organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 1-phenyl­sulfonyl-1H-indole-2-carboxyl­ate

aDepartment of Physics, AMET University, Kanathur, Chennai 603 112, India, bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and dDepartment of Research and Development, PRIST University, Vallam, Thanjavur 613 403, Tamil Nadu, India
*Correspondence e-mail: crystallography2010@gmail.com

(Received 19 August 2011; accepted 30 August 2011; online 3 September 2011)

In the title compound, C17H15NO4S, the six-membered ring of the indole unit makes a dihedral angle of 72.40 (5)° with the phenyl ring. The mol­ecular structure features a short C—H⋯O contact.

Related literature

For the biological activity of Indole derivatives, see: Joshi & Chand (1982[Joshi, K. C. & Chand, P. (1982). Pharmazie, 37, 1-12.]); Pomarnacka & Kozlarska-Kedra (2003[Pomarnacka, E. & Kozlarska-Kedra, I. (2003). Farmaco, 58, 423-429.]); For a related structure, see: Chakkaravarthi et al. (2010[Chakkaravarthi, G., Panchatcharam, R., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2010). Acta Cryst. E66, o2957.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15NO4S

  • Mr = 329.36

  • Monoclinic, P 21 /n

  • a = 10.6936 (6) Å

  • b = 7.5331 (4) Å

  • c = 19.5654 (12) Å

  • β = 96.647 (2)°

  • V = 1565.52 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 295 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.]) Tmin = 0.952, Tmax = 0.960

  • 35524 measured reflections

  • 4353 independent reflections

  • 3245 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.129

  • S = 1.02

  • 4353 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1 0.93 2.29 2.839 (2) 117

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 .

Supporting information


Comment top

Compounds containing the indole moiety exhibit antibacterial and fungicidal activities (Joshi & Chand, 1982). In addition, indole derivatives are also known to exhibit anticancer and anti-HIV (Pomarnacka & Kozlarska-Kedra, 2003) activities.

The geometric parameters of the title molecule (Fig. 1) agree well with reported similar structures (Chakkaravarthi et al., 2010) The dihedral angle between the six membered ring of the indole moiety and the benzene ring is 72.40 (5)°. The sum of bond angles around N1 [359.03 (9) °] indicates the sp2 hybridization state. The molecular structure is stabilized by weak intramolecular C—H···O interaction.

Related literature top

For the biological activity of Indole derivatives, see: Joshi & Chand (1982); Pomarnacka & Kozlarska-Kedra (2003); For a related structure, see: Chakkaravarthi et al. (2010)

Experimental top

Ethyl-indole-2- carboxylate (1 g,5.29 mmol) was dissolved in distilled benzene (20 ml). To this benzenesulfonyl chloride (0.82 ml,5.82 mmol) and 60% NaOH (2.1 g in3.52 ml) were added along with tetra butyl ammonium hydrogen sulfate (1.0 g). This two phase system was stirred at room temperature for 2 h. It was then diluted with water (50 ml)and the organic layer was separated. The aqueous layer was extracted with benzene (2x20 ml)and the combined organic extracts were dried(Na2SO4). The solvent was removed completely and the crude product was recrystallized from methanol afforded ethyl- 1-phenylsulfonyl-indole 2-carboxylate (m.p 395–397 K).

Refinement top

H atoms were positioned geometrically and refined using riding model with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H, C—H = 0.97Å and Uiso(H) = 1.2Ueq(C) for CH2, C—H = 0.96Å and Uiso(H) = 1.5Ueq(C) for CH3.

Structure description top

Compounds containing the indole moiety exhibit antibacterial and fungicidal activities (Joshi & Chand, 1982). In addition, indole derivatives are also known to exhibit anticancer and anti-HIV (Pomarnacka & Kozlarska-Kedra, 2003) activities.

The geometric parameters of the title molecule (Fig. 1) agree well with reported similar structures (Chakkaravarthi et al., 2010) The dihedral angle between the six membered ring of the indole moiety and the benzene ring is 72.40 (5)°. The sum of bond angles around N1 [359.03 (9) °] indicates the sp2 hybridization state. The molecular structure is stabilized by weak intramolecular C—H···O interaction.

For the biological activity of Indole derivatives, see: Joshi & Chand (1982); Pomarnacka & Kozlarska-Kedra (2003); For a related structure, see: Chakkaravarthi et al. (2010)

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.
Ethyl 1-phenylsulfonyl-1H-indole-2-carboxylate top
Crystal data top
C17H15NO4SF(000) = 688
Mr = 329.36Dx = 1.397 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2YnCell parameters from 4353 reflections
a = 10.6936 (6) Åθ = 2.1–29.5°
b = 7.5331 (4) ŵ = 0.23 mm1
c = 19.5654 (12) ÅT = 295 K
β = 96.647 (2)°Block, colourless
V = 1565.52 (15) Å30.22 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4353 independent reflections
Radiation source: fine-focus sealed tube3245 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 0 pixels mm-1θmax = 29.5°, θmin = 2.1°
ω and φ scansh = 1414
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1010
Tmin = 0.952, Tmax = 0.960l = 2627
35524 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0661P)2 + 0.3737P]
where P = (Fo2 + 2Fc2)/3
4353 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C17H15NO4SV = 1565.52 (15) Å3
Mr = 329.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.6936 (6) ŵ = 0.23 mm1
b = 7.5331 (4) ÅT = 295 K
c = 19.5654 (12) Å0.22 × 0.20 × 0.18 mm
β = 96.647 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4353 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3245 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.960Rint = 0.041
35524 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.02Δρmax = 0.33 e Å3
4353 reflectionsΔρmin = 0.23 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.75477 (14)0.1614 (2)0.14296 (8)0.0459 (3)
C20.76555 (18)0.1553 (3)0.07299 (10)0.0595 (4)
H20.69510.16130.04040.071*
C30.8851 (2)0.1399 (3)0.05402 (12)0.0707 (5)
H30.89500.13580.00750.085*
C40.99095 (19)0.1305 (3)0.10177 (13)0.0746 (6)
H41.07000.11950.08680.090*
C50.98078 (17)0.1371 (3)0.16998 (12)0.0667 (5)
H51.05230.13200.20190.080*
C60.86132 (15)0.1518 (2)0.19186 (9)0.0500 (4)
C70.82011 (15)0.1562 (2)0.25786 (9)0.0517 (4)
H70.87170.15250.29950.062*
C80.69340 (14)0.1666 (2)0.25026 (8)0.0444 (3)
C90.61219 (15)0.1458 (2)0.30554 (9)0.0479 (4)
C100.6183 (2)0.1412 (3)0.42624 (10)0.0699 (5)
H10A0.57950.02470.42250.084*
H10B0.55350.22870.43140.084*
C110.7173 (3)0.1476 (4)0.48626 (12)0.0924 (8)
H11A0.78500.06940.47830.139*
H11B0.68210.11090.52690.139*
H11C0.74870.26670.49220.139*
C120.42232 (13)0.0165 (2)0.14176 (8)0.0443 (3)
C130.31930 (15)0.0030 (3)0.17714 (10)0.0562 (4)
H130.29350.08940.20380.067*
C140.25463 (18)0.1627 (3)0.17237 (11)0.0653 (5)
H140.18380.17740.19520.078*
C150.2945 (2)0.2984 (3)0.13425 (11)0.0682 (5)
H150.25150.40600.13200.082*
C160.3978 (2)0.2779 (3)0.09909 (11)0.0661 (5)
H160.42420.37150.07330.079*
C170.46224 (17)0.1190 (2)0.10196 (9)0.0558 (4)
H170.53110.10340.07760.067*
N10.64889 (11)0.17160 (18)0.17945 (7)0.0445 (3)
O10.51424 (12)0.27385 (18)0.07617 (7)0.0626 (3)
O20.44931 (11)0.33875 (16)0.18971 (7)0.0589 (3)
O30.50501 (12)0.09756 (19)0.29867 (7)0.0646 (3)
O40.67930 (12)0.17905 (19)0.36602 (6)0.0611 (3)
S10.50234 (3)0.22047 (5)0.14475 (2)0.04621 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0410 (8)0.0423 (7)0.0540 (9)0.0003 (6)0.0037 (6)0.0018 (6)
C20.0572 (10)0.0664 (11)0.0551 (10)0.0002 (8)0.0071 (8)0.0046 (8)
C30.0731 (13)0.0750 (13)0.0678 (12)0.0045 (10)0.0247 (10)0.0025 (10)
C40.0519 (11)0.0801 (14)0.0961 (17)0.0050 (10)0.0263 (11)0.0025 (12)
C50.0409 (9)0.0747 (13)0.0846 (14)0.0047 (8)0.0071 (9)0.0044 (10)
C60.0391 (7)0.0463 (8)0.0633 (10)0.0011 (6)0.0004 (7)0.0017 (7)
C70.0412 (8)0.0554 (9)0.0554 (9)0.0053 (7)0.0068 (7)0.0053 (7)
C80.0407 (7)0.0433 (7)0.0472 (8)0.0035 (6)0.0035 (6)0.0010 (6)
C90.0459 (8)0.0452 (8)0.0510 (9)0.0076 (6)0.0011 (7)0.0006 (6)
C100.0802 (14)0.0781 (13)0.0521 (11)0.0125 (11)0.0106 (9)0.0039 (9)
C110.116 (2)0.1060 (19)0.0524 (12)0.0233 (16)0.0021 (12)0.0063 (12)
C120.0362 (7)0.0461 (7)0.0474 (8)0.0036 (6)0.0083 (6)0.0005 (6)
C130.0407 (8)0.0596 (10)0.0672 (11)0.0006 (7)0.0012 (7)0.0057 (8)
C140.0487 (10)0.0690 (11)0.0761 (13)0.0103 (8)0.0017 (9)0.0078 (10)
C150.0701 (12)0.0534 (10)0.0747 (13)0.0123 (9)0.0188 (10)0.0068 (9)
C160.0773 (13)0.0498 (9)0.0666 (12)0.0052 (9)0.0111 (10)0.0081 (8)
C170.0544 (9)0.0557 (9)0.0551 (10)0.0061 (7)0.0027 (7)0.0051 (7)
N10.0352 (6)0.0516 (7)0.0452 (7)0.0011 (5)0.0015 (5)0.0022 (5)
O10.0546 (7)0.0708 (8)0.0595 (8)0.0042 (6)0.0051 (6)0.0204 (6)
O20.0503 (7)0.0461 (6)0.0784 (9)0.0119 (5)0.0001 (6)0.0040 (6)
O30.0481 (7)0.0822 (9)0.0629 (8)0.0033 (6)0.0042 (6)0.0031 (7)
O40.0590 (7)0.0773 (8)0.0458 (7)0.0003 (6)0.0003 (5)0.0031 (6)
S10.0382 (2)0.0439 (2)0.0542 (2)0.00539 (14)0.00468 (15)0.00506 (16)
Geometric parameters (Å, º) top
C1—C21.388 (2)C10—H10A0.9700
C1—C61.402 (2)C10—H10B0.9700
C1—N11.409 (2)C11—H11A0.9600
C2—C31.376 (3)C11—H11B0.9600
C2—H20.9300C11—H11C0.9600
C3—C41.384 (3)C12—C131.375 (2)
C3—H30.9300C12—C171.381 (2)
C4—C51.352 (3)C12—S11.7567 (16)
C4—H40.9300C13—C141.386 (3)
C5—C61.398 (2)C13—H130.9300
C5—H50.9300C14—C151.363 (3)
C6—C71.412 (3)C14—H140.9300
C7—C81.348 (2)C15—C161.376 (3)
C7—H70.9300C15—H150.9300
C8—N11.412 (2)C16—C171.379 (3)
C8—C91.472 (2)C16—H160.9300
C9—O31.195 (2)C17—H170.9300
C9—O41.335 (2)N1—S11.6752 (13)
C10—O41.440 (2)O1—S11.4204 (13)
C10—C111.488 (3)O2—S11.4159 (13)
C2—C1—C6121.18 (16)C10—C11—H11B109.5
C2—C1—N1131.69 (15)H11A—C11—H11B109.5
C6—C1—N1107.11 (14)C10—C11—H11C109.5
C3—C2—C1117.02 (18)H11A—C11—H11C109.5
C3—C2—H2121.5H11B—C11—H11C109.5
C1—C2—H2121.5C13—C12—C17121.55 (16)
C2—C3—C4122.4 (2)C13—C12—S1119.47 (13)
C2—C3—H3118.8C17—C12—S1118.95 (13)
C4—C3—H3118.8C12—C13—C14118.77 (18)
C5—C4—C3120.76 (18)C12—C13—H13120.6
C5—C4—H4119.6C14—C13—H13120.6
C3—C4—H4119.6C15—C14—C13120.20 (19)
C4—C5—C6119.07 (19)C15—C14—H14119.9
C4—C5—H5120.5C13—C14—H14119.9
C6—C5—H5120.5C14—C15—C16120.64 (18)
C5—C6—C1119.62 (18)C14—C15—H15119.7
C5—C6—C7132.45 (17)C16—C15—H15119.7
C1—C6—C7107.92 (14)C15—C16—C17120.23 (18)
C8—C7—C6108.45 (15)C15—C16—H16119.9
C8—C7—H7125.8C17—C16—H16119.9
C6—C7—H7125.8C16—C17—C12118.60 (18)
C7—C8—N1109.27 (14)C16—C17—H17120.7
C7—C8—C9125.71 (15)C12—C17—H17120.7
N1—C8—C9124.28 (13)C1—N1—C8107.24 (12)
O3—C9—O4124.55 (16)C1—N1—S1125.14 (11)
O3—C9—C8126.12 (16)C8—N1—S1126.64 (11)
O4—C9—C8109.22 (14)C9—O4—C10116.12 (15)
O4—C10—C11106.90 (19)O2—S1—O1119.66 (8)
O4—C10—H10A110.3O2—S1—N1108.04 (7)
C11—C10—H10A110.3O1—S1—N1105.26 (7)
O4—C10—H10B110.3O2—S1—C12110.04 (8)
C11—C10—H10B110.3O1—S1—C12108.23 (8)
H10A—C10—H10B108.6N1—S1—C12104.50 (7)
C10—C11—H11A109.5
C6—C1—C2—C30.2 (3)C13—C12—C17—C161.2 (2)
N1—C1—C2—C3178.06 (18)S1—C12—C17—C16179.06 (14)
C1—C2—C3—C40.1 (3)C2—C1—N1—C8177.65 (17)
C2—C3—C4—C50.4 (3)C6—C1—N1—C80.45 (17)
C3—C4—C5—C60.7 (3)C2—C1—N1—S113.1 (3)
C4—C5—C6—C10.7 (3)C6—C1—N1—S1168.80 (11)
C4—C5—C6—C7177.8 (2)C7—C8—N1—C10.77 (18)
C2—C1—C6—C50.5 (3)C9—C8—N1—C1169.90 (14)
N1—C1—C6—C5178.83 (16)C7—C8—N1—S1168.27 (12)
C2—C1—C6—C7178.36 (16)C9—C8—N1—S121.1 (2)
N1—C1—C6—C70.01 (18)O3—C9—O4—C104.4 (2)
C5—C6—C7—C8178.14 (19)C8—C9—O4—C10171.90 (15)
C1—C6—C7—C80.49 (19)C11—C10—O4—C9167.30 (18)
C6—C7—C8—N10.78 (19)C1—N1—S1—O2137.60 (13)
C6—C7—C8—C9169.72 (15)C8—N1—S1—O229.58 (15)
C7—C8—C9—O3153.97 (18)C1—N1—S1—O18.67 (15)
N1—C8—C9—O315.2 (3)C8—N1—S1—O1158.50 (13)
C7—C8—C9—O422.3 (2)C1—N1—S1—C12105.25 (14)
N1—C8—C9—O4168.58 (14)C8—N1—S1—C1287.58 (14)
C17—C12—C13—C140.0 (2)C13—C12—S1—O23.79 (15)
S1—C12—C13—C14177.82 (13)C17—C12—S1—O2178.30 (12)
C12—C13—C14—C151.2 (3)C13—C12—S1—O1128.64 (13)
C13—C14—C15—C161.2 (3)C17—C12—S1—O149.27 (14)
C14—C15—C16—C170.1 (3)C13—C12—S1—N1119.56 (13)
C15—C16—C17—C121.3 (3)C17—C12—S1—N162.53 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.932.292.839 (2)117
C13—H13···O20.932.552.923 (2)105

Experimental details

Crystal data
Chemical formulaC17H15NO4S
Mr329.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)10.6936 (6), 7.5331 (4), 19.5654 (12)
β (°) 96.647 (2)
V3)1565.52 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.952, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
35524, 4353, 3245
Rint0.041
(sin θ/λ)max1)0.693
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.129, 1.02
No. of reflections4353
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.23

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.932.292.839 (2)116.9
C13—H13···O20.932.552.923 (2)104.5
 

Acknowledgements

CR wishes to acknowledge AMET University management, India, for their kind support.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakkaravarthi, G., Panchatcharam, R., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2010). Acta Cryst. E66, o2957.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJoshi, K. C. & Chand, P. (1982). Pharmazie, 37, 1–12.  CAS PubMed Web of Science Google Scholar
First citationPomarnacka, E. & Kozlarska-Kedra, I. (2003). Farmaco, 58, 423–429.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds