9—C10—C11—C121.4 (6)C24—C25—C26—C271.1 (6)
C10—C11—C12—C71.8 (6)C25—C26—C27—C221.1 (6)
C8—C7—C12—C111.4 (5)C23—C22—C27—C260.8 (5)
N1—C7—C12—C11179.5 (3)N2—C22—C27—C26178.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O30.85 (2)2.15 (2)2.971 (4)162 (4)
N2—H2N···O20.85 (2)2.12 (2)2.954 (4)166 (4)

Experimental details

Crystal data
Chemical formulaC15H16ClNO2S
Mr309.80
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.2747 (7), 11.0464 (9), 17.021 (1)
α, β, γ (°)82.722 (7), 79.529 (7), 80.267 (7)
V3)1500.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.40 × 0.28 × 0.14
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.858, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
10437, 6064, 4140
Rint0.016
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.166, 1.12
No. of reflections6064
No. of parameters373
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.58, 0.36

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O30.850 (18)2.15 (2)2.971 (4)162 (4)
N2—H2N···O20.848 (18)2.12 (2)2.954 (4)166 (4)
 

Acknowledgements

VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of an RFSMS fellowship.

References

First citationAdsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077.  Web of Science CrossRef PubMed CAS Google Scholar
First citationArjunan, V., Mohan, S., Subramanian, S. & Gowda, B. T. (2004). Spectrochim. Acta Part A, 60, 1141–1159.  CrossRef CAS Google Scholar
First citationGelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2337.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o2329.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Kozisek, J. & Fuess, H. (2006). Z. Naturforsch. Teil A, 55, 588–594.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPerlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSavitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 61, 600–606.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds